
Chapter 6

Using LSTM language model
with CNN for handwritten
character recognition

6.1 Introduction

This chapter explores the combination of LSTM language model (LM) and CNNs
for handwritten character recognition of Meitei Mayek. The primary goal is to
leverage the strengths of both architectures: CNNs to extract visual features for
image understanding and LSTMs for contextual understanding. The proposed
methodology aims to improve the recognition accuracy by considering not only
the visual information of characters but also the contextual dependencies between
characters in a text sequence.

Convolutional Neural Networks (CNNs) have demonstrated remarkable
success in image-based recognition tasks, including handwritten character recog-
nition. CNNs excel at capturing the visual features from images. However, their
ability to model contextual dependencies and understand the sequential nature of
handwriting is limited. To overcome this limitation, researchers have been adopt-
ing the concept of language modelling in the HCR systems. Language models
are well-suited for modelling sequential data and capturing long-range dependen-
cies. When we talk about language models, they can be broadly divided into two
categories, viz., statistical language models and neural network language mod-
els (NNLMs). Statistical models are based on traditional statistical methods like
N-grams and Hidden Markov Models (HMM) to learn the probability distribu-

101



Chapter 6. Using LSTM language model with CNN for handwritten
character recognition

tion of characters and/or words. They play a significant role in many applications
such as speech and character recognition, information retrieval and machine trans-
lation, etc. Many handwritten text recognition (HTR) technologies have been
developed based on N-grams and HMMs [215, 216]. The HTR contests on the
TRANSCRIPTORIUM[181] datasets see many entries with different methodolo-
gies using HMMs, N-gram LMs and neural networks [182, 183]. The more recent
competitions which are performed on the READ dataset report on the use of
CNN, RNN, Bidirectional LSTM (BLSTM) along with N-gram language models
[184, 185]. The back-off N-gram language models (BLMs) have also been widely
adopted in many text recognition systems [35, 57, 128, 227, 242]. The drawback
with statistical models, however, is that they suffer from the curse of dimension-
ality and data sparseness problem. This means that in order to achieve a more
accurate estimate of the sequence probability, the statistical models should be of
higher order. Carpenter [36] pointed out that with sufficient training samples, the
performance of an N-gram model can be improved until 8-gram. However, higher
N leads to a lot of computation overhead as the number of parameters increases
exponentially. Moreover, N-grams are a sparse representation of language. This
is because the model is built based on the probability of words co-occurring. It
will give zero probability to the words that are not present in the training corpus.
Recently, the NNLM has been introduced to address the data sparseness problem
[27]. Since then, NNLMs have been successfully applied to many machine learning
tasks such as speech recognition [133, 191] and machine translation [110, 192] and
handwriting recognition [232, 239].

By incorporating language models into recognition systems, accuracy can
be enhanced, challenging scenarios can be handled, and the overall quality of
recognized text can be improved, making it a valuable component of handwriting
recognition technology. When we talk about incorporating LM in HCR systems,
there can be two ways of doing it. One is when the LM is integrated into the
HCR system and works as an end-to-end approach and the other is when LM is
used as a post-processing step after the recognition where it helps bridge the gap
between the raw character recognition output and the final, high-quality textual
representation. The first technique requires a large image dataset consisting of
pages of handwritten texts along with the ground truth or transcriptions in order to
train the system. This type of dataset is currently not available for the concerned
script. The creation of such datasets will be taken up as part of our future work.

In the present work, NNLM is used as a post-processing step but at the
same time, the decision that the recognition step makes, CNN in the present
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case, is also taken into account in delivering the final decision of the system.
Therefore, the proposed methodology is able to capture both the class probabilities
of the CNN based on the visual features and the conditional probabilities of the
NNLM based on the contextual information. Both the language context model and
visual model are found to be of great importance in handwritten text recognition
[227]. The two types of probabilities are then combined to generate the final
probability. Weighted sum approach is used for the combination of the two types
of probabilities.

6.2 Related work

In the context of HTR of historical documents, combination of optical models and
language models has been extensively explored. The use of optical models such as
HMMs and the classic N-gram models have been found in many works reported in
literature. In the work reported by Sanchez et al. [182], the best performance on
the TRANSCRIPTORIUM datasets (as of 2014) are obtained by adopting Multi-
directional Long Short-Term Memory (MDLSTM) NN as optical model and a
lexicon derived from the training transcripts which performs as a 1-gram LM. A
similar methodology achieves the best results in the HTR ICDAR-2015 contest as
well [183]. For the READ datasets, the best performance in the HTR ICFHR-
2016 is shown by CNN having five layers followed by MDLSTMs as the optical
model and a character 10-gram LM [184]. The HTR ICDAR-2017 contest [185]
reports the best performance by adopting a seven-layered CNN and two-layered
of BLSTM, along with a character 10-gram for decoding. The work presented
by Sanchez et al. [186] summarizes the results of the four contests viz. ICFHR-
2014, ICDAR-2015, ICFHR-2016 and ICDAR-2017. The work also reports on the
benchmark HTR technologies achieved against the datasets. They could achieve
better results by the adoption of plain BLSTM architecture instead of a MDLSTM
and a higher-order character N-gram models such as character 7-gram or 8-gram.
More number of training data are also generated to train the optical models as
part of their work.

Marti and Bunke [128] propose an enhanced HMM-based handwriting
recognition system using a statistical LM. The approach avoids the need to seg-
ment lines of text into individual words. The work of Wang et al. [226] presents an
approach of integrating segmentation and recognition steps for offline handwrit-
ten Chinese text recognition. Four types of character-level and word-level LMs
are evaluated and it is found that character-trigram (charTri) performs the best
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for character recognition and segmentation out of charBi, charTri, wordBi and
wordTri. Kang et al. [92] propose a method of integrating an external language
model with handwritten word recognizer in which it has the ability to choose or
discard the information provided by the language model. They achieve state-of-
the-art results on IAM, GW and Rimes datasets. The work of Neto et all. [141]
presents spelling correction techniques for text-processing which eliminates the
linguistic dependence between the optical model and the decoder. They also pro-
pose a training methodology for NN encoder-decoder architecture for the purpose
of spelling correction. Experiments on five well known datasets provide state-of-
the-art performance.

In the work of Wick et al. [229], a bidirectional transformer-based encoder-
decoder is proposed which performs decoding in reading-order and also reverse
directions. They also pointed out the need for a large training dataset for trans-
formers. With a larger dataset, they are able to outperform their reference model
by 26%. In a simple experimented conducted by Gold and Zesch [64], they are
able to enhance the HTR system by incorporating a unigram language model as
a post-processing step to the recognizer which consists of five CNN layers, two
RNN layers and a Connectionist Temporal Classification (CTC) layer. The rec-
ognizer is trained on IAM dataset. Hu et al. [78] employ a two-pass recognition
approach. The first pass uses a common LM to retrieve the relevant contents
from the internet by obtaining the initial recognition results. Then an adaptive
LM is generated based on the related contents. The two LMs are then combined
for the second-pass recognition. Significant performance improvements are seen in
CASIA-HWDB and ICDAR-2013 datasets. Another work [203] proposes a method
for adapting a generic HTR system to a specific writer. The optical model com-
poses of eight CNN layers followed by two BLSTM layers. The decoding layer is
a 9-gram LM of 2-multigrams. The approach is evaluated on the READ dataset
and reports comparable performance with state-of-the-art results.

In a very recent work of Li et al. [115], pre-trained transformer and text
transformer models are used to leverage the transformer architecture for both im-
age understanding and text generation. They show that the proposed approach
outperforms state-of-the-art models on handwritten, printed and scene text recog-
nition tasks. Another recent work based on transformer [134] introduces two ar-
chitectures viz. Transformer Transducer and the standard sequence-to-sequence
Transformer. Pre-trained transformers are employed as both optical and language
models. They achieve state-of-the-art performance on the Arabic KHATT dataset.
The approach achieves a more parallelizable and less complex system by modelling
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language dependencies and focusing on the attention mechanism.

From the works reported in literature, it is found that existing typical
HTR systems utilize combinations of CNNs, RNNs and CTC for text generation
and an explicit language model as a post-processing step to improve the overall
accuracy of the system. The latest HTR technology utilizing transformer requires
a significantly large labelled dataset of handwritten or printed texts. In Meitei
Mayek, there is not a single such dataset available currently, which can be used
to even fine-tune hyperparameters if one wishes to use pre-trained models also.
Therefore, LSTM-based LM is utilized in the present work which requires com-
paratively smaller dataset to train and it has been trained using a text corpus.
The work described in this chapter is an attempt to evaluate the performance of
a CNN-based HCR system for Meitei Mayek with the incorporation of a LM.

6.3 Proposed methodology

The conceptual framework of the proposed methodology is shown in Figure 6-1.
The training of CNN is carried out using the TUMMHCD dataset as described
in Section 4.3.1. The LSTM-based language model is trained at character-level
using the TDIL text corpora named The TDIL Hindi-Manipuri Agriculture &
Entertainment Text Corpus ILCI-II 1. The details of the corpus have already been
provided in Chapter 5, under Section 5.3. For the evaluation of the proposed
method, the test dataset used is the 100 words dataset described in Section 5.5.1.
Pre-processing takes place on the test images following the steps described in
Section 5.4.3 and Figure 5-11. After pre-processing, the segmented test character
images are fed to the trained CNN which gives out the raw output character text.
The CNN output text is given as the input to the trained LSTM language model
(LSTM-LM). The proposed approach then combines the class probabilities and
conditional probabilities of the characters in each of the test word image to give
the final output text. Different steps of the proposed strategy are described in the
following sections.

1https://tdil-dc.in/index.php?option=com_download&task=showresourceDetails&
toolid=1874&lang=en
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Figure 6-1: Conceptual framework of the proposed CNN-LSTM recognition sys-
tem

6.3.1 CNN training

The training of CNN is carried out in the same manner as described in Section
4.3.1. The difference here is with the TUMMHCD dataset that has been used.
The model is trained with only 54 character classes (excluding the character class
representing ”꯫”), since it does not represent a word. The reason why this change
is considered will become more clear with the subsequent sections.

6.3.2 LSTM language model

The character-level LSTM language model is trained using the TDIL corpus. For
the purpose of training, the corpus is considered word by word, which is described
in the subsections that follow. Data cleaning is carried out on the original corpus
in order to make it appropriate for the purpose.

6.3.2.1 Data cleaning

Firstly, certain characters such as (, ), /, -, ., etc. are removed. The character
”꯫” which signifies the end-of-line is also removed from the original corpus since
it does not represent a word. The inclusion of ”꯫” is more relevant in those
scenarios where the model is to be trained for word-level language modelling, and
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not character-level modelling like the present work. Thus, the cleaned text corpus
has 55 characters, 54 Meitei Mayek characters (excluding ”꯫”) and the whitespace.

6.3.2.2 Training LSTM language model

For training the LSTM, the input sequences are generated by considering the
text corpus at word level. That is, the sequences are generated for each of
the words separately. For example, if the first word W1 has the character se-
quence < ch1, ch2, ch3, ch4, ch5 >, the generated sequences with respect to this
particular word are: [0, 0, 0, ..., 0, t1, t2], [0, ..., 0, 0, t1, t2, t3], [0, ..., 0, t1, t2, t3, t4] and
[0, .., t1, t2, t3, t4, t5], where ti is the token for character chi and 0’s are added to give
a fixed sequence length. Similarly, the second word generates its corresponding
set of sequences, the third word, its corresponding set of sequences and so on and
so forth. The sequence length used is 22 which is the length of the longest word
present in the text corpus. A total of 8,04,292 sequences are generated to train
the LSTM. The vocabulary size is 55 and therefore there are 55 tokens, each token
representing a character.

The LSTM LM is trained using the text corpus such that given a sequence
of characters, it is able to predict the most likely character to come next. It
works in a similar way like the popular word2vec models. Once the LSTM is
trained, the trained model is used to generate the conditional probabilities of
the input sequence of tokens (characters in this case). Since the present work
deals with tokens that represent the characters, the term ”token” would mean
token representing characters in the rest of the thesis. The input to the LSTM is
the output text given out by the CNN. The LSTM-LM estimates the probability
distribution of the next token in the sequence, known as conditional probability
based on the prior context and uses this distribution to predict the next token.
The prior probability of the entire sequence is the product of the token conditional
probabilities along the sequence. The model is trained to minimize the difference
between these predicted probabilities and the ground truth labels for each token.

Let X = (x1, x2, x3, ..., xt) be the input sequence to the LSTM LM, where
xt represents the current token in the sequence, and t is the position in the se-
quence. The LSTM model maintains a hidden state ht at each position t, which
represents the context learned from the preceding characters in the sequence. At
each time step t, the LSTM updates the hidden state ht based on the current input
xt and the previous hidden state ht−1. This update is defined by LSTM equations,
which include operations like input gates, forget gates, and output gates:

107



Chapter 6. Using LSTM language model with CNN for handwritten
character recognition

ht = LSTM(xt, ht−1) (6.1)

After updating the hidden state ht, the LSTM passes it through the output
layer which generates a probability distribution over the vocabulary of possible
tokens. Let Pt represent this distribution at time step t.

Pt = OutputLayer(ht) (6.2)

Pt is the conditional probability distribution over all possible tokens, and
each element Pt[i] represents the probability of the ith token in the vocabulary
being the next token in the sequence. During training, the model is provided with
the ground truth labels for the next token in the sequence, denoted as yt. The
training objective is to minimize the categorical cross-entropy loss between the
predicted distribution Pt and the actual target distribution yt.

The total 8,04,292 sequences are divided randomly into training set and
validation set in the ratio 9:1. The training set has 7,23,862 sequences and test
set has 80,430 sequences. The training is carried out in the cloud-based Jupyter
notebooks provided by Kaggle. A baseline model having one LSTM layer and
100 hidden units is first taken for training. A dropout layer of 0.5 is used after
the LSTM layer followed by a dense layer with softmax activation function. The
optimizer used is Adam. The training is done for 100 epochs with early stopping
method with a patience of 20 on the validation loss. The batchsize taken is 32.
The baseline model achieves an accuracy of 56.20% on the validation set and
58.33% on the training set. The number of hidden units is increased to 700 and
a dropout layer of 0.9 is used. The batch size is updated to 1024 for a faster
training, keeping the other parameters same. With this architecture, the LSTM
LM reaches a validation accuracy of 65.20% and a training accuracy of 68.40%.
After this point, the model could not perform better with the addition of layers or
hidden units or with changing the batchsize. Once the model is trained, it is used
to generate the conditional probabilities of the test input sequence. The input
sequence is the sequence of tokens representing the character text generated by
the CNN.

108



6.3. Proposed methodology

Figure 6-2: The workflow of the test images through the trained CNN and
trained LSTM-LM. The orange lines depict the class probabilities (CP) generated
by the CNN and the green lines depict the conditional probabilities (CoP) gener-
ated by the LSTM-LM.

6.3.3 Testing of test images

The workflow of the test images through the trained CNN and LSTM models is

shown in Figure 6-2. The input test word image is first segmented into
its constituent characters. In time step T1, the first character ” ” is fed to the
trained CNN which extracts the visual features and based on these features gives
the CPs. The class of the final corresponding output text is the one with the
highest CP. In the same time step, the input sequence to the trained LSTM-LM
is generated. The generated input sequence is [0, 0, ...., t1] where t1 is the token of
the first character ” ”. Based on this input sequence, the LSTM generates the
CoPs which is a probability distribution of the next token over the vocabulary.

In time step T2, the second character ” ” is fed to the CNN and the
corresponding CPs are generated based on the visual features. The idea is to
leverage both the visual information and contextual information. Therefore, the
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CoPs generated in the previous time step T1 is combined with the CPs generated
in time step T2 to give the final output text corresponding to the second character
” ”. The input sequence given to the LSTM at time step T2 is [0, 0, ...., t1, t2],
where t1 and t2 are the tokens corresponding to the first and second characters
respectively. This input sequence generates the CoPs at time step T2. At time
step T3, the third character ” ” enters the CNN. The CoPs which are generated
in time step T2 are combined with the CPs generated in time step T3 to give the
final output text corresponding to the third character ” ”. Similarly, at each time
step Ti, the ith character is fed to the CNN and the CPs generated at this time
step is combined with the CoPs generated in the time step Ti−1 to produce the
final output text corresponding the the ith character. This is continued till the
last character in the word is reached.

Probabilities combination: The CoPs generated by the LM and the
CPs generated by the CNN are combined for each of the characters in a word
in the test dataset, except for the first character. For the first character in each
of the words, the final output text is based only on the class probability which
is the output of the CNN. The character will be classified to the class with the
highest class probability. From the second character onwards, the CPs of the
character along with the CoPs are considered to generate the final output text
(Refer Figure 6-2). For combining the probabilities from the two different models,
a weighted sum approach is employed. The order of CoPs in the distribution
vector corresponds to the order of tokens in the vocabulary. The probability at
each index i in the vector represents the likelihood of the token at index i in the
vocabulary being the next token in the sequence. Therefore, the CNN is also
trained in such a way that the generated vector of CPs also follows the same order
as that of CoPs by assigning proper class labels to the character classes. The
distribution vector size of the CPs and the CoPs is however the same as generated
CoPs do not include CoP for the token representing the whitespace.

For an input character image, let the CP vector is represented by:
< a1, a2, ..., a54 >,
where ai is the probability of the character belonging to class i
And, let the CoPs vector is represented by:
< b1, b2, ..., b54 >

where bi is the probability of the character belonging to class i
Then, the final probability vector is given by:
< p1, p2, ..., p54 >,
where pi = wc ∗ ai +wl ∗ bi, where wc and wl are the weights given to the CPs and
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Table 6.1: Results obtained with different weights

Weights Accuracy
CP CoP

0.5 0.5 90.33%
0.3 0.7 87.20%
0.7 0.3 92.92%

CoPs respectively. The character finally gets classified to the class i corresponding
to the highest pi. Experiments have been carried out by giving different weights
to the two types of probabilities. The results are discussed in Section 6.4.

6.4 Experimental results

It is observed that the accuracy achieved by the LSTM-LM, as expected, is not as
good as that of the CNN. Therefore, it is necessary to also understand that while
combining the two types of probabilities, the weights should be given appropri-
ately. In order to have a better understanding of the two models, experiments are
carried out to calculate the weighted sum by considering three different weights.
The class with the highest weighted sum of the two probabilities is the final class
of the character. The results are provided in Table 6.1.

The accuracies vary moderately with the change in the weights assigned
to the two types of probabilities. As a baseline, equal weights of 0.5 are assigned
to the CNN and to the LSTM. With this weight assignment, the recognition
accuracy achieved is 90.33% which is slightly better than what is achieved with
only CNN. When the weights assigned are changed to 0.3 for the CNN and 0.7 for
the LSTM, there is a reduction in the recognition accuracy (87.20%). This means
that with the increased weightage given to the LSTM-LM, the system performs
worse. This is either because the characters which are misclassified by the CNN are
not rectified even after combining the CPs and CoPs, or the characters which are
classified correctly by the CNN gets misclassified after the combination of the two
probabilities. The proposed approach with weights of 0.7 and 0.3 assigned to the
CNN and the LSTM-LM, respectively achieves the maximum recognition accuracy
of 92.92%, f1 measure of 93.32%, precision of 94.41% and recall of 92.92%.

Some of the test samples with the corresponding CNN-classified and LM-
classified characters are given in Table 6.2. In the first sample, based on the first
character generated by the CNN (ꯏ), the LM generates a wrong character ꯕ.
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Table 6.2: Test samples with classification results of CNN, LSTM-LM and
CNN+LSTM-LM. The last column provides the correct sequence of characters.

Sample CNN LSTM-LM CNN+LSTM
Output

Correct
output

ꯏ ꯣ ꯕ ꯏ ꯣ ꯏ ꯣ

ꯍ ꯥꯏꯅ ꯥ ꯢꯕ ꯍ ꯥꯢꯅ ꯍ ꯥꯢꯅ

ꯎꯅ꯸ ꯍ ꯧ ꯎꯅ ꯧ ꯎꯅ ꯧ

ꯨ ꯥꯡꯕ ꯃꯔ ꯤ ꯨ ꯥꯡꯕ ꯁ ꯥꯡꯕ

However, the combined system (CNN+LSTM) is able to rectify such errors which
finally outputs the correct sequence of characters. For the second sample, based on
the first character ꯍ, the LSTM is able to generate the next character correctly (ꯍ)
and also able to generate the third character correctly (ꯢ) based on the previous
two characters (ꯍ ꯥ). Note that the third character is not recognised correctly (ꯏ)
by the CNN. Combining the two models, the system is able to produce all the four
characters correctly. This is because of the low confidence with which the CNN
predicts the third character based on the visual features whereas the LM predicts
it with high confidence based on the two previous characters. For the third sample,
the CNN predicts the first two characters correctly (ꯎꯅ) while it fails to predict
the third one correctly (꯸). The LSTM-LM, on the other hand, predicts the first
character wrongly (ꯍ) based on the first character (ꯎ). However, it predicts the
third character correctly ( ꯧ) based on the previous two characters (ꯎꯍ). With
the last test sample in the table, the CNN predicts the first character wrongly ( ꯨ)
and the last three are predicted correctly ( ꯥꯡꯕ). Based on the wrongly predicted
first character, the LSTM-LM produces all the three succeeding characters wrongly
(ꯃꯔ ꯤ). The final output sequence of characters is however close to the correct
output with only the first character misclassified. From the results shown in Table
6.2, it is observed that the proposed system is performing better by giving more
weightage to the output generated by the CNN. What it is exactly doing is in those
cases where the CNN classifies the characters with less confidence, the LSTM-LM
having more confidence plays a role in delivering the correct final sequence of
characters based on the contextual information. The proposed methodology of
incorporating LM with CNN therefore enhances the overall recognition accuracy
of the system. The confusion matrix obtained by the proposed CNN+LSTM
system is shown in Figure 6-3. Table 6.3 lists the precision, recall and f-measure
of each class obtained with the proposed system.
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Figure 6-3: Confusion matrix obtained using the proposed CNN+LSTM system
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Table 6.3: Total number of instances and values of precision, recall and f-measure
of each class obtained with systems with and without the incorporation of LM.
The highlighted values in bold indicate the improvements.

Character Number of Without LM With LM
class (Symbol) instances Precision Recall F-measure Precision Recall F-measure

0 (꯱) 4 0.75 0.75 0.75 0.80 1.00 0.89
1 (꯲) 4 0.80 1.00 0.89 0.80 1.00 0.89
2 (꯳) 1 1.00 1.00 1.00 1.00 1.00 1.00
3 (꯴) 2 0.33 1.00 0.50 0.33 1.00 0.50
4 (꯵) 4 0.75 0.75 0.75 0.75 0.75 0.75
5 (꯶) 0 0.00 0.00 0.00 0.00 0.00 0.00
6 (꯷) 3 0.75 1.00 0.86 0.75 1.00 0.86
7 (꯸) 2 0.33 0.50 0.40 0.67 1.00 0.80
8 (꯹) 2 1.00 0.50 0.67 1.00 0.50 0.67
9 (꯰) 9 0.73 0.89 0.80 0.89 0.89 0.89
10 (ꯀ) 6 0.86 1.00 0.92 0.86 1.00 0.92
11 (ꯁ) 25 0.85 0.88 0.86 0.96 0.96 0.96
12 (ꯂ) 22 1.00 0.82 0.90 1.00 0.82 0.90
13 (ꯃ) 23 1.00 0.96 0.98 1.00 0.96 0.98
14 (ꯄ) 7 1.00 1.00 1.00 1.00 1.00 1.00
15 (ꯅ) 29 1.00 0.93 0.96 1.00 0.93 0.96
16 (ꯆ) 3 0.67 0.67 0.67 0.67 0.67 0.67
17 (ꯇ) 18 0.94 0.83 0.88 1.00 0.83 0.91
18 (ꯈ) 7 0.71 0.71 0.71 0.71 0.71 0.71
19 (ꯉ) 2 1.00 0.50 0.67 1.00 0.50 0.67
20 (ꯊ) 6 1.00 1.00 1.00 1.00 1.00 1.00
21 (ꯋ) 8 1.00 0.88 0.93 1.00 0.88 0.93
22 (ꯌ) 6 0.83 0.83 0.83 0.83 0.83 0.83
23 (ꯍ) 11 1.00 0.82 0.90 1.00 0.82 0.90
24 (ꯎ) 5 1.00 0.80 0.89 1.00 0.80 0.89
25 (ꯏ) 9 0.29 0.44 0.35 0.89 0.89 0.89
26 (ꯐ) 6 1.00 1.00 1.00 1.00 1.00 1.00
27 (ꯑ) 8 0.88 0.88 0.88 0.88 0.88 0.88
28 (ꯒ) 16 1.00 0.94 0.97 1.00 0.94 0.97
29 (ꯓ) 0 0.00 0.00 0.00 0.00 0.00 0.00
30 (ꯔ) 23 0.96 1.00 0.98 0.96 1.00 0.98
31 (ꯕ) 23 0.96 1.00 0.98 0.96 1.00 0.98
32 (ꯖ) 3 0.67 0.67 0.67 0.67 0.67 0.67
33 (ꯗ) 20 0.94 0.80 0.86 0.94 0.85 0.89
34 (ꯘ) 0 0.00 0.00 0.00 0.00 0.00 0.00
35 (ꯙ) 0 0.00 0.00 0.00 0.00 0.00 0.00
36 (ꯚ) 0 0.00 0.00 0.00 0.00 0.00 0.00
37 (ꯛ) 13 1.00 0.92 0.96 1.00 0.92 0.96
38 (ꯜ) 1 0.50 1.00 0.67 0.50 1.00 0.67
39 (ꯝ) 8 0.78 0.88 0.82 0.78 0.88 0.82
40 (ꯞ) 7 0.88 1.00 0.93 0.88 1.00 0.93
41 (ꯟ) 11 0.91 0.91 0.91 0.91 0.91 0.91
42 (ꯠ) 6 1.00 1.00 1.00 1.00 1.00 1.00
43 (ꯡ) 25 0.93 1.00 0.96 0.93 1.00 0.96
44 (ꯢ) 14 0.62 0.36 0.45 0.93 0.93 0.93
45 ( ꯥ) 30 1.00 0.97 0.98 1.00 0.97 0.98
46 ( ꯦ) 14 0.85 0.79 0.81 0.93 1.00 0.97
47 ( ꯨ) 23 0.86 0.83 0.84 0.96 0.96 0.96
48 ( ꯤ) 54 0.98 0.94 0.96 0.98 0.94 0.96
49 ( ꯩ) 8 0.78 0.88 0.82 0.80 1.00 0.89
50 ( ꯣ) 20 1.00 0.95 0.97 1.00 0.95 0.97
51 ( ꯧ) 7 0.60 0.86 0.71 0.88 1.00 0.93
52 ( ꯪ) 7 0.88 1.00 0.93 0.88 1.00 0.93
53 (꯫) 0 0.00 0.00 0.00 0.00 0.00 0.00
54 ( ꯭ ) 0 0.00 0.00 0.00 0.00 0.00 0.00
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6.5 Conclusion

This chapter introduces the incorporation of an LSTM-based LM with CNN for
the recognition of handwritten Meitei Mayek characters. It works by leveraging
the power of CNN which is based on the visual representation and that of the LM
which is based on contextual information. The proposed system employs combi-
nation of the two models by assigning more weightage to the CNN and achieves
a better recognition accuracy on the handwritten Meitei Mayek characters. The
proposed system overcomes some of the limitations of the methodology presented
in Chapter 5 viz. script-specific and orthogonal properties which cannot be gen-
eralized and zone identification which may be prone to errors. The work, however
still considers words with non-touching characters. Through this work, it is in-
tented to carry forward the study of unconstrained handwriting of Meitei Mayek
recognition by developing appropriate datasets.
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