
Chapter 4

A multilevel recognition of
TUMMHCD using fusion of
features strategy

4.1 Introduction

Both traditional hand-crafted features and deep learned features have their own
advantages when it comes to their performance both in terms of computation cost
and feasibility. Handcrafted features can be manually designed and can be used
for specific classification task such as finding a specific feature descriptor which
discriminates one character from another highly shape-similar character. They are
computationally less costly compared to deep features. They can also be used to
train classifiers when the amount of training data available is not large enough to
train a deep network. Deep features however take more time to train a classifier
and require quite a large amount of training data for training to carry out. Recent
works on various tasks of computer vision however show the superior performance
of deep features over the traditional handcrafted features [37, 194].

The main idea behind combining the two types of features is to have both
local and global features for the classification task. Global features describe the
entire image, whereas local features describe the image patches (small group of
pixels). CNNs, however, focus mainly on local features such as points and angles
in the images while giving less attention to the global features such as contour and
structural features [241]. Deep CNNs are sensitive to local contour features of an
image pattern but provide no information regarding the global shape information,
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which otherwise is how human visual system works [21, 22]. It is however imper-
ative to have both the types of features in order to have a more discriminative
set of features for better recognition of images. In our approach, both local and
global features are employed. The contours of objects detected by HOG method
hold important information regarding the local and global shapes and structures
of the objects. These global structural features when fused with the deep features
extracted from CNN enhances the discriminative power of the recognition system.
The importance of another type of feature descriptor is also taken into account in
the present work. The traditional CNNs process the image data in spatial domain.
Discrete Wavelet Transform (DWT), on the other hand processes data in the spec-
tral domain. The features in spatial domain and spectral domain tend to have
different characteristics. Therefore, it is expected that both the features will have
different information of an image pattern [60]. Integration of DWT in the working
of conventional CNNs has shown improvement in tasks such as signal processing
[105], image classification by adopting subbands of approximation and detail co-
efficients to feed multiple CNNs using an ensemble approach [231]. DWT is also
used for achieving noise-robust image classification by replacing convolutional and
pooling layers in traditional CNNs by DWT [116].

Deep networks usually learn local features in its initial layers. As the
layers go deeper, the features become more abstract and generalized in nature and
are called global features. Since the filter size and the receptive field are usually
smaller than the size of the image, the feature maps contain local information
of the image pattern. Because these features only depend on the pixels in its
receptive field, they are called local features. Global features are those which
depend on the pixels of the entire image. The features learned by CNNs at lower
layers called low-level features are more specific to the training dataset, so one has
to be careful while selecting the training dataset [140]. In works where pre-trained
CNN models are employed for computer vision tasks [39, 66, 74, 196], top layers
are usually used to extract high-level features. Since our dataset is big enough
to train a CNN model which is sufficiently deep for our task, both low-level and
high-level features might prove to be a richer feature representation of the image
patterns. It is also reported in the literature that using lower-layer features can
yield better results for classification using SVM and RF [20, 236].

56



4.2. Related work

4.2 Related work

Fusion of feature descriptors viz. handcrafted features and deep features have
been explored for HCR in some scripts. Recent works have shown that perfor-
mance of deep networks can be enhanced by the adoption of hand-crafted feature
descriptors in addition to deep features. The local and global features used in fu-
sion approaches can be extracted from different methods. For example, HOG is a
global hand-crafted feature descriptor whereas Scale-Invariant Feature Transform
(SIFT) is a local feature descriptor. Moreover, both local and global features can
be extracted from a CNN depending on the layer used for the feature extraction.

Fusion of handcrafted and deep features is reported in the work of Sharif
et al. [195] where HOG features were used with deep features for recognition of
Bangla numerals. The HOG features were fed to an ANN and features were ex-
tracted from the last fully connected layer. These features were fused with the
deep features from the last layer of a CNN. The fused feature vector was then fed to
another two-layered network for the final recognition of numerals. They achieved
an accuracy of 99.17% on CMATERDB Bangla numerals. In the scene text de-
tection work performed in Tang and Wu [209], handcrafted features viz. colour,
texture and geometric features are fused with deep features from CNN and fed to
a Random Forest regressor based classifier. F-measure values of 0.876, 0.885, and
0.631 are obtained on three benchmark datasets. In the method devised by Su-
laiman et al. [206] for writer identification, the input image is divided into several
overlapping patches. From each patch, local binary pattern (LBP) based hand-
crafted feature descriptors and deep feature descriptors based on Alexnet model
are extracted separately. Visual words are then found out for both the types of
feature descriptors using k-means algorithm. Vector of locally aggregated descrip-
tors (VLAD) encoding is then employed to find a fix-sized vector representation.
VLAD encodings of both the feature descriptors are then concatenated to find the
final 1-D feature vector. Extreme learning machine (ELM) based classifier is used
for classification on three publicly available datasets and reported state-of-the-art
results. Fusion of feature descriptors is explored for online signature verification
in the work carried out by Vorugunti et al. [223]. Here, global features are calcu-
lated from local features such as stroke order, x, y-coordinates, pressure, azimuthal
angle etc at each sampling point of the signature image. Deep features are ex-
tracted from a convolutional autoencoder and are fused with handcrafted features.
The method outperformed state-of-the-art methods on three benchmark datasets.
Decision fusion and feature fusion strategies have been combined in the work by
Mangai et al. [122]. The approach is tested on three UCI datasets and superior
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performance has been reported.

In image classification research, fusion of handcrafted and deep features
has found an important spot in dealing with medical images. Features such as
morphological, texture, colour and density features are combined with deep fea-
tures [106, 194, 228]. Classifiers used are MLP, ELM and SVM. Handcrafted
features along with deep features from pretrained or modified deep neural net-
work models such as Alexnet, VGG, ResNet, GoogleNet, InceptionV3, etc. have
shown state-of-the-art performances [43, 58, 72, 117, 165, 179, 217]. In the study
reported by Golrizkhatami and Acan [65], a score level fusion from different levels
of a CNN is fed to a nearest neighbour classifier, a feature-level fusion of statis-
tical and temporal features is fed to an SVM and morphological features after
dimensionality reduction fed to an SVM. The outputs of these three classifiers
are then fed to a decision level fusion block for the final classification. It was re-
ported that combination of the three types of feature descriptor performed better
than the feature descriptors when considered separately and they could achieve
state-of-the-art results.

As far as Meitei Mayek is concerned, to the best of our knowledge there
are no works reported in literature on fusion of feature descriptors techniques.

4.3 Proposed methodology

The proposed multilevel methodology has two levels of recognition. The first level
uses a CNN for the recognition task. The second level uses a fusion of handcrafted
and deep features for recognition. The second level recognition is only carried out
for those test images which are filtered by a filtering module. The conceptual
framework of the proposed methodology is given in Figure 4-1. The dotted lines
represent the flow of training images and the solid lines represent the flow of test
images. The proposed methodology incorporates the following modules:

• First level recognition module: This module is the first level recognition using
CNN

• Softmax module: This module deals with finding the set of classes with
highest three softmax output values

• Filtering module: This module filters or decides whether a test image will
be forwarded to second level recognition or not
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• Second level recognition module: The second level recognition of the test
images filtered by the filtering module using fused features is taken care by
this module

Each of the modules is described in the following sections.

Figure 4-1: Conceptual framework flow of the proposed methodology

4.3.1 First level recognition module

The first module is the first level recognition using CNN. For training and val-
idation purpose, our proposed CNN model is employed. The training is carried
out using the same training and validation sets used earlier in the previous chap-
ters. Maximum number of epochs used is 100. Early stopping with patience 20 is
adopted. The test set is then fed to this model for the recognition to perform. The
output of this first level CNN is utilized for two purposes: a) to find the first level
output class of the test images and b) to find the set of classes with highest three
softmax values based on the misrecognized images of the validation set. This set
of classes is further used in the second level recognition and are called second level
recognizers.
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4.3.2 Softmax module

This module finds out the set of classes which would be considered for the second
level recognition. As the name of the module suggests, the task is achieved by
taking the output values of softmax function from the last layer of the CNN
model. These output values will be referred to as the ”softmax values” in the
present thesis. The softmax values of the images in the validation set which are
misrecognized by the first level CNN are the participating values for finding the
set of classes for second level recognition.

4.3.2.1 Softmax function:

The softmax function is used as the activation function in the last layer of our
proposed CNN model. Its function is to normalize the output of a network to
a probability distribution over predicted output classes. It is represented by the
following formula:

S(zi) =
exp(zi)∑k
j=1 exp(zj)

(4.1)

for i = 1, 2, ...k and z = (z1, ...., zk) ∈ Rk

For an input vector of k real numbers, the softmax function produces k
output values, each output value corresponds to the probability of membership
for each class.

The vector of probabilities that the softmax function outputs for a given
test image thus gives an idea of the likelihood of that image belonging to the output
character classes. The fact that it is a probability of belonging to a character
class, it plays an important role in finding out the best potential output character
classes for a test image. The set of recognizers to be considered for the second
level recognition can then be decided once the potential candidates are found. The
method proposed to do so is given in the next section.

4.3.2.2 Finding set of second level recognizers

A method based on softmax values of the misrecognized characters of the first level
CNN is proposed. As mentioned earlier, the CNN is trained using TUMMHCD
training and validation sets. To calculate the set of recognizers for the second level
recognition, the images of the validation set which have been misrecognized by the
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first level CNN have been taken. The notion behind this step is that the character
classes of the images in the validation set which are misrecognized will likely be
the same set of classes of the images in the test set which will get misrecognized.
It is described as follows:
let ϑ = validation set
ϑi = set of images in the validation set belonging to class i
T = test set
Ti = set of images in the test set belonging to class ci
if,

x ∈ ϑi gets misrecognized as y ∈ ϑj in the validation set ϑ,
then it is most likely that,

p ∈ Ti will get misrecognized as q ∈ Tj in the test set T

The algorithm to find the set of second level recognizers is given in Al-
gorithm 1. For each misrecognized character image im in the validation set ϑ,
softmax values are used. For each character class ci, the average of softmax values
of the misrecognized images in the class is calculated using equation 4.2. The
softmax values of all misrecognized character images belonging to the particular
character class are added and is divided by the number of misrecognized images in
the character class. The character classes corresponding to three highest softmax
values are taken for further steps to carry out. If the true class is one of these three
character classes, then a recognizer corresponding to these three classes is taken
for second level recognition. For example, for class c1, if the character classes with
three highest values are ci, cj and ck, the algorithm checks if c1 is either one of
these three classes. If so then the classes ci, cj and ck forms one recognizer in
the second level recognition. The reason why highest three values are considered
is because there are instances when the true class of the image is not one of the
classes with highest two softmax values.

ςi =

∑n
i=1 si
n

(4.2)

where ςi is the average softmax value of class ci, si is the softmax value of a
misrecognized image belonging to ϑi and n is the number of misrecognized images
in ϑi.
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Algorithm 1: Finding set of second level recognizers
Input: Softmax values of misrecognized images in validation set
Output: Set of second level recognizers, κ
κ = ϕ

for i← 1 to 55 do
ςi =

∑n
i=1 si
n

where,
ςi is the average softmax value
si is the softmax value of a misrecognized image in ϑi

n is the number of misrecognized images in ϑi

Let cx, cy, cz be the classes with three highest average softmax values
if ci is cx||cy||cz then

κ = {cx, cy, cz} ▷ κ is the recognizer corresponding to classes cx, cy
and cz

κ ← κ ∪ κ
end

end
return κ

Following the above method, 28 recognizers are identified for the second-
level recognition. As mentioned earlier, each of the 28 recognizers corresponds
to three character classes. The 28 recognizers with the corresponding character
classes are listed in Table 4.1. The class ids in the second column of the table
are the class ids with descending order of softmax values. That is, for the first
recognizer R1, class with id 1 has the maximum softmax value followed by class
id 8 and class id 2 has the lowest softmax value among the three of them.

4.3.3 Filtering module

The filtering module is a module through which every test image in the test set
has to pass. This module decides whether a test image needs to be forwarded
to the second level recognition module or not. The steps followed by the module
to perform the task is given in Algorithm 2. The algorithm returns a 1 if the
test image is to be forwarded to second level recognizer, else it returns a 0. The
decision is made based on the softmax values of the test image obtained as the
output of the first level CNN. The filtering module checks if the difference between
the two highest softmax values of a particular test image is less than a threshold
value of 0.70. It also checks if those two classes with highest softmax values are
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Table 4.1: Recognizers for second level recognition

Recognizer
id

Class ids Character symbols

R1 1, 8, 2 ꯲, ꯹, ꯳
R2 32, 3, 12 ꯖ, ꯴, ꯂ
R3 50, 33, 6 ꯣ, ꯗ, ꯷
R4 8, 1, 24 ꯹, ꯲, ꯎ
R5 46, 9, 15 ꯦ, ꯰, ꯅ
R6 47, 11, 43 ꯨ, ꯁ, ꯡ
R7 38, 15, 12 ꯜ, ꯅ, ꯂ
R8 40, 47, 14 ꯞ, ꯨ, ꯄ
R9 42, 18, 33 ꯠ, ꯈ, ꯗ
R10 35, 32, 20 ꯙ, ꯖ, ꯊ
R11 44, 25, 18 ꯢ, ꯏ, ꯈ
R12 43, 15, 27 ꯡ, ꯅ, ꯑ
R13 40, 28, 14 ꯞ, ꯒ, ꯄ
R14 3, 18, 29 ꯴, ꯈ, ꯓ
R15 9, 30, 11 ꯰, ꯔ, ꯁ
R16 34, 18, 33 ꯘ, ꯈ, ꯗ
R17 35, 20, 4 ꯙ, ꯊ, ꯵
R18 43, 10, 37 ꯡ, ꯀ, ꯛ
R19 35, 12, 38 ꯙ, ꯂ, ꯜ
R20 17, 28, 40 ꯇ, ꯒ, ꯞ
R21 27, 15, 41 ꯑ, ꯅ, ꯟ
R22 17, 16, 42 ꯙ, ꯆ, ꯠ
R23 27, 37, 43 ꯑ, ꯛ, ꯡ
R24 25, 44, 38 ꯏ, ꯢ, ꯜ
R25 11, 47, 6 ꯁ, ꯨ, ꯷
R26 49, 4, 48 ꯩ, ꯵, ꯤ
R27 48, 45, 52 ꯤ, ꯥ, ꯪ
R28 52, 45, 54 ꯪ, ꯥ, ꯭
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correspondingly same as the two classes with highest softmax values in one of the
28 recognizers identified earlier. If both these conditions are true, the test image is
given to the particular recognizer in the second level for second level recognition.
The value of the threshold is decided upon empirically by taking different values
of 0.65, 0.70, 0.75 and 0.80. The performance results of using different threshold
values for the filtering module is given in Figure 4-4.

Algorithm 2: Filtering test image
Input: Softmax values of the test image, set of second level recognizers κ

and filtering threshold t
Output: 1 or 0
st = 55 softmax values of the input test image. t = 0, 1, 2, ......., 54

/* Find the classes with two highest softmax values */
Let s1 and s2 be the two highest softmax values corresponding to the
classes ci and cj respectively, where i and j are the class indices

Let R1 represent a recognizer with a, b, c as the class indices having three
highest softmax values

if (s1 − s2 < t) ∧ (i == a ∧ j == b) then
return 1

end
else

return 0
end

The reason why only the first two classes are considered while filtering the
test images is because a number of test images failed to be forwarded to the second
level recognition when the third class is also considered in making the decision.
This is because the true class of most of the test images that enter the second level
recognition is either the first class or the second class. However, the recognizers
are trained with three classes each. Therefore, the test image still has a chance to
be classified as belonging to the third class if it at all belongs to the third class.
This makes the system more robust to instances where the true class of a test
image is the third class, which happens in some of the cases.

4.3.4 Second level recognition module

The test images which are filtered out by the filtering module for second level
recognition are fed to the second level recognition module. This module has 28
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recognizers which are found by the softmax module as described earlier. Each
of these 28 recognizers (R1, R2, R3, ....R28) is trained with the respective three
character classes given in Table 4.1. Recognizer R1 is trained with fused feature
set of classes with ids 1, 8 and 2; recognizer R2 with classes with ids 32, 3 and 12;
and so on. The feature set used to train the 28 recognizers is a fusion of three types
of features: traditional handcrafted HOG feature descriptors and deep learned
features as shown in the Figure 4-2. The deep learned features are of two types:
a) deep features extracted by feeding CNN with the approximation coefficients
of DWT b) deep features extracted by feeding CNN with raw grayscale images.
These three types of features are fused to produce the final feature set. The final
fused feature set is given to an SVM for the final classification. The details are
provided in the following sections.

Figure 4-2: Second level recognition module

4.3.4.1 Handcrafted feature descriptor extraction

The HOG descriptor [42] tries to find the global contour like shape and structure
of an image object. One important property of HOG is that it captures both
magnitude and orientation of the edges in an image. In handwritten characters,
it focuses on finding the edges for which change in gradient is high and thus giv-
ing significant information regarding the shape of the characters. It also discards
information which is not relevant and focuses on the one which will be discrimina-
tive enough to distinguish between the character classes. The feature extraction
process is carried out in the same manner as described in Section 2.3.1.1.
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4.3.4.2 Deep feature descriptor extraction

The CNN model proposed for recognition of TUMMHCD is used to extract the
deep features. The main layers of the CNN is shown in Figure 4-3. The input to
the CNN are of two types: raw grayscale image pixel intensity (IPI) values and
approximation coefficients produced by 2D-DWT. The approximation coefficients
of the first level decomposition of the wavelet db1 is used for feature extraction.
The details of 2D-DWT are given in Section 2.3.1.2. The images are first size-
normalized to 48 × 48 for the extraction of DWT-based deep features. The ap-
proximation coefficients array obtained after first level decomposition with db1 is
of size 24 × 24 which is fed to CNN. In essence, there are two CNNs with the
same model but with two different types of inputs. Both the CNNs are trained
and validated in the same fashion as the first level CNN using the training and
validation sets of TUMMHCD. The only difference is the feature set used. The
CNNs in the second level are trained and validated using the fused feature sets of
their respective three classes.

Figure 4-3: CNN architecture used for extracting deep features. i@j×j indicates
i output feature maps of size j × j

As shown in Figure 4-3, the deep features are extracted from two different
layers of the CNN. They are the first and second pooling layers. The output feature
maps of these two layers are forwarded to the last fully-connected layer having 512
nodes. The connection weights of this last fully-connected layer constitute the deep
features used in the work. The reason the fully-connected layer is used as the layer
to extract deep features is because the chances of network learning redundant and
undesirable features are high if feature maps from the convolutional or pooling
layers are directly used [199]. Therefore, it is important that the features are
passed through fully-connected layer to get rid of those unnecessary features.
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Each recognizer in the second level is trained and validated with their
respective three classes. For the two types of input data viz. IPI values and ap-
proximation coefficients, two best models are achieved using early stopping method
for each recognizer. The saved models are used to extract the connection weights
between the layers which are the desired deep features. Therefore, the feature
vector length of the deep features is 1024 (512 + 512) for image with IPI values
and another 1024 (512+512) for image with approximation coefficients. This gives
the final deep feature vector length of 2048. The length of the final fused feature
set is 3812 (1764 + 2048).

4.4 Experimental results and discussion

The performance evaluation of the proposed methodology is carried out using the
test set of TUMMHCD which consists of 12,974 images. Each test image first goes
through the first level recognition module where the first level CNN performs the
recognition task. The image either completes its recognition or is sent for second
level recognition depending on the decision of the filtering module. The images
which get forwarded to the second level recognition module undergo second level
recognition to get classified to one of the character classes.

4.4.1 Overall system performance

Table 4.2 shows the number of test images obtained against the corresponding
specifications given in the first column. For 916 test images out of the total 12,974
test images, it is found that the difference between the classes with two highest
softmax values is smaller than the threshold value of 0.7. And out of these 916
images, 556 are forwarded to the second level recognition by the filtering module
based on the two criteria mentioned in Section 4.3.3. It is a common intuition
that not all of the 559 test images filtered by the filtering module are wrongly
recognized by the first level CNN. There are 176 test images out of the 559 images
that are correctly classified by the first level as well as the second level recognition
modules. The correct recognition of these test images by the adoption of the
second level recognition module, thus, does not contribute anything to the overall
accuracy of the system.

There are also 74 test images out of the filtered 559 images which are
wrongly recognized by both the recognition modules. 254 test images which are
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Table 4.2: Statistics of results obtained in multilevel recognition with fusion of
features strategy

Specification Value

Number of test images passing the filtering module 916
Number of test images entering second level recogntion 559
Number of test images classified correctly by both the levels 176
Number of test images missclassified by both the levels 74
Number of test images missclassified by first level and classified correctly
by second level

254

Number of test images classified correctly by first level and missclassified
by second level

55

misrecognized by the first level recognition module are however recognized cor-
rectly by the second level recognition module. The second level recognizers could
not recognize 55 test images out of the filtered images. These 55 test images are
however classified correctly by the first level recognition module. The recognition
accuracy of the overall system is 97.09%. Therefore, there is an improvement of
1.53% in the recognition accuracy from 95.56%.

4.4.2 Performance with different training scenarios

The performance analysis of the system is done for different training scenarios.
The four different scenarios under consideration and the recognition accuracies
achieved by adopting each training strategy are given in Table 4.3. When only
the first level recognition module, i.e. the first level CNN is trained with deep
features alone, recognition accuracy achieved is 95.56%. When the first level CNN
is trained with the fused feature set of three different types of features without
the adoption of the second level recognition module, a recognition accuracy of
96.52% is obtained. An increase of 0.96% in the recognition accuracy is observed
when the recognition is carried out by the second level recognizers in addition to
the first level CNN. This training scenario adopts SVM as the classifier for the
classification task.

The performance of the system is also tested for the scenario where the
second level recognizers are trained and evaluated with the fused feature set of all
the classes in the training set. In that case, the recognition accuracy of the system
is 96.32%. Finally, the training strategy adopted in the proposed methodology is
considered. It has the first level recognition carried out with CNN and second level
recognizers are trained and validated with the fused feature set of only the three
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Table 4.3: Performance results of different training scenarios

First level Second level Recognition accuracy Error rate

Trained with deep features No second level 95.56% ± 0.357% 4.44%
Trained with fused features
(with SVM)

No second level 96.52% ± 0.318% 4.48%

Trained with deep features Trained with fused feature set
of entire training set (with
SVM)

96.32% ± 0.326% 3.68%

Trained with deep features Trained with fused feature set
of identified three character
classes (with SVM)

97.09% ± 0.291% 2.91%

character classes identified for the respective recognizers. This strategy gives the
highest recognition of 97.09% among all the four training strategies considered in
the work.

4.4.3 Performance with different filtering threshold values

The threshold value used by the filtering module is decided upon empirically by
taking different values as mentioned earlier. The experimental results obtained
by taking different values of the filtering threshold values are shown in Figure
4-4. The performances of the top-3 performing classifiers for TUMMHCD namely
SVM, KNN and RF are evaluated. The results show that the filtering threshold
value of 0.7 gives the highest recognition accuracy with SVM classifier while that of
0.8 gives the lowest. With KNN and RF, the filtering threshold value of 0.75 shows
slightly better results than those of the other threshold values but less than what
SVM obtains with threshold value of 0.7. SVM gives an overall higher recognition
accuracy than KNN and RF.

4.4.4 Performance on MNIST, DIDA and CArDIS

Performance evaluation of the proposed strategy is also carried out using the
famous MNIST[111] and two newly developed datasets namely DIDA[104] and
CArDIS[237]. The DIDA ”single digit dataset 10k” and CArDIS datasets are
divided randomly in the ratio 9:1 to obtain training and test sets respectively.
The SVMs of second level are trained using 1000 images from each of the three
datasets. Table 4.4 lists the details of the datasets and the experimental results
obtained using the proposed methodology.
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Figure 4-4: Recognition accuracies achieved using different values of the filtering
threshold parameter with SVM, KNN and RF

Table 4.4: Performance of the proposed strategy on MNIST, DIDA and CArDIS
datasets

Dataset Number
of classes

Training
set

Test set First-
level
recog-
nition
accuracy

Number
of
second-
level
recogniz-
ers

Multilevel
recog-
nition
accuracy

MNIST 10 60000 10000 99.49% 4 99.56%
DIDA 10 8500 1500 98.26% 1 98.33%
CArDIS 29 55696 9839 97.73% 10 98.10%

4.4.5 Discussion

Experimental results show that some characters which are misrecognized by first
level recognition module are recognized correctly by the second level recognition
module. The filtering module plays a significant role in achieving the overall
system performance. The filtering threshold value serves as the first layer of
the filtering module. From Figure 4-4, it is evident that the filtering threshold
values greater or less than 0.7 do not perform well. When the threshold values are
higher, even though more number of test images might be forwarded to the second
level recognition, it is not necessarily true that all those test images need to be
forwarded. This implies that for a test image it, if the difference (s1 − s2) of its
two highest softmax values is less than 0.8 but not necessarily less than 0.7, it is
unlikely that it is misrecognized by first level recognition module. This indicates
that for those test images whose (s1 − s2) value is less than 0.8 but greater than
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0.7, the first level recognition performs well in giving the correct output classes
they belong to. Having said that, when a filtering threshold value of 0.65, which
is smaller than 0.7, is considered, the accuracy of the system again decreases. In
this case, the number of test images forwarded for second level recognition is less
and it misses out on some test images which are misrecognized by the first level
recognition module that need a second level recognition.

The results obtained for different training scenarios (Table 4.3) show that
when the second level recognizers are trained with the fused feature set of the
entire training set, the recognition accuracy decreases from the one where only
the first level CNN is trained with the fused feature set. This shows that the
fused feature set does not give a very discriminative representation of the image
patterns for those characters which go to the second level recognition. Even though
there is an improvement in recognition accuracy from 95.56% to 96.32% with the
incorporation of the second level recognition, the improvement is not as good as
the one obtained with the last training scenario. The last training scenario trains
the second level recognizers with the three character classes identified for each
recognizer and provides a recognition accuracy of 97.09%. This however, comes
with the overhead of identifying the set of character classes for the second level
recognizers. For the other three datasets, maximum accuracies of 99.56%, 98.33%
and 98.10% are achieved for MNIST, DIDA and CArDIS datasets using SVMs
in the second level. It is observed that there is an increase in the recognition
accuracies with the employment of second-level recognition.

4.5 Conclusion

A methodology for recognition of Meitei Mayek handwritten characters is proposed
in this chapter. The approach adopts a multilevel recognition with two levels
of recognition. A filtering module acts as the decision making module between
the first and second level recognition modules. A method based on the softmax
values of the first level CNN is used by the filtering module for identifying the
test images which have to undergo a second level recognition. The second level
recognition works with a fusion of handcrafted and deep feature descriptors with
SVM classifier. The proposed methodology could achieve an improvement of 1.53%
in recognition accuracy over the single-level recognition.
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