
Chapter 3

CNN-based recognition of
TUMMHCD

This chapter first presents a performance analysis of some recent state-of-the-art
CNN models on TUMMHCD. It identifies their drawbacks as far as the present
dataset is concerned. A CNN model is then built from scratch for the recognition
of TUMMHCD. Experimental results show a comparison of the state-of-the-art
models and the proposed model.

3.1 Convolutional neural network (CNN)

Convolutional Neural Network is a type of artificial neural network whose unique
architecture and working is proven best for image classification and computer
vision tasks in which the input images are two-dimensional. Much like traditional
Neural Networks, CNNs consist of neurons with trainable weights and biases.
However unlike the ordinary NNs, the structure of CNN makes it possible for
this particular variant of NN to deal with much fewer parameters and to share
parameter weights. The architecture of a CNN imitates the pattern in which
neurons are connected in the human brain and is analogous to the organization
of animal visual cortex [62, 63, 80]. Individual neurons react to stimuli only in a
defined portion of the visual space. This defined portion is known as the receptive
field. The receptive fields of different neurons partially overlap to cover the entire
visual area. Receptive field of a layer is defined by the filter size of that layer
within a CNN. Benefit of receptive fields in recognizing visual pattern is that the
neurons in a particular layer are assigned to learn visual features from a small area

34



3.1. Convolutional neural network (CNN)

of the input image. The scope of a neuron within a layer on the input data is only
within this small area called the receptive field. Moreover, each filter shares the
same weights. This makes the number of trainable parameters in CNNs to reduce
considerably. This is not the case with traditional NNs where every neuron within
a layer is connected to every other neuron in the previous layer.

Another advantage of using CNNs is that they preserve the spatial rela-
tionship between pixels in an image. This is not the case with traditional feedfor-
ward NNs where the image pixels are flattened into a long vector of pixel values
leading to loss of spatial information present in the image. It is very important
that the spatial relationship of pixels in an image be kept preserved as the pixels
close by are spatially more co-related to each other than the pixels which are far
away from each other. This task is achieved in CNNs by learning internal feature
representations using the receptive fields. Features learned are used across the
entire image meaning that it can detect the same feature anywhere in the en-
tire input space. For example, lower layers of CNNs learn low-level features such
as edges, lines, etc. The presence of edges and lines anywhere in the image can
therefore be detected using the same feature representation. This very property of
preservation of spatial information in CNNs makes it a powerful tool for computer
vision tasks.

Benefits of using convolutional neural networks is summarized below:

• Less number of parameters (weights) are required to learn than a fully con-
nected network.

• They are designed to be invariant to translation and rotation of the image.

• They learn features automatically from the input data and hence are inde-
pendent of human intervention for feature extraction.

• Through automated learning, CNNs learn to optimize the filters and hence
they need relatively little pre-processing of the input data.

A typical CNN consists of three main layers viz. convolutional, pooling
and fully connected layers which are assembled one after another. The number
of layers and the manner in which they are stacked is really a design issue which
the network architecture designer has to decide upon. The three basic layers of a
CNN are described below.

35



Chapter 3. CNN-based recognition of TUMMHCD

Convolutional layer

Convolutional layer is the first layer and is the core building block of a CNN. As the
name suggests, convolution operation is performed in this layer. The convolution is
between a defined area of input image (receptive field) and a two-dimensional array
of weights known as filter/kernel. In regard to CNNs, a convolution operation is
the element-wise multiplication between the defined area which is the filter-sized
region of the input space and the filter. Convolution is carried out systematically
on every filter-sized patch of the input image by moving left to right with a defined
stride value till it covers the entire width of the input image. It then moves down
to the beginning of the image with the same stride value and continues till the
entire width of the image is parsed and so on until the whole width and height of
the image is covered. Each convolution of the filter with an input patch produces
a single value. When this operation is carried out multiple times using the same
filter over all the possible patches of the input image, a two-dimensional array is
produced. This two-dimensional output array is called an activation map or a
feature map. Every filter is applied across the whole image. This allows a filter
to detect a specific feature anywhere in the entire input image. The network
therefore learns filters that activate when specific type of features are detected
at certain spatial position of the input image. This is the most important idea
behind convolutional layer. Feature maps for all filters are then stacked to form
the output of a particular convolutional layer. These feature maps act as input
for the next layer in the network.

Figure 3-1 shows an example of a filter undergoing convolution operation
with an input image to produce a feature map. The filter size is 3× 3 and input
image size is 5×5. The stride value taken is 1 with no padding of the input image.
The dashed lines and dotted lines indicate two applications of the filter onto the
input image. The square in bold on the input image is the receptive field and is
of the size of filter which is 3 × 3. Convolution of the filter over the entire input
image produces a 3 × 3 feature map. If another convolutional layer follows this
layer, then convolution is carried out on the output feature maps of the present
convolutional layer and so on. Once a feature map is obtained, it is passed through
a nonlinear function such as Sigmoid function or Rectified Linear Unit (ReLU).

Let l and m be the input and output feature map sizes respectively, k is
the filter size, p is the padding size and s is the stride. λ and β be the number
of input and output feature maps respectively. And γ be the number of channels
of the input image. Then the output feature map size is calculated using the

36



3.1. Convolutional neural network (CNN)

Figure 3-1: Convolution operation of stride 1 between a filter and an input image
to produce a feature map.

following formula:
m =

⌊
l − k + p

s

⌋
+ 1 (3.1)

The number of connections n can be represented mathematically by the below
formula:

n = ((m ∗m ∗ (k ∗ k ∗ γ) + 1) ∗ β (3.2)

where 1 is the bias. Similarly, the number of trainable parameters δ is given by
the formula:

δ = (k ∗ k ∗ λ+ 1) ∗ β (3.3)

Pooling layer

The pooling layer generally follows a series of one or more convolutional layers.
This layer performs down sampling of its input data. Input to this layer is the
output of the previous layer, i.e the feature maps. Although convolution facil-
itates in the detection of features anywhere in the input image, the issue with
output feature maps is that they are sensitive to the position of the features. This
sensitivity can be addressed by the process of down-sampling the feature maps.
Down-sampled feature maps reduces sensitivity towards change in the location

37



Chapter 3. CNN-based recognition of TUMMHCD

of features in the input image. Pooling is carried out in patches of the feature
maps. The output of pooling layer or down-sampled feature maps makes the rep-
resentation invariant to translations and rotations of the input image [67]. The
resulting robustness the pooling layer brings about is termed as local translation
invariance. There are two common types of pooling: average pooling [34] and max
pooling [138]. Average pooling takes the average value of each patch on a feature
map and max-pooling takes the maximum value. Figure 3-2 shows an example of
max-pooling and average-pooling. A filter of size 2× 2 is used with stride 2.

Figure 3-2: Max pooling and average pooling

Fully-connected layer

One or more fully-connected layers come at the end of a CNN architecture. This
layer is the classification layer which works in the same manner as the traditional
feedforward neural network layer. The extracted features are flattened to a column
vector and fed to the classification layer. Learning by the network takes place by
applying backpropagation over every iteration of training phase. They have a
non-linear activation function or a softmax function to predict the classes of input
images.

3.2 Related work

The essence of CNN was felt when Fukushima et al. [61] introduced a Neural
Network model called ”neocognitron” in the year 1988. It is a multilayered cas-
caded network having several connections of layers of cells. The catch was that

38



3.2. Related work

these connections could be updated by learning and the weights could be opti-
mized. However, due to difficulty in the learning algorithm it could not be used
to its full potential. Later in 1998, Yann LeCun et al. [111] popularized CNN
with the introduction of backpropagation and gradient-based learning to train a
Neocognitron-like architecture. The CNN model was used to recognize digits in the
famous MNIST dataset. Since then, many researchers have worked on the same
dataset by proposing and adopting different techniques on the base CNN con-
cept and achieved record-breaking results almost each time. The success of CNNs
on this particular dataset can be seen at http://yann.lecun.com/exdb/mnist/.
Even though there have been record-breaking results on MNIST, works are still
being carried out on major world scripts to improve the recognition accuracies.

CNNs have been explored for HCR of various scripts such as Chinese
[40, 41, 132, 234], Arabic [18, 19, 56], Hangul [96]. A number of HCR systems also
achieved superior results by enhancing in terms of the architecture and employing
additional techniques on the concept of CNN. Fusion of features from different
layers of CNNs have been reported in some works [14, 59, 140].

3.2.1 CNN for HCR of Indic scripts

There are some very recent works in the literature on Indic scripts using CNN. The
work of Rahman et al. [163] was one of the firsts in HCR of Bangla. They reported
a recognition accuracy of 85.96% on a 50-class Bangla dataset by employing a
simple CNN model. Alom et al. [13] used CNN with Gabor features and dropout
and achieved a recognition accuracy of 98.78% on Bangla numeral dataset. A
multi-scale multi-column CNN architecture was proposed by Sarkhel et al. [188].
They tested their methodology on nine publicly available Indic script datasets
viz. Bangla, Tamil, Telugu, Urdu and Devanagari. The work of Roy et al. [175]
developed a supervised layer wise training of a deep CNN for recognition of Bangla
compound characters. A three-column three-level multi-scale skip-connected CNN
is proposed in the study carried out by Singh et al. [199]. Significant results were
reported using this methodology on Bangla handwritten character datasets. More
works on CNN-based HCR of different Indic scripts such as Malayalam [90, 124,
125, 157], Devanagari [2, 49, 71, 166], Tamil [93, 119, 161], Telugu [15, 137],
Kannada [167–169], etc. are reported.

39

http://yann.lecun.com/exdb/mnist/


Chapter 3. CNN-based recognition of TUMMHCD

3.2.2 CNN for HCR of Meitei Mayek

The first work reported on Meitei Mayek HCR based on CNN adopted a simple
CNN model [76]. The authors achieved a recognition accuracy of 96.24% on a 37-
class dataset. They could enhance the accuracy to 97.09% after employing data
augmentation. Other works are carried out by Inunganbi et al. [85] and Hazra
et al. [73] where recognition accuracies of 99.02% and 99.27% were achieved on
a 27-class Meitei Mayek dataset. The effect of handcrafted features when fed to
a CNN has been studied in the work reported by Nongmeikapam et al. [144].
They have considered HOG feature images to train a CNN and to extract more
refined features for recognition of 56 characters of Meitei Mayek. The HOG-CNN
features are then used with KNN classifier. They found that HOG-CNN features
with KNN gives the best test accuracy compared to handcrafted features with
SVM or features learned by CNN only. The authors achieved 98.71% accuracy on
a 56-class dataset.

3.3 Performance analysis of state-of-the-art
CNN models on TUMMHCD

Performance analysis of five recent state-of-the-art CNN models have been consid-
ered in the present work. The CNN models have shown very good results on the
ImageNet dataset on which the famous ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) is also carried out [178]. It is a large dataset of annotated
photographs intended for computer vision research [48]. Transfer learning with fine
tuning the five CNN models pre-trained on the ImageNet dataset for the recogni-
tion of TUMMHCD has been studied. In total, the ImageNet dataset has around
14 million images, more than 21,000 classes and more than 1 million images with
bounding box annotations. The dataset used for image classification comprises 1.2
million images for training, and 50,000 for validation, from 1,000 classes. It has
been developed and maintained by researchers in Stanford, Princeton and other
American universities.

The five CNN models are briefly described below:

• InceptionV3 (2015) [207]: InceptionV3 is CNN model developed by Google
after its two previous variants viz. InceptionV1 (GoogleNet) and Incep-
tionV2. It is popular because of its computational efficiency and fewer pa-

40



3.3. Performance analysis of state-of-the-art CNN models on TUMMHCD

rameters compared to earlier models like Alexnet and VGG with a lower
error rate. It achieved a top-1 accuracy of 77.9% and top-5 accuracy of
93.7% on ImageNet validation dataset.

• ResNet50V2 (2016) [75]: Resnet comes from Microsoft. The main contri-
bution of ResNet architectures is its technique to reduce vanishing gradient
problem in deep neural networks. The idea is to introduce ”residual blocks”
which have ”skip connections” where there are direct connections between
layers by skipping some layers in between. The skip connections allow an
alternate shorter path for the gradient to flow through thereby solving the
problem of vanishing gradient. ResNet50V2 achieves top-1 and top-5 accu-
racies of 76.0% and 93.0% respectively on ImageNet validation dataset.

• DenseNet121 (2017) [79]: DenseNets also aim to fight the vanishing gradi-
ent problem in deep neural networks by simplifying the connectivity pattern
between the layers. They do so by allowing maximum gradient flow be-
tweeen the layers by directly connecting each layer with all other deeper
layers. This way, they require fewer parameters to learn and avoid learning
redundant feature maps. Because of its very narrow layers with a smaller
number of filters, the layers add only a small number of new feature maps.
DesneNet121 achieves a top-1 accuracy of 75.0% and a top-5 accuracy of
92.3% on ImageNet validation dataset.

• MobileNetV2 (2018) [187]: It is another recent architecture laid out by
Google. It is built upon its earlier variant called MobileNetV1. The main
aim of this architecture is to reduce the complexity cost and depth of net-
work for the benefit of devices with low computational power like mobiles
devices while giving better accuracy. The authors could achieve this by in-
troducing two new features on top of the depth wise separable convolution
introduced in MobileNetV1. The two new features are 1) linear bottlenecks
between the layers, and 2) shortcut connections between the bottlenecks.
It achieves 71.3% top-1 accuracy and 90.1% top-5 accuracy on ImageNet
validation dataset.

• EfficientNetB3 (2019) [208]: EfficientNets are the latest CNNs architecture
from Google. The authors proposed that both accuracy and computational
efficiency could be achieved by adopting similar architectures. They claimed
that a common architecture with small values of width, depth and resolution
can create a computationally efficient model and by keeping these param-
eters bigger, a better accuracy could be achieved. They are currently the
best performing CNN models for image classification tasks under varying

41



Chapter 3. CNN-based recognition of TUMMHCD

resource availability situations. EfficientNetB3 achieves top-1 accuracy of
81.6% and top-5 accuracy of 95.7% on ImageNet dataset.

Transfer learning: It is the process where what has been learned for
one problem is exploited to improve generalization in another problem [67]. In
transfer learning, a base network is first trained on a base dataset and the learned
features are then transferred to a new target network. The new target network is
then trained on a target dataset using the transferred learned features of the base
network [238]. Pre-trained models are also available which are already pre-trained
on a base dataset and are available for use for our target datasets. In the present
work, pre-trained models of the five aforementioned CNNs have been used for
transfer learning to analyse their performances against TUMMHCD. The models
are pre-trained on ImageNet dataset.

For transfer learning, layers from the pre-trained model except for the
batch-normalization layers are frozen. The top fully-connected layer of the pre-
trained base model is removed and new top layers are added. We have added a
global average pooling layer, a dropout layer of 0.2 and output layer of 55 nodes
since our dataset has 55 character classes. We then train the base model with
newly added top layers on our dataset. We have also carried out fine-tuning as
our dataset has significant number of samples in each class. For fine-tuning, some
of the top layers of the base model are unfrozen and the new model is re-trained
on the new dataset.

Training the pre-trained models: For training and validation purpose,
training set of 72,330 images is divided randomly into training set and valida-
tion set in the ratio 9:1. Training set and validation set thus consist of 65,097
and 7,233 character images respectively. In deep neural networks, one of the main
challenges while training is the problem of overfitting or overtraining the network.
This means that when a neural network is overtrained with the training set with
more number of epochs than what is required, it tends to suffer from overfitting.
Overfitting is undesirable as it causes the network to overfit the training data and
will perform poorly with the unseen data or the test data. On the other hand,
undertraining the network is again undesirable as it might result in an underfit
model. In order to reduce this problem of overfitting or underfitting, we have
used the early stopping method while training the CNN. The challenge is thus to
train the network long enough on the training set but halt the training when its
performance on the validation set begins to degrade. Early stopping achieves this
task by allowing us to set an arbitrarily large number of epochs for training the
network but letting the training to stop when the validation loss starts to increase

42



3.3. Performance analysis of state-of-the-art CNN models on TUMMHCD

or validation accuracy starts to decrease.

For the present work, the validation loss is considered as the criterion for
monitoring the model performance. The validation loss is monitored for a set of
10 consecutive epochs each time. When the validation loss does not decrease for
a consecutive 10 epochs, then the model weights for the epoch with minimum
validation loss are saved as the best model and the training stops. If, however the
validation loss decreases at a certain epoch during this 10-epoch monitoring, then
that particular epoch is set as the first epoch for the next 10-epoch set and so
on. This process continues until the epoch with minimum validation loss is found
else the training continues for a maximum of 30 epochs. Once this best model
is found, it is used to test the accuracy on the test set. Adam optimizer is used
for all the models with initial learning rate of 0.001 during the first 20 epochs.
The learning rate is reduced to 0.00001 for fine-tuning part. For each model, the
corresponding pre-processing is applied to the images in dataset before feeding
them to the models.

Observations based on performance of pre-trained CNN models: The ex-
periments are carried out on Google colab with an allocated RAM size of 13GB
and 2.20GHz Intel(R) Xeon(R) CPU. The results obtained from transfer learning
of the five CNN models on TUMMHCD are given in Figure 3-3. It can be observed
from the figure that transfer learning and fine tuning need a lot of resources for
large datasets such as ours. Except for MobileNetV2, the amount of time taken
for training and testing is huge for the other four models. It also shows that
deeper models do not always give better accuracy. Up-scaling the input-image
size increases memory usage during training for large neural networks. For some
pre-trained models, there is a minimum input size of the images which should be
used in order to use the model. For example, the minimum input size of Incep-
tionV3 pre-trained model is 75× 75 which increases the requirement of resources
during training. Therefore, there is an intuition that simpler models with low
resource requirements can be built which might perform equally well or better
than deeper networks. A CNN model is thus built from scratch for recognition of
TUMMHCD. The details are given in the next section.

43



Chapter 3. CNN-based recognition of TUMMHCD

Figure 3-3: Performance of state-of-the-art pre-trained CNN models against
TUMMHCD using transfer learning (TL) with fine tuning (FT).

3.4 Building CNN from scratch for recognition
of TUMMHCD

3.4.1 Base CNN architecture

In the present study, a base architecture of CNN inspired by the work of Yann
LeCun et al. [111] is considered to have an idea of how hyper-parameters should
be tuned to achieve a good test accuracy. It consists of seven layers as shown in
Figure 3-4. For implementation of CNN models, Keras API [38] is used on top of
Tensorflow [1] software library.

Figure 3-4: Base CNN architecture used for hyper-parameter tuning

For the base architecture, gradient descent optimization algorithm with
mini-batch is used with a momentum of 0.9. It is a type of the gradient descent
algorithm where the gradient can be made to sum over mini-batch which further
reduces the variance of the gradient. It brings about a more robust convergence
than batch gradient descent as model update frequency is higher and thus prevents
local minima. Rectified Linear Unit (ReLU) activation function is used for the two
convolutional layers. ReLU prevents deep learning networks from the problem of
vanishing gradient as it squeezes its input x into a broader range of max(0, x) [139]
unlike functions like tangent (f(x) = (1 + e−x)−1)) and sigmoid (f(x) = tanh(x))

44



3.4. Building CNN from scratch for recognition of TUMMHCD

which map their input onto a very narrow range of output values. For the output
layer softmax activation function is adopted with cross entropy loss function.

Pre-processing: Pre-processing is employed to bring the images to a
format which further stages can process. One of the advantages for using CNN
as a recognition tool is that the input to such a system does not need a lot of
pre-processing as compared to that needed for hand-crafted feature extraction. In
the present study, the only pre-processing that has been done is normalization of
the raw gray-scale images to the pixel intensity values in the range [0, 1]. These
normalized images are then fed into the system.

1. Hyperparameters Tuning: A hyperparameter for a learning algorithm is a
parameter whose value is used to control the learning process. The task of
tuning them to achieve optimal values is a challenging one. For a system
that uses stochastic gradient descent optimization, the two hyper-parameters
whose fine tuning affects the test accuracy most are batch size and learning
rate [26]. Mini-batch size, initial learning rate and learning rate decay are the
three hyperparameters we have fine-tuned for our model. We have considered
test accuracy to be the basis for selection of hyperparameter values.

• Mini-batch size: Mini-batch sizes of 8, 16, 24, 32, 128 ad 256 are con-
sidered with an initial learning rate (α) of 0.01 which is reported to be
the best default value [26] and decay after each iteration i given by

αi =
α

η
(3.4)

where η is the mini-batch size. Test accuracies and losses using different
mini-batch sizes are shown in Figure 3-5. It can be seen in the figure
that a mini-batch size of 32 achieves higher test accuracy with less
number of epochs. Hence this batch size is considered for the present
work. Results of the works in [26] and [130] also suggest mini-batch
size of 32 to be a good default value.

• Initial Learning Rate: The learning rate may be considered as the most
important hyperparameter that needs to be tuned in a deep learning
network [84]. It is the amount by which the weights should be changed
in accordance with the estimated error for each weight update while
training the network. It is a difficult task as a value too large might
cause the network to converge too quickly leading to sub-optimal solu-
tion whereas a learning rate too small may cause the training process

45



Chapter 3. CNN-based recognition of TUMMHCD

(a) (b)

Figure 3-5: (a) Accuracies and (b) Losses using different mini-batch sizes

to become very slow and to get stuck. However, it is not possible to
determine the optimal learning rate a priori [171]. It has to be calcu-
lated via hit and trial. For our work, initial learning rates of 0.1, 0.01,
0.001, 0.0001 and 0.00001 are considered which give the results shown
in Figure 3-6.
It can be observed from Figure 3-6 that an initial learning rate of
0.01 results in fastest convergence and highest test accuracy within the
maximum 30 epochs considered in the experiment and hence this value
is taken.

(a) (b)

Figure 3-6: (a) Accuracies and (b) Losses at different learning rates

• Learning Rate Decay: It is the amount by which learning rate is de-
creased over time during training. This is done to avoid larger steps as
learning convergences towards the optimal solution as larger steps may
lead the learning to never really converge or have a noisy convergence
in the region of minima. However, if a smaller learning rate is taken
as learning converges, we are making sure that the steps we take when
learning converges are small and hence be able to converge to a value
close to minima.

46



3.4. Building CNN from scratch for recognition of TUMMHCD

Test losses and test accuracies using learning rate decay values of 1e−4,
1e−5, 1e−6, 1e−7, 1e−8 and 1e−9 are shown in Figure 3-7. Learning
decay rate of 1e− 7 is considered for our work.

(a) (b)

Figure 3-7: (a) Accuracies and (b) Losses at different learning rate decay values

With the base CNN architecture and the specified hyper-parameters, we
could achieve a highest test accuracy of 94.36% when the model is trained for
100 epochs. Figure 3-8 shows the train and test losses and accuracies achieved by
adopting the base CNN model on the concerned dataset.

(a) (b)

Figure 3-8: (a) Losses and (b) accuracies using base CNN model

3.4.2 Proposed CNN architecture

The overall structure of the proposed CNN architecture is shown in Figure 3-9.
It consists of nine layers excluding the input layer. There are four convolutional
layers, two max-pooling layers, two fully-connected layers and the output layer.
The architecture has the following order: Input-C1-ReLU-C2-ReLU-BN-P1-C3-
ReLU-BN-C4-ReLU-P2-FC1-FC2-Output. Ci, Pi, FCi denote the ith convolu-

47



Chapter 3. CNN-based recognition of TUMMHCD

tional, max-pooling and fully-connected layer respectively. ReLU denotes Recti-
fied Linear Unit (ReLU) activation function and BN denotes batch normalization
layer. Max-pooling is employed instead of average-pooling as it can lead to faster
convergence, extract invariant features more efficiently and improve generalization
[190]. ReLU activation function is adopted as it is shown to be computationally
faster and reduces the likelihood of vanishing of the gradient unlike sigmoid and
tangent functions [139]. Mini-batch stochastic gradient descent with momentum
is used as it converges faster than the original or batch gradient descent [114].

Figure 3-9: Overall structure of the proposed CNN architecture. x@y × y in-
dicates x output feature maps of size y × y. z × z Convolution or Max-pooling
indicates convolution or max-pooling with kernel masks of size z × z respectively.

The first convolutional layer (C1) has an output mapping of 32 feature
maps produced by convolution of the input image with filter mask of size 3 × 3

with stride 1. The activation function used is ReLU (Rectified Linear Unit). The
feature maps at this layer is of size 22×22 (24-3+1) pixels. The expressions given
inside the brackets are the calculations behind the obtained figures (refer equa-
tions 3.1, 3.2 and 3.3) The total number of connections at this layer is 1,39, 424
((22*22*9+1)*32). However, the number of trainable parameters is very less com-
pared to this figure because of the weight-sharing feature of CNN. The number of
trainable parameters at this layer is 320 ((3*3+1)*32). The second convolutional
layer (C2) produces 32 feature maps of size 20 × 20 (22-3+1) after convolution
operation with filter size of 3 × 3. The number of trainable parameters at this
layer is 9,216 ((3*3*32)*32). In this convolutional layer and subsequent convo-
lutional layers, bias is not used as the convolutional layers are followed by batch
normalization layer which shifts the activation by their mean values. Hence, it
does not make sense to add another bias term in convolutional layer.

Next layer is the first pooling layer (P1) which is responsible for CNN being
able to achieve local-distortion and translation invariance to a certain extent and
it also makes the system robust to noise. In the present architecture, max pooling
is employed with sub-sample size of 2×2 pixels with stride 2. This layer produces
down-sampled output of 32 feature maps with size 10x10 pixels. The number of

48



3.5. Experimental results and discussion

trainable parameters is 0.

The third convolutional layer (C3) gives out 64 feature maps of size 8× 8

(10-3+1) after convolution with filter of size 3 × 3. The number of trainable
parameters for this layer is 18,432 ((3*3*32)*64). Similarly, layer C4 has 36,864
((3*3*64)*64) trainable parameters and outputs 64 feature maps of size 6 × 6.
No biases are used for second and third convolutional layers. The next two fully-
connected layers FC1 and FC2 have 1024 and 512 nodes with 5,89,24 (576*1024)
and 5,24,288 (1024*512) trainable parameters.

The last fully-connected layer, i.e. the output layer has 55 nodes and
28,215 ((512+1)*55) trainable parameters. Softmax function with cross-entropy
loss function is used for the output layer. Batch normalization is adopted to
combat the problem of internal covariate shift which is common in deep neural
networks [89]. The last two fully-connected layers has a dropout layer of 0.3
between them to fight the problem of overfitting in neural network [204]. Mini-
batch stochastic gradient descent optimization algorithm is used with a mini-batch
size of 32 to train the proposed architecture. The network is trained in the same
manner as the five CNN models considered earlier. That is, it is trained on the
training and validation sets for 30 epochs with early stopping method with patience
10 and validation loss as the metric to be monitored.

Figure 3-10 provides a summary of the proposed CNN model. The total
number of trainable parameters sums up to 1,207,351. The non-trainable 192
parameters come from the two batchnormalization layers used in the model. There
is a total of 384 (128+256) parameters from the two batchnormalization layers
out of which 192 (64+128) are non-trainable. These 192 non-trainable parameters
are the computed mean and standard deviation of the activations which are not
affected during training by backpropagation.

3.5 Experimental results and discussion

The performance of the proposed CNN is analysed in comparison with the dif-
ferent feature-classifier combinations discussed in Chapter 2 and the five pre-
trained CNN models discussed in the present chapter. Performance analysis of
the proposed CNN is also carried out by introducing some noise in the samples of
TUMMHCD.

49



Chapter 3. CNN-based recognition of TUMMHCD

Figure 3-10: Summary of details of each layer in the proposed CNN model

3.5.1 Analysis w.r.t feature-classifier combinations

Experimental results show that except for CNN, other classifiers perform poorly
when fed with IPI values than with HOG and DWT features. However, when a
deep network is employed a high test accuracy of 94.36% could be achieved with a
base CNN. With the proposed CNN model, a test accuracy of 95.56% is achieved
which sets the benchmark on the developed database. Test accuracy of the pro-
posed CNN model is also tested on the famous MNIST dataset and an accuracy
of 99.49% is achieved. Figure 3-11 provides the highest recognition accuracies
achieved by different feature-classifier combinations. It can be observed from the
experimental results that deep network outperforms other popular classifiers even
without adopting a feature extraction technique. This shows the superiority of
deep networks over other classification methods for the concerned dataset.

50



3.5. Experimental results and discussion

Figure 3-11: Recognition accuracies using different feature-classifier combina-
tions

3.5.2 Analysis w.r.t pre-trained CNN models

A classwise classification rate of the five state-of-the-art CNN models and the
proposed CNN model is given in Figure 3-12. Looking at the figure, one can
observe that it shows a similar pattern as the ones shown by feature-classifier
combinations in Chapter 2 (Figure 2-8). This indicates that even though the
recognition accuracy is enhanced, classification rates of certain characters are still
low when deep learning models are used for recognition.

Figure 3-12: Classwise classification rates achieved using state-of-the-art CNN
models and proposed CNN model.

A comparison in terms of different parameters of the proposed CNN model
and the five CNN models is given in Figure 3-13. The proposed model outperforms
the other state-of-the-art models. It also indicates that performance of CNN mod-

51



Chapter 3. CNN-based recognition of TUMMHCD

els depends on the dataset at hand and that deeper and more resource-demanding
models are not necessarily the best option for certain datasets like TUMMHCD.
Moreover, it is easier to carry out hyperparameter tuning for models with fewer
layers as it takes less time to train and validate them.

Figure 3-13: Performance comparison of state-of-the-art CNN models and pro-
posed CNN against TUMMHCD

3.5.3 Performance analysis of TUMMHCD with noise

In order to test the robustness of the proposed CNN model, experiments are
conducted to test the accuracy of the model on TUMMHCD by introducing some
noises in the samples of the dataset. Two types of noises are added viz. gaussian
noise and salt and pepper noise. These noises are the most commonly found noises
in images. For each type of noise, three variations of it are taken. Figure 3-14
shows the two types of noises and the three variations of each of them.

Figure 3-14: Different noises introduced in TUMMHCD. The values inside the
brackets for the gaussian noise represent the mean and standard deviation re-
spectively and those of salt and pepper noise indicate the percentages of salt and
pepper noise in the image respectively.

Performance analysis is carried out by considering two scenarios: one
where noise is added only to the test set and another where noise is added to

52



3.5. Experimental results and discussion

both the training and test sets. The noise is added to 5%, 10% and 15% of the
samples, with equal percentages of each of gaussian and salt and pepper noises.
For example, for 5% noise, 2.5% of gaussian (the three variations in equal amounts)
and 2.5% of salt and pepper (the three variations in equal amounts) noises are
introduced. The recognition results obtained are provided in Figure 3-15.

Figure 3-15: Recognition accuracies achieved when noises are added to
TUMMHCD

When noises are introduced only in the test set, there is a decrease in
the recognition accuracies of the proposed CNN. With noise in 5% of the samples
in the test set, there is a decrease of 2.04% in the recognition accuracy. With
10% and 15% noisy samples, the recognition accuracies decrease by 3.87% and
5.64% respectively. This shows that although the proposed system could not
classify all the noisy images correctly, it could classify more than half of the noisy
images correctly. Moreover, the presence of more number of noisy images does
not overwhelm the system as it becomes more robust in terms of the recognition
accuracies achieved when more number of test images are noisy. The decrease
in the recognition accuracy is expected as the system is trained on the original
training set (without noise) and tested with the test set having noisy images.
However, the proposed system could classify many of the noisy images correctly.

The second scenario is when the noises are introduced in the whole dataset,
i.e. both the training and the test sets. This means that the CNN is trained and
tested by adding noises to some of the samples. It is observed that there is an
improvement in the recognition accuracies with more number of noisy samples.
5% noisy samples in both the training and test sets gives a recognition accuracy
of 95.29%, 10% and 15% noisy images give 95.45% and 95.53% accuracies respec-
tively. The addition of noisy images does not affect the performance of the system
drastically as promising recognition accuracies are achieved with noisy images as

53



Chapter 3. CNN-based recognition of TUMMHCD

well. The proposed CNN can be made more robust with the introduction of more
types of noises in the samples of the dataset.

3.6 Conclusion

This chapter presents a deep-learning based recognition of TUMMHCD. A CNN
model is built from scratch which outperforms recent state-of-the-art pre-trained
CNN models. Experimental results show the presence of certain characters which
are misclassified a greater number of times by all the CNN models as well as
by traditional feature-classification approach. Efforts are to be made to increase
the classification rates of such characters so as to enhance the overall recognition
accuracy of the system. In the two chapters that follow, approaches are proposed
to achieve this task.

54


	07_chapter 3

