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Chapter-6 

 

ACOUSTIC STABILITY OF ASTROPHYSICAL 

GYROMAGNETOACTIVE VISCOUS CYLINDRICAL PLASMAS 

 

Abstract: In the present Chapter we employ a quantum hydrodynamic model to 

investigate the cylindrical acoustic waves excited in a gyromagnetoactive self-

gravitating viscous cylinder of electron-ion plasmaϮ. The electronic equation of state 

incorporates the effect of temperature degeneracy resulting in the completely 

degenerate Fermi quantum pressure and the completely non-degenerate classical 

pressure. The constitutive ions are governed by the appropriate equation of state 

(classical). A standard cylindrical normal mode analysis employing the Hankel function 

procedurally yields a generalized linear sextic dispersion relation. The low-frequency 

analysis is carried out in four distinct parametric special cases of astronomical 

importance. It includes the quantum (completely degenerate) non-planar (cylindrical), 

quantum (completely degenerate) planar, classical (completely non-degenerate) non-

planar (cylindrical), and classical (completely non-degenerate) planar. A numerical 

illustrative platform is provided to investigate the stability patterns with 

multiparametric variations, such as the number density, Coriolis rotation, magnetic 

field, etc. The astronomical circumstances of our analysis are finally highlighted.  

 

6.1 INTRODUCTION 

The study of acoustic waves and instabilities excitable in two-component plasmas 

(electron-ion) has recently gathered significant research interest because of their large-

scale applications in explorative areas in both the classical and quantum regimes. Such 

plasmas are naturalistically ubiquitous in diverse circumstances. It mainly includes 

inertially confined laboratory plasmas, liquid metals, stellar and planetary interiors, 

Earth’s auroral regions, Jupiter magnetosphere, supernova explosions, and so on [1-6]. 

As a consequence, it is quite expedient to analyze the supported normal acoustic waves 

and instabilities to perceive their bulk stability behaviours in various realistic 

astronomical circumstances.  
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Several investigations to study the dynamics of acoustic waves and instabilities 

in both planar and non-planar geometries in astrophysical plasmas have already been 

reported in the literature [7-23].  It is clearly evident now that, even though there are 

quite a large number of studies dealing with acoustic waves in cylindrical and spherical 

geometries, the cylindrical acoustic modal analysis by employing the Hankel function 

formalism in realistic astronomical circumstances is yet to be performed to the best of 

our knowledge. In other words, study of cylindrical acoustic wave-instability problems 

by means of the Hankel function formalism [24] in a uniformly rotating magnetized 

plasma system in both planar and non-planar geometric configurations is still an open 

problem hitherto lying unexplored in the context of understanding astronomical disc 

stability, filamentary astrostructures, etc.  

In the present semi-analytic investigation, we consider a generalized quantum 

two-component hydrodynamic model in cylindrical geometry on the astronomical 

spatiotemporal scales. This electron-ion plasma is confined in a magnetized 

axisymmetric cylinder rotating uniformly about the reference axis (longitudinal). The 

electrons and ions are governed by their appropriate equations of state. The fermions 

governed by the Fermi-Dirac statistical distribution law are characterized by 

temperature  T  and chemical potential    [25-27]. The effect of temperature 

degeneracy considered here is incorporated in the electronic equation of state with the 

help of the temperature degeneracy parameter given as,      2325 LiLiGe , where 

   eT ,  and TkB1  [25-27]. The electronic equation of state results in the 

completely degenerate quantum pressure (Fermi) and the completely non-degenerate 

classical pressure (thermal) in the light of appropriate approximations. The ionic 

equation of state takes into account the classical thermal pressure. A standard normal 

cylindrical wave analysis by employing the Hankel function [24] yields a sextic 

dispersion relation, which is then analyzed in the low-frequency regime. The modified 

dispersion relation is then investigated in the light of four different parametric windows. 

We study the influence of various realistic parameters on the instability dynamics, such 

as equilibrium number density, kinematic viscosity, and so forth. The importance of 

cylindrical geometry considered here can be justified from the fact that axisymmetric 

cylinders under self-gravity offer significant insights on the evolution of elongated 
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molecular cloud, magnetized arms of spiral galaxies, circumnuclear starburst rings, and 

filamentary structures in diverse astronomic and cosmological environs [28-30]. 

 

6.2 PHYSICAL MODEL AND FORMALISM 

We consider a magnetized axisymmetric cylindrical two-component plasma system 

subjected to the non-local self-gravitational action. It consists of electrons and singly 

charged ions. The former is judiciously modelled with the help of generalized quantum 

hydrodynamic formalism; whereas, the latter is treated classically. This model evolves 

under the conjoint influence of the Lorentz force, Coriolis rotation, kinematic viscosity, 

Bohm potential, and temperature degeneracy effects. The confining cylinder rotates 

with a constant angular velocity directed along the longitudinal direction. The basic 

governing equations here consist of continuity equation, force-balancing momentum 

equation, and appropriate equation of state. The system closure is obtained with the help 

of electrostatic and gravitational Poisson equations. The quantum dynamics of the 

electronic species in generic notations is accordingly cast as 

 

    0
1




eeret urnrn ,                                                                                               (6.1) 

 

           rzerereereeeezEreet vrnrnmPnmumeBemu   22 21121122111  ,  (6.2) 

 

1
 eee nGP .                                                                                                              (6.3) 

 

Likewise, the classical dynamics of the ionic species is described as 

 

    0
1




iirit urnrn ,                                                                                                 (6.4) 

 

            rirriiziriiiizEriit urrnmvPnmumeBemu 
 11111 2 ,       (6.5) 

 

TknP Bii  .                                                                                                                    (6.6) 
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The model is systematically closed with the help of electrostatic and self-gravitational 

Poisson equations given respectively in customary notations as 

 

      ieErr nnerr   1
0

1
 ,                                                                                      (6.7) 

 

     ierr Grr  


4
1

.                                                                                 (6.8) 

 

Here, we consider a cylindrical coordinate system where r  and t denote the spatial and 

temporal parameters, respectively.  ien  and  ieu , denote the population density and the 

velocity of the electrons (ions) with their inertial mass  iem , respectively. 

)()( iezige meB  is the electronic (ionic) magnetic gyrofrequency, where zB  is the 

magnetic field acting along the longitudinal direction. The axisymmetric plasma system 

is assumed to be rotating with a constant angular velocity  . The constant rotational 

force acting on the entire system is given by zF vC 2*  , where z  is the longitudinal 

component of the angular velocity and v  is the azimuthal component of linear velocity. 

 ieP  gives the pressure acting on the electronic (ionic) species. 34106.6 h  J s is the 

Planck constant. T  is the thermal temperature. 231038.1 Bk  J K-1 is the Boltzmann 

constant. E  and   are the electrostatic potential and gravitational potential, 

respectively. 12
0 1085.8   F m-1 is the permittivity of free space. 111067.6 G N m2 

kg-2 is the universal gravitational constant. In equation (6.8), 

 0)()(0)()( nnm ieieieie    is used to model the so called Jeans swindle as a self-

gravitational homogenization tool. 

A number of physical points regarding the above mathematical equations are 

noteworthy. Here, equation (6.1) is the equation of continuity, depicting the flux 

conservation of the electronic fluid. Then, equation (6.2) is the force balancing 

(momentum) equation. Here, the force by virtue of electronic motion (L.H.S) is 

balanced by the forces arising due to electrostatic potential (1st term in R.H.S), magnetic 

field (2nd term in R.H.S), electronic pressure (3rd term in R.H.S), quantum Bohm 

potential (4th term in R.H.S), Coriolis rotation (5th term in R.H.S), and gravitational 

potential (6th term in R.H.S). The electronic equation of state incorporating the 
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temperature degeneracy effects is represented by equation (6.3). The arbitrary 

temperature degeneracy in usual notations [25-27] is given as      2325 LiLiGe . 

Here,  pLi  is the polylogarithmic function with index p.   TkBeeT
 ,  

describes the degeneracy of the system [25-27]. The general form of  pLi  for 0p  

is given as 

 

       ;1
0

1111
dtetpLi tp

p 
 

                                                                        (6.9) 

 

where,   dxexp xp 




0

1  is the gamma function with argument p.                                                                        

For the completely degenerate limit (  ), one gets 

 

  1
52


 eG ,                                                                                                               (6.10) 

 

    1352322 53


 eee mnP                                                                                              (6.11)  

 

where, FTT denotes the ratio between the thermal and Fermi temperature;  

For the completely non-degenerate limit ( 0 ), one gets 

1eG  ,                                                                                                                       (6.12) 

 

TknP Bee  .                                                                                                                 (6.13)   

 

It is evident that equation (6.4) is the ionic analog of equation (6.1). Likewise, equation 

(6.5) is the exact analog of equation (6.2), except the Bohm potential term, since the 

ions are treated classically because of their large mass. The ionic fluid is characterized 

with the kinematic viscosity (5th term in R.H.S), in addition to all the forces already 

mentioned before in the case of equation (6.3). Now, equation (6.6) is the ionic equation 

of state modelled classically. The model closure is obtained with the help of 

electrostatic and gravitational Poisson equations (equations (6.7), (6.8)). 
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 For a scale-invariant analysis, we adopt a standard astronormalization scheme 

[20]. The corresponding normalized sets of equations are cast as 

 

    0
1




eeRe MRNRN ,                                                                                       (6.14)    

     

  eRFeegeeEReeiee NMMNNmmMN   21*1 3   

    eReReRp NRNRNH   2213214           

 Reze NMN  *2       (for completely degenerate case),                                    (6.15.1) 

 

     *1*1 TNmmMNNmmMN eReiegeeEReeiee  
 

 

                                

 Reze NMN  *2  (for completely non-degenerate case),                                  (6.15.2) 

 

    0
1




iiRi MRNRN ,                                                                                        (6.16) 

 

        RiiRRziiRigiiERiii NMRRMNTNMNNMN 
1**** 2 ,  (6.17) 

 

     ieERR NNRR 



1

,                                                                                      (6.18) 

 

        1111
 

ieieRR NNmmRR  .                                                               (6.19) 

 

In the above equations (6.14)-(6.19), the spatial coordinate r  is normalized as 

0LrR ; where, piscL 0 is a characteristic spatial scale. 

ieiFes mmhnmEc 42 0  is the acoustic speed in terms of Fermi energy. 

ipi men 0
2

0    designates the ion plasma oscillation frequency. The temporal 

coordinate t  is normalized as 
1 pit  . The Fermi energy is given as eFFe mpE 22 , 

with 40nhpF   as the corresponding Fermi momentum. The rescaled electronic (ionic) 

number density is given as     0nnN ieie  , where 0n is the equilibrium number density. 

    sieie cuM   gives the Mach number of the electronic (ionic) species. The normalized 
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electronic (ionic) magnetic gyrofrequency is given as piigeige  )(
*

)(  . The normalized 

Coriolis rotational force is given as **
zF MC  ; where, scvM    is the rescaled 

tangential velocity of the system and  pizz  *  is the rescaled longitudinal 

component of angular velocity. sFeFe cvM   is the Fermi Mach number, where, Fev  is 

the Fermi velocity. 2
sepip cmH   is the quantum parameter. 22

piJi    gives the 

ratio of the squares of Jeans frequency to that of ionic plasma oscillation frequency. 

04 nGmiJi    gives the Jeans frequency for ions. The normalized kinematic viscosity 

is given as 00
* Lcnm si  . 2*

siB cmTkT   gives the normalized temperature. In a 

similar pattern, FeEE Ee 2   is the normalized electrostatic potential. The normalized 

gravitational potential is given as 2
sc  .  

It is to be noted that in the quantum regime, Bohm potential term accounts for 

the typical quantum like behaviour like tunneling, overlapping of wave packets, and so 

on. Thus in the completely non-degenerate (classical) regime represented by equation 

(6.15.2), normalized Bohm potential term is ignored [31, 32].  

 

6.3 LINEAR STABILITY ANALYSIS 

We linearly perturb the relevant physical fluid parameters appearing in equations (6.14)-

(6.19), using a cylindrical wave analysis [24] in an autonormalized Fourier transformed 

wavespace given as 

 

         ,exp,, *1

010010 RkHiFFRFFRF                                                    (6.20) 

 

where 
 1

0H  is the Hankel function of the first kind, of order 0.  

For 0R , 
 1

0H  has logarithmic singularity: 

 

     RkiH *11

0 log2                                                                                                   (6.21) 

 

At large distances, we have 
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        1*21*2111

0 4exp2    RkiRkH .                                                                   (6.22) 

 

Thus, equation (6.20) gets modified as 

 

           ,4exp2,, 1*21*211
10010

   RkiRkFFRFFRF                      (6.23) 

  

  ,
T

Ess MNF                                                                                      (6.24) 

                                                                                                                                                                                                        

  ,00010
T

F                                                                                      (6.25) 

                                                                                                                                                                                                   

  .11111

T

Ess MNF                                                                                      (6.26) 

 

Here, we assume an axisymmetric cylinder such that all quantities are 

homogeneously distributed along z-direction, and thereby just show radial variations. In 

equation (6.23), F1 denotes the radial perturbations, which evolve as per the Hankel 

function of first kind of order 0.  F0  denotes the equilibrium values corresponding to 

which perturbations F1 take place. In the new Fourier transformed wavespace, the 

spatial and temporal operators get transformed as  RikR 1*   and
 

  i , 

respectively. Here,    pi  denotes the normalized fluctuation frequency and 

 1
0

* ~ Lkk  designates the normalized wavenumber. The linearly perturbed relevant 

physical parameters from equations (6.14)-(6.19) in the new wave space can 

respectively be cast as 

 

   1

1*1
1 2 ee MRikiN

   ,                                                                                      (6.27) 

 

           1

112*12*11
1

1*11
1 442

22

iEeie MRkRkiERikmmEM
   ,         (6.28) 

 

   1

1*1
1 2 ii MRikiN

   ,                                                                                       (6.29) 
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         










112*12*11

1

1*1
1 4412

22

RkRkEiRikHM Ei 
 
,                 (6.30) 

 

       11

112*1*1
1 42

2

ieE MMRkRiki 
 ,                                                (6.31) 

 

        11
1

112*1*1
1 42

2

ieie MMmmRkRiki  
  .                                     (6.32) 

 

In the above set of equations (6.27)-(6.32), the various substituted terms are given as 

 

   *21*1*1 24-2 zppege MBHMRikiiE    
 

          









 

 1
112*1* 42

2

iemmRkRik  ,                                                         (6.33) 

 

      1312*1** 8542
23 

 RRikRkikBp ,                                                               (6.34) 

 

  21
3 FeM


 , for completely degenerate case; sFeFe cvM  and   13123  eeFe mnv  ,   (6.35) 

 

*1Tmm ei
 , for completely non-degenerate case                                                     (6.36)  

 

         














112**1***1*1 4222

2

RkTRikMMRikiiH zigi  

 

                112
212*

212*2*12* 444
222 


 EmmRkRkRk ie                  (6.37) 

 

After a standard procedure of elimination and substitution among equations (6.27)-

(6.37), we obtain a generalized linear sextic dispersion relation cast as 

 

001
2

2
3

3
4

4
5

5
6  AAAAAA  .                                                     (6.38) 

 

The different coefficients in an expanded form are given as 
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   *12*
5 4

2




 RkiA ,                                                                                              (6.39) 

 

        ***211****1*
4 622222   igizppege MMBHRikTMRikA    

            



 


12142 11

112*1* 2

ieei mmmmRkRik  ,                                     (6.40) 

 

         

 

 1**21**12**1*
3 2242242

2

RikMBHMRkRikiA zppege    

           111* 22 
 eiie mmmmRik    ,                                                                     (6.41) 

 

          **21****1*21*
2 42222 TMBHMMRikRikA zppigiege  

 

               1*
112*2*1**** 124222

2 
  ieegeppzege mmMRkBHTMTM    

              ***1**121 2224212 zegeziezigiiepp MMMmmMMmmBH                

                221*21***121 2444  
  RikBHMMMmmBH ppegezigieipp  

                  212**11*
112** 4211242
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The different terms substituted in A0 are given in an expanded form as 
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The sextic dispersion relation (equation (6.38)) is transformed into a reduced form in 

light of the low-frequency approximation with the help of traditional simplification 

procedure [34]. We are primarily interested in the low-frequency limit because we wish 

to investigate the cylindrical acoustic waves.  In the low-frequency limit  1,0  qq , 

the modified dispersion relation is cast as 

 

001  AA .                                                                                                              (6.49) 

 

The coefficients 1A - 0A  are given in equations (6.43)-(6.44), respectively. We then 

analyze the dispersion relation in four distinct regimes of our interest, namely in 

quantum (completely degenerate) non-planar (cylindrical), quantum (completely 

degenerate) planar, classical (completely non-degenerate) non-planar (cylindrical), 

classical (completely non-degenerate) planar. 
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6.3.1 Quantum (completely degenerate) non-planar regime  

In the quantum non-planar regime, we have the same dispersion relation as given by 

equation (6.49). Likewise, the coefficients are the same as given by equations (6.43) and 

(6.44).   for the completely degenerate case is substituted from equation (6.35). 

 

6.3.2 Quantum (completely degenerate) planar regime 

In the quantum planar regime, we have R . The dispersion relation is the same as 

equation (6.49). However, the coefficients given by equations (6.43) and (6.44) are 

modified.   for the completely degenerate case is substituted from equation (6.35). The 

cylindrical coordinates are mapped into planar coordinates accordingly. The modified 

coefficients are given as 
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2  .                                                                      (6.51) 

 

The different substituted terms in equation (6.51) are modified accordingly.  

 

6.3.3 Classical (completely non-degenerate) non-planar regime 

In the classical non-planar regime, the Bohm potential term is ignored. The dispersion 

relation is the same as equation (6.49), however, the coefficients 1A  and 0A  are 

modified.   for the classical case is substituted from equation (6.36). The coefficients 

are modified as 
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The different substituted terms appearing in equation (6.53) are modified as per the 

approximations stated in section 6.3.3. 

 

6.3.4 Classical (completely non-degenerate) planar regime 

 In the classical (completely non-degenerate) planar regime, we have R . Just like 

the classical non-planar regime, Bohm potential is also ignored herein. The dispersion 

relation is the same as given by equation (6.49). The coefficients appearing in equation 

(6.49) are modified as per the considered regime. The cylindrical coordinates are 

conveniently mapped into planar coordinates.   for the classical case is substituted 

from equation (6.36). The modified coefficients A1 and A0 are given as 
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         22 *211*112* 22 kmmmmkmmmmk eiieeiie    

,                               (6.54) 
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2  .                                                                      (6.55) 

 

The different terms appearing in equation (6.55) are modified as per our approximations 

(as in section 6.4.4).  

The above discussion in the subsections are summarily pointed out as 

 In the quantum non-planar regime, the dispersion relation has the contribution 

due to the geometric curvature effect, Lorentz force, Coriolis rotational force, 

kinematic viscosity, quantum parameter, Bohm potential, quantum pressure, 

temperature, and Jeans-to-plasma oscillation frequency ratio squared. The 

growth patterns for different parameters are depicted in figures 6.1-6.5. 
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 In the quantum planar regime, the reduced dispersion relation has the 

dependencies of all the above terms except the geometric curvature. The 

growth/damping trends of the same for different relevant parameters are given in 

figures 6.6-6.10.  

 For the classical non-planar regime, the dispersion relation has the dependencies 

of all the   terms as the quantum non-planar regime, except the Bohm potential 

term. The quantum pressure also gets replaced with the classical pressure. The 

growth/damp trends for the same are given in figures 6.11-6.15. 

 Lastly, for the classical planar regime, the dispersion relation highlights the 

contribution of all the terms as the classical non-planar regime, except the 

geometric curvature terms. The growth/damp trends for the relevant parameters 

in this regime are graphically seen in figures 6.16-6.20.  

Thus, it is clearly seen that, in all the four considered distinct regimes, the modified 

dispersion relation has sensitive dependencies on the multiparametric model coefficients 

influencing the stability dynamics of the considered plasma system.   

  

6.4 RESULTS AND DISCUSSIONS 

The excitation and stability features of cylindrical acoustic waves are analyzed by 

means of a two-component axisymmetric magnetized cylindrical plasma system 

comprising of electrons and ions. The system is rotating uniformly with its angular 

velocity directed longitudinally. The electrons evolve under the action of their motion, 

electrostatic potential, Lorentz force, Coriolis rotational force, Bohm potential and 

gravitational potential. Meanwhile the ionic dynamics is governed by all of the above 

mentioned factors, except the Bohm potential term. In addition, kinematic viscosity is 

retained for the ionic dynamics. The temperature degeneracy of electrons is 

incorporated via the temperature degeneracy parameter in the equation of state for the 

electrons. The ions experience the normal classical thermal pressure. A standard 

cylindrical mode analysis employing the Hankel function yields a generalized linear 

sextic dispersion relation, which is modified using the low-frequency approximation 

[24]. A numerical illustrative platform is used to analyze the growth rate corresponding 

to the acoustic excitation and stability in four parametric windows, namely the quantum 

non-planar, quantum planar, classical non-planar, and classical planar. Here, the 

dispersion analysis of current interest in different regimes is systematically carried out 
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by analyzing equation (6.49) graphically, as clearly depicted in figures 6.1-6.20. It is 

noteworthy that different input values used herein exist in the literature [35-42]. There 

are certain debates regarding the input values and their validity in the classical and 

quantum domains [43-45]. The number density and temperature range for the quantum 

regime are given [43] as 1024-1030 cm-3 and 102-107 K, respectively. In SI units, the 

number density is 1030-1036 m-3. This is in agreement with the values considered for the 

quantum regime in the manuscript. Likewise, for the classical regime, the number 

density and temperature range are given [43] as 106-1024 cm-3 and 104-107 K. In SI 

units, the number density is 1012-1030 m-3. The values for the classical regime in the 

manuscript are also in good agreement with the specified values of the previous study 

[43]. Apart from a common feature of extreme growth of the fluctuations at extremely 

large wavelengths, the uncommon features of the same are described and interpreted in 

the following subsections. 

 

6.4.1 Quantum (completely degenerate) non-planar regime 

 

                                             

Figure 6.1: Profile of the normalized growth rate  i  with variation in the normalized 

wavenumber  *k . The different lines link to different values of the equilibrium number 

density  0n  in non-planar (cylindrical) geometry in the quantum regime. 

 

 In figure 6.1, we depict the profile structures of the normalized growth rate  i  

with variation in the normalized wavenumber  *k , which results numerically from 

equation (6.49), for different values of the equilibrium number density  0n . The 

different coloured lines link to 29
0 10n  m-3 (blue solid line), 31

0 10n m-3 (red dashed 
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line), and 33
0 10n m-3 (black dotted line). As clearly evident from figure 6.1, the growth 

rate increases with increasing number density. The physical reason behind this can be 

ascribed to the fact that higher the mass of the system, higher is the possibility of 

exciting gravitational instability [46]. It couples with the background fluctuations 

resulting in the growth. 

In figure 6.2, we depict the same as figure 6.1, but for different indicated values 

of the normalized kinematic viscosity  * . The corresponding unnormalized viscosity 

values ( ) are alongside highlighted for the sake of our easy understanding. The 

different coloured lines link to 310  kg m-1 s-1 ( 6* 1091.24  , blue solid line), 

210  kg m-1 s-1 ( 7* 1091.24  , red dashed line), 110  kg m-1 s-1 (

3* 1049.2  , black dotted line). The trends shown by the different coloured lines 

indicate that an increase in the viscosity gradually decreases the instability growth rate, 

thereby exhibiting stabilizing influence on the system. This can be physically attributed 

to the fact that with an increase in the viscosity, the cohesion among fluid layers 

increases [37]. It means that the interspecies force gets enhanced; thereby, restricting the 

relative fluid motion. The fluid viscosity here plays a stabilization role against the 

perturbation dynamics under the current exploration. 

In figure 6.3, we indicate the same as figure 6.1, but for different values of the 

normalized Coriolis rotational force  *
FC . The different coloured lines link to 

008.0* FC  (blue solid line), 01.0* FC  (red dashed line), and 012.0* FC  (black dotted 

line). We see that the system has significant growth only in the long-wavelength regime 

( 0* k ). It is indicated that higher the Coriolis rotational force, higher is the 

destabilization of the system; and vice-versa. It can be physically attributed to the fact 

that, higher the Coriolis rotation of the system, higher is the rotational kinetic energy, 

    222 2121 rgrr MKIE   , and vice-versa. Here, I is the system moment of inertia 

around the reference axis of rotation, M is the inertial mass of the system with angular 

velocity r  and Kg is its radius of gyration around the same rotation axis. We assume a 

uniform rotation of the system, which, thereby implicates that MEr  . It is a well-

established fact that heavier objects are gravitationally unstable as compared to their 

lighter counterparts. Thus, an increase in the Coriolis rotation destabilizes the system, 
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and vice-versa. It is in accordance with the previous results by us [20] and astronomical 

evidences observed by others [47, 48].  

 

                                              

Figure 6.2: Same as figure 6.1, but for different values of the normalized kinematic 

viscosity  * .  

 

                                           

Figure 6.3: Same as figure 6.1, but for different values of the normalized Coriolis 

rotational force  *
FC . 

 

 As in figure 6.4, we depict the same as figure 6.1, but for different indicated 

values of the normalized thermal temperature  *T . Here, just like figure 6.2, the 

unnormalized values of the temperature are indicated in figure 6.4. The different 

coloured lines link to 310T K (
8* 1026.8 T , blue solid line), 410T  K (

7* 1026.8 T , red dashed line), and 510T  K (
6* 1026.8 T , black dotted line). 

The different coloured lines clearly indicate that, an increase in the temperature 

destabilizes the system, and vice-versa. It is indeed a well-established fact that a 

temperature increase enhances the system kinetic energy, and so on. It, hereby, 
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randomizes the system at the cost of enhanced particle thermal motion resulting in 

destabilization of the system. In other words, it is noteworthy that microscopic thermal 

motions of the individual constitutive particles significantly contribute to the bulk 

development of an anti-centric thermal pressure force (outward, randomizing) against 

the concentric gravitational counterpart (inward, organizing), causing the bulk 

destabilization consequences. 

 

                      

Figure 6.4: Same as figure 6.1, but for different values of the normalized thermal 

temperature  *T . The second subplot is the magnified version depicting the peaks 

(kinks) clearly. 

 

 

Figure 6.5: Same as figure 6.1, but for different values of magnetic field  B . The two 

subsequent subplots depict the magnified versions clearly highlighting the peaks (kinks).   

 

In a similar way, figure 6.5 shows the same as figure 6.1, but for different values 

of the magnetic field. The different coloured lines correspond to 10B T (blue solid 

line), 100B T (red dashed line), and 1000B T (black dotted line). An interesting 
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hybrid trend of growth peaks in different magnetic conditions is found to exist. It is 

against the previous cases showing a definite multiparametric increasing or decreasing 

growth pattern (figures 6.1-6.4). In other words, figure 6.5 shows a unique admixture of 

fluctuation growth patterns. Here, the growth rate is highest for 1000B T, followed 

by the subsequent gradually weaker growths produced at 10B T and 100B T, 

respectively. The non-uniformity in the instability growth-peak order with the magnetic 

field strength found here is a new and unique behaviour exhibited by this categorical 

class of collective fluctuation dynamics. 

 

6.4.2 Quantum (completely degenerate) planar regime 

 

                  

Figure 6.6: Profile of the normalized growth rate  i  with variation in the normalized 

wavenumber  *k . The different lines link to different values of the equilibrium number 

density  0n  in planar (non-cylindrical) geometry in the quantum regime. The second 

subplot is the enlarged version highlighting the trends for 29
0 10n  m-3 and 31

0 10n  m-3. 

 

  In figure 6.6, we depict the same as figure 6.1, but for the quantum planar 

geometric regime. The colour spectral coding is the same as that of figure 6.1. Clearly, 

the growth rate increases with increasing number density, and vice-versa. This is 

physically due to the well-established fact that heavier objects are gravitationally more 

unstable as compared to their lighter counterparts on the astrophysical scales. Even 

though the trend shown by figure 6.1 (quantum non-planar regime) is the same as figure 

6.6 (quantum planar regime), the growth rate of the considered fluctuation dynamics is 

considerably higher for the latter.  
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Figure 6.7: Same as figure 6.6, but for different values of the normalized kinematic 

viscosity  * .  The second subplot is the enlarged version clearly highlighting the 

trends for 210  kg m-1 s-1 and 110  kg m-1 s-1.  

 

 In an analogous way, figure 6.7 shows the same as figure 6.2, but for the 

quantum planar regime. The colours used here are the same as that of figure 6.2. 

Clearly, the growth rate decreases with increase in the kinematic viscosity, and vice-

versa. It may, therefore, be inferred that viscosity enhancement leads to the stabilization 

of the self-gravitating system, and vice-versa. The physical reason behind this is the 

same as described in figure 6.2. Viscosity playing as a stabilizing role in self-gravitating 

systems is a well-known fact established in the literature [37].  

Similarly, figure 6.8 shows the same as figure 6.3, but for the quantum planar 

regime. As can be clearly seen herefrom, the growth rate of the system increases with an 

increase in strength of the Coriolis rotational force. The physical reason behind this 

behaviour is the same as that of figure 6.3. 

Figure 6.9 depicts the same as figure 6.4, but for the quantum planar regime. An 

enhancement in the temperature increases the kinetic energy of the constitutive 

particles, thereby increasing the disturbance in the system. As a result, the instability 

growth rate of the considered instability increases with the temperature, and vice-versa. 

Figure 6.10 shows the same as figure 6.5, but for the quantum planar regime. 

The colour spectral coding used here is exactly the same as that used in figure 6.5. An 

absurd behaviour is seen to exist in the case of the magnetic field enhancement followed 

by a simultaneous existence of both growth dips and peaks. More specifically, while 

10B T and 100B  T give growth dips; in contrast, 1000B T results in growth peak, 

and so forth. 
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Figure 6.8: Same as figure 6.6, but for different values of the normalized Coriolis 

rotational force   *
FC .  

 

            

Figure 6.9: Same as figure 6.6, but for different values of the normalized thermal 

temperature  *T . The second subplot is the magnified version depicting the peaks 

clearly. 

 

                                        

Figure 6.10: Same as figure 6.6, but for different values of the magnetic field  B .  
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6.4.3 Classical (completely non-degenerate) non-planar regime 

In figure 6.11, we depict the profile structures of the normalized growth rate  i  with 

variation in the normalized wavenumber  *k  for different values of the equilibrium 

number density  0n . The different coloured lines link to 21
0 10n  m-3 (blue solid line), 

23
0 10n m-3 (red dashed line), and 25

0 10n m-3 (black dotted line). It is found that an 

enhancement in the equilibrium number density increases the growth rate, and vice-

versa. This growth behaviour is the same as that observed in both the quantum regimes 

discussed previously (figures 6.1, 6.6). The physical insight behind such instability 

growth features is the same as that already described in figure 6.1. 

 

                                          

Figure 6.11: Profile of the normalized growth rate  i  with variation in the 

normalized wavenumber  *k . The different lines link to different values of the 

equilibrium number density  0n  in non-planar (cylindrical) geometry in the classical 

regime. 

 

Figure 6.12 shows the same as figure 6.11, but for different values of the 

normalized kinematic viscosity  * . Here, the unnormalized (normalized) values of the 

kinematic viscosity are indicated for our easy comprehension. The different coloured 

lines link to 310  kg m-1 s-1 ( 4* 1003.3  , blue solid line), 210  kg m-1 s-1 (

5* 1003.3  , red dashed line), 110  kg m-1 s-1 ( 6* 1003.3  , black dotted line). 

An enhancement in the value of kinematic viscosity again stabilizes the system. The 

physical reason behind this trend is the same as in figure 6.2.  
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Figure 6.12: Same as figure 6.11, but for different values of the normalized kinematic 

viscosity  * . 

 

Figure 6.13 shows the same as figure 6.11, but for different values of the 

Coriolis rotational force  *
FC . The different coloured lines correspond to 008.0* FC  

(blue solid line), 01.0* FC  (red dashed line), and 012.0* FC (black dotted line). It 

clearly indicates that the Coriolis force enhancement destabilizes the system, and vice-

versa. The physical reason is the same as figure 6.3. 

 

                                           

Figure 6.13: Same as figure 6.11, but for different values of the normalized Coriolis 

rotational force   *
FC . 

 

Figure 6.14 shows the same as figure 6.11, but for different values of the 

normalized thermal temperature. The different coloured lines link to 510T K (

31084.1 T , blue solid line), 610T K ( 41084.1 T , red dashed line), and 710T K (

51084.1 T , black dotted line). It can be clearly seen that the growth rate of the system 

increases with an increase in the temperature in the considered configuration, and so 
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forth. It hereby implies that the temperature acts as a destabilization agent under the 

joint action of all the considered factors. 

 

                       

Figure 6.14: Same as figure 6.11, but for different values of the normalized thermal 

temperature  *T . The second subplot is the magnified version depicting the peaks 

(kinks) clearly. 

 

                    

Figure 6.15: Same as figure 6.11, but for different values of the magnetic field  B . The 

second subplot is the magnified version depicting the peaks (kinks) clearly. 

 

 Figure 6.15 shows the same as figure 6.11, but for different values of the 

magnetic field. The different coloured lines correspond to 1010B  T (blue solid line),  

910B  T (red dashed line), and 810B  T (black dotted line). In contrast to the hybrid 

behaviour displayed in both the quantum regimes, the magnetic field, in case of 

classical non-planar regime, shows a definite trend. The growth rate of the instability 

decreases on increasing the magnetic field, and vice-versa. It is founded on the basics of 

plasma confinement processes in an external magnetic field. Due to an increase in 
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plasma confinement on the magnetic field enhancement, the instability growth rate of 

the system decreases, and vice-versa. The same has also been pointed out in the 

previous investigations reported in the literature elsewhere [20]. 

 

6.4.4 Classical (completely non-degenerate) planar regime 

 

                   

Figure 6.16: Profile of the normalized growth rate  i  with variation in the 

normalized wavenumber  *k . The different lines link to different values of the 

equilibrium number density  0n  in planar (non-cylindrical) geometry in the classical 

regime. The second subplot is its enlarged version clearly showing the trends for 

21
0 10n  m-3 and 23

0 10n  m-3. 

 

In the classical (completely non-degenerate) regime, figure 6.16 shows the same 

as figure 6.11, but for the plane geometry approximation. It can be clearly seen herein 

that the growth rate increases with the equilibrium number density, and vice-versa. The 

explanation behind the observed trend is the same as figure 6.1. 

Again, figure 6.17 shows the same as figure 6.12, but for the classical planar 

regime. As clearly evident herein, the growth rate decreases with increase in the 

kinematic viscosity value, and vice-versa. The explanation behind this growth trend is 

already presented in case of figure 6.2. 

Furthermore, figure 6.18 shows the same as figure 6.13, but for the classical 

plane-geometry regime. It can be clearly inferred from here that the growth rate 

increases with the strength of the Coriolis rotational force, and vice-versa. The physical 

mechanism operating behind this growth pattern trend is the same as figure 6.3; and so 

forth. 
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Figure 6.17: Same as figure 6.16, but for different values of the normalized kinematic 

viscosity  * . 

                                            

Figure 6.18: Same as figure 6.16, but for different values of the normalized Coriolis 

rotational force   *
FC . 

 

       

Figure 6.19: Same as figure 6.16, but for different values of the normalized thermal 

temperature  *T . The second subplot is the magnified version depicting the peaks 

(kinks) clearly. 

 

0 0.1 0.2 0.3 0.4 0.5
0

0.02

0.04

0.06

0.08

Wavenumber
G

ro
w

th
 r

a
te =10

-3
 kg m

-1
 s

-1

=10
-2

 kg m
-1

 s
-1

=10
-1

 kg m
-1

 s
-1

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

Wavenumber

G
ro

w
th

 r
a
te

C
F

*
= 0.008

C
F

*
= 0.012

C
F

*
= 0.01

0 1 2 3
0

200

400

600

Wavenumber(~10
-4

)

G
ro

w
th

 r
a
te

T= 10
5
 K

T= 10
6
 K

T= 10
7
 K

1 1 1

0

530

530

530

Wavenumber(~10
-5

)

G
ro

w
th

 r
a
te

T=10
7
 K

T=10
6
 K

T=10
5
 K



135 
 

           

Figure 6.20: Same as figure 6.16, but for different values of the magnetic field  B . The 

second subplot is the magnified version depicting the peaks (kinks) clearly. 

 

Likewise, figure 6.19 shows the same as figure 6.14, but for the classical planar 

regime. Interestingly, figure 6.19 shows an opposite growth trend against figure 6.14. In 

other words, in figure 6.19, a temperature enhancement stabilizes the system, and vice-

versa. That is, the growth rate of the system decreases with increase in the temperature, 

and vice-versa. It is a well-known fact that an increase in the temperature increases the 

kinetic energy of the system, and so forth. Thus, an excessive kinetic energy gained on a 

high temperature scale is dissipated away to the surroundings, thus reducing the kinetic 

energy of the system. As a consequence, higher the temperature, higher is the kinetic 

energy, and higher will be the rate of dissipation, thereby decreasing the instability 

growth rate. 

At the last, figure 6.20 shows the same as figure 6.15, but for the classical planar 

regime. Interestingly, an opposite behavioural pattern of the instability growth is 

observed herein against figure 6.15. That is, the growth rate of the instability increases 

with the strength of the magnetic field, and vice-versa. This is because, for the plasma to 

be confined in a magnetic field, a certain curvature drift effect is required, which is, 

however, missing in the case of the classical planar regime [49]. Moreover, enhanced 

magnetic field strength increases the gyrofrequency of the constitutive particles. It 

hereby leads to the system destabilization on the Larmor kinetic footing. To sum up, a 

compact table highlighting a brief contrast on the fluctuation dynamics in the four 

distinct regimes for the sake of readers is given. 
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Table 6.1: A relative contrast of fluctuation dynamics 

S. 

No. 

Parameter Quantum 

non-planar 

Quantum 

planar 

Classical 

non-planar 

Classical 

planar 

1. Equilibrium 

number density 

Destabilizer Destabilizer Destabilizer Destabilizer 

2. Kinematic 

viscosity 

Stabilizer Stabilizer Stabilizer Stabilizer 

3. Coriolis rotation Destabilizer Destabilizer Destabilizer Destabilizer 

4. Temperature Destabilizer Destabilizer Destabilizer Stabilizer 

5. Magnetic field Mixed role Absurd Stabilizer Destabilizer 

 

On the basis of the above described results, it can clearly be inferred that, in the 

quantum regime, the equilibrium number density plays the most dominant role in 

destabilizing the system. However, in the classical regime, the system temperature plays 

a major role in stabilizing/destabilizing the system. Moreover, the destabilizing nature 

of rotational force is observationally accounted in many white dwarf stars [47] and 

circumstellar discs [48]. 

6.5 CONCLUSIONS 

In our proposed semi-analytic study, a two-component quantum hydrodynamic plasma 

model is presented to analyze the excitation and stability dynamics of cylindrical 

acoustic waves excitable in gyrogravitating magnetized cylindrical astrophysical 

structures. The electronic dynamics is subject to the conjoint action of electrostatic 

potential, Lorentz force, Coriolis rotational force, Bohm potential, and temperature 

degeneracy effects. The temperature degeneracy parameter in the electronic equation of 

state results in a completely degenerate quantum (Fermi) pressure and a completely 

non-degenerate classical (thermal) pressure in judicious approximations in correlation 

with realistic scenarios. The constitutive classical ionic fluid dynamics is modelled 

jointly with the electrostatic potential, Lorentz force, Coriolis rotational force, and 

kinematic viscosity. Thus, the electronic fluid is affected by the quantum potential; 

whereas, it is only the ionic fluid that is affected by the kinematic viscosity classically. 

Accordingly, the constitutive ions are acted upon by the classical thermal pressure. A 

cylindrical normal mode analysis, employing the Hankel function formalism, yields a 
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generalized linear sextic dispersion relation. The low-frequency acoustic regime is then 

thoroughly investigated in four distinct parametric regimes of practical importance. It 

includes the quantum non-planar, quantum planar, classical non-planar, and classical 

planar windows. The obtained results on the diverse stability factors in an itemized form 

are summarily presented as follows.  

1) Quantum non-planar regime: In this regime, the equilibrium number density, 

Coriolis force, and temperature destabilize the plasma system. The viscosity 

stabilizes it. The magnetic field plays a mixed role in the fluctuation dynamics. 

2) Quantum planar regime: In this regime, the only difference found against Case-

(1) (as above) is that the magnetic field shows absurd peaks and dips in the 

dynamics. 

3) Classical non-planar regime: In this regime, the only contrast against Cases-(1)-

(2) is that the magnetic field stabilizes the astrofluid system.  

4) Classical planar regime: In this regime, the only contrast against the earlier 

Cases is that the magnetic field destabilizes the fluctuation dynamics, and so 

forth. 

In addition to the above, it is noteworthy that the proposed multiparametric analysis 

can be extensively applied to study diverse cylindrical waves excitable in elongated 

molecular clouds, filamentary structures, magnetized arms of spiral galaxies, and so on 

[28-30]. It has been seen that circumstellar discs undergo viscous evolution [50]. 

Circumstellar discs with masses more than 10% of the central star are more susceptible 

to gravitational instability [46], where more number density means more mass, and 

vice-versa. The mass may also increase by means of mass accretion due to rotational 

processes [46, 48]. Magnetic field also plays a significant role in the evolution of the 

protoplanetary disks [51]. The chemistry of the disc and the evolution of the grain 

population are affected by magnetically driven mixing [51]. The direction of migration 

of planets is determined by the effective viscous reaction of the disc [51]. It hereby 

strengthens the reliability and validity of our analysis

It is finally admitted that our model is not completely free from basic formalism 

limitations. Approximate rotation input values, although judiciously used from the 

literature might slightly affect the pure accuracy of our numerical results. Also, 

consideration of non-linearity and differential rotation would actually improve the 

realistic applicability. There exists no sufficiency of actual astronomical stability data 
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needed for a complete validation and concrete reliability checkup. Against this 

backdrop, a refined model development on astrophysical cylindrical stability analyses 

with the aforesaid key factors fully considered is left here now for a future course of 

integrated continued study.  
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