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Chapter-2 

 

JEANS INSTABILITY IN ASTROPHYSICAL VISCOELASTIC 

FLUIDS WITH GEOMETRICAL CURVATURE EFFECTS 

 

Abstract: The semi-analytic study presented herein primarily focuses on analyzing the 

Jeans (gravitational) instability dynamics excited in strongly correlated viscoelastic 

astrophysical fluid media in the presence of geometrical curvature effects Ϯ. The basic 

governing equations are accordingly formulated in the generalized hydrodynamic 

framework in spherical geometry on the astrophysical spatiotemporal scales. A 

quadratic dispersion relation of an atypical analytical construct is obtained by a 

spherically symmetric normal mode analysis over the perturbed spherical medium. A 

numerical illustrative platform based on judicious multiparametric inputs is provided to 

see the various stabilizing and destabilizing factors of the fluid volume. It is specifically 

demonstrated that the effect of geometrical curvature introduces a compound viscous 

influence onto the dispersion relation. It is in contrast to the earlier reports analytically 

based on a planar geometry. The fact that larger clouds, but with constant density, are 

gravitationally more stabilized and vice-versa is an intriguing non-trivial result herein. 

Astronomical implications and applications of our study are summarily highlighted. 

 

2.1 INTRODUCTION 

The first step towards structure formation that occurs in interstellar gas clouds is the 

gravitational instability [1-8]. Interstellar gas clouds naturalistically have 

inhomogeneous mass distribution [1-8]. As such, the denser regions become more 

dense, thereby undergoing contraction under the influence of their own gravity. Thus, 

the gas cloud becomes unstable in certain regions where the radiation pressure of the 

gas is insufficient to balance the inward force of gravity. This kind of instability that 

arises due to the gravity is known as the gravitational instability. Gravitational 

instability leads to the collapse of the interstellar gas clouds, leading to the formation of 

smaller pre-stellar structures or protostars. In the formation and evolution of stellar 

objects, protostar forms the earliest phase [9-11]. The protostars lead to the formation of 

stellar structures over a typical time-scale of million years or so. In stellar physics, the 
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problem of gravitational instability was first addressed and analyzed by Sir James Jeans 

[12]. Hence, in stellar physics, gravitational 

instability is known as the Jeans instability [12]. However, the stellar model considered 

by Jeans was rather a simplified one as compared to real astronomic circumstances.  

 In plasma physics, one of the most important parameter that is used to classify 

the plasma is the coupling parameter   or the coupling constant. The coupling 

constant is defined as the ratio of the Coulomb interaction energy to that of the average 

kinetic energy. The fluid is weakly coupled if 1  [13-15]. The plasma fluid is 

assumed to be strongly coupled in the limit C 1  [13-15]; C  is the critical value 

of the coupling parameter beyond which crystallization occurs. It is in this regime that 

the plasma exhibits viscoelastic behaviour [13]. This behaviour is actually found to exist 

in stellar nuclear matter [16]. In addition, signatures of viscoelasticity have also been 

found in the laboratory investigations of nuclear dynamics [16]. There exists 

naturalistically a good number of promising evidences in support of the fact that the 

large-scale astrocosmic fluids are indeed viscoelastic in nature [16, 17]. As far as seen 

lately, a large number of theoretic studies have been conducted to analyze the onset of 

the Jeans instability and on the different ways to arrest it [18-24].  However, analysis of 

the Jeans instability in presence of curvature and viscoelastic influence has been 

unaddressed and unattended, to the best of our knowledge. 

In the present chapter, we analyze the Jeans instability dynamics in a massive 

viscoelastic molecular cloud by using the generalized hydrodynamic formalism. The 

key assumption employed herein is that in the transition phase between elastic solid, and 

viscous liquid, the stellar matter displays the characteristics of both viscosity and 

elasticity. The focal aim of the semi-analytic investigation presented here is to model 

the excitation of the instability dynamics in self-gravitating complex viscoelastic fluids. 

We include the geometric curvature effects in the adopted spherically symmetric 

geometric model configuration. A standard technique of spherically symmetric normal 

mode analysis yields a quadratic dispersion relation having atypical multiparametric 

coefficients. Analytical reliability of our results is validated by a perfect matching with 

that obtained earlier by using the plane-wave analysis in planar geometry [22]. Various 

key factors that contribute to the stability or instability of the composite viscoelastic 

cloud are numerically highlighted and broadly interpreted. The non-trivial implications 
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and applications of our semi-analytic investigation are lastly contextualised in the real 

astronomic circumstances. 

 

2.2 PHYSICAL MODEL AND FORMALISM 

We consider a strongly correlated viscoelastic fluid media confined in a spherically 

symmetric geometric construct. The justification behind the consideration of spherical 

geometry lies in the fact that most of the astrophysical structures are usually spherical. 

The system is modelled with the help of generalized hydrodynamic formalism in the 

presence of geometric curvature effects. A deviation from the planar geometry 

approximation ( R ) towards the nonplanar spherical geometric consideration is 

known to play a key role in moderating the supported instabilities in diversified 

astrophysical situations [25]. The fluid system is strongly coupled so that both the 

viscosity and elasticity act on the same footing [22]. As such, the fluid system 

considered herein is effectively viscoelastic in nature. The basic governing equations are 

the equation of continuity, force-balancing momentum equation, and the gravitational 

Poisson equation, respectively cast as 
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Here, r  and t  denote the radial and temporal coordinates, respectively.   

denotes the mass density. Velocity of the fluid is denoted by v . m  
is the viscoelastic 

relaxation time.   stands for the unnormalized gravitational potential. Pcs   

denotes the phase speed of the fluid sound mode. As in the customary notations [21, 

24],  stands for the bulk viscosity coefficient (related to the vibrational energy of the 

constituent molecules, denoting the effects of the fluid compressibility) and   is the 

shear viscosity coefficient (measuring the resistance to the fluid flow). The universal 
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gravitational constant is denoted as 111067.6 G  N m2 kg-2. Here, 0  stands for the 

hydrostatic equilibrium material density accounting for the Jeans swindle in order to 

relax the zeroth-order gravitational force field effects as in an assumed homogeneous 

equilibrium. 

It is noteworthy to add that the appearance of r1 - terms is due to the 

geometrical curvature effects, which are normally, otherwise, absent in the case of the 

planar geometric approximation ( r ). Equation (2.1) is the equation of continuity. 

The net force balancing amid spatiotemporally fixed viscoelasticity coefficients on our 

observational spatiotemporal scales of current interest is modelled by equation (2.2). 

The closure of the constructed model is obtained with the help of the gravitational 

Poisson equation thereby relating the gravitational potential evolution with the material 

density perturbation as evident in equation (2.3). A standard astronormalization 

technique in the customary notations in the Jeansian scales of space and time [21, 24], is 

herewith employed in our relevant model equations. The normalized set of equations are 

respectively cast as 
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Here, JrR   denotes the Jeans normalized radial coordinate. 
JsJ c    is the 

Jeans scale length. JtT   denotes the Jeans-normalized temporal coordinate with  

  21

0

1 4
   GJJ  as the Jeans time scale. 0D  is the  normalized fluid 

material density. scvM   is the normalized fluid flow speed or Mach number. 

Jsc  0

*   is the normalized effective generalized viscosity. Jsc  0

*   is the 

normalized compound viscosity.  2

sc   is the normalized gravitational potential. 

Here, the Jeans parameters, namely, J , J , and the other relevant Jeans parameters 



19 
 

such as JJk 2 , 
121

0 )4(


 JJ G   have been used to normalize the 

parameters in astrophysical scales. Further, the expression for the Jeans mass reads as 

34 3

JJM  . 

 

2.3 LINEAR STABILITY ANALYSIS 

We linearly perturb the relevant physical fluid parameters F as F1 about their respective 

homogeneous equilibrium values F0 [26] given as 
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10010 exp, 


 ,                                                  (2.7) 

 

  ,
T

MDF 
                                                                                                  (2.8) 

 

  ,0010

T
F 

  
                                                                                               (2.9) 

 

  .1111

T
MDF 

                                                                                                (2.10)    

 

We assume a spherically symmetric geometry with perturbations along radial 

direction only. Perturbations along the direction given by spherical harmonics are kept 

for future course of investigative studies. Another important point that is noteworthy 

herein is that the assumption of spherically symmetric geometry simplifies the 

complicated three-dimensional problem into a simple one-dimensional problem, by 

omitting the azimuthal and polar dependence. Here,    J~  and *k  Jkk~  

appear in equation (2.7) in a self-consistent auto-normalized Fourier form. In the 

Fourier transformed wavespace, the spatial and temporal operators get transformed as 

 1*  RikR  and  iT  , respectively. Equation (2.7) is methodically 

applied to equations (2.4)-(2.6). The linearly perturbed relevant physical parameters are 

given in an algebraic form as 
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A procedural algebraic substitution of equations (2.11) and (2.13) in equation (2.12) 

yields a polynomial equation in   and *k , cast as 

 

        .2111 *22**2*2*221    RkikkRi Jm                       (2.14) 

 

The plasma fluid becomes strongly coupled (significantly viscoelastic) for the coupling 

parameter 
c 1 , for which only the high frequency modes are excitable, relative to 

the usual viscoelastic relaxation mode 1m . On the other hand, the system becomes 

weakly coupled for which only the low frequency modes are excited subject to the 

fulfillment of the threshold condition 1m . In the strongly coupling limit, 1m

, which is 1Jm   in the normalized form; we obtain the generalized quadratic 

dispersion relation from equation (2.14) in a new normalized form cast as 

 

         .112 2

1

22*2*2*2**   RkkRk                                                              (2.15) 

 

To clearly indicate the effect of the geometrical curvature considered herein, we express 

equation (2.15) as 

 

     .21 2

1

2*22****
2122  

 RkRRkk                                                           (2.16) 

 

The first bracketed group containing no R-terms reveals exactly the same as those 

obtained by using planar geometry and the second one containing R-factors corresponds 

to the outcome due to the presence of geometric curvature effects. The analytic results 

so far explored herein are well bolstered with the help of a perfect matching of equation 
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(2.16), within the no-curvature limit defined by R , with the previously reported 

dispersion relation in the planar reduced construct (equation (11) in [19]) presented as 

 

          .2234 2

1
22222211

0


  kck sJm                                        (2.17) 

 

The presence of the numerical constant here appears due to the unnormalized form of 

the dispersion relation (equation (2.17)). From equation (2.16), it is clearly evident that 

the perturbations would increase if 

 

       22*2*22** 112   RkkRk  .                                                              (2.18) 

 

Thus, the growth rate of the gravitational instability in a spherically symmetric self-

gravitating viscoelastic plasma medium is cast as 

 

       .211 2

1

2*2**22*2* 
 RkRkki                                                              (2.19) 

 

Thus, we see that growth rate of the instability is influenced by the curvature effects, 

effective generalized viscosity, and compound viscosity.  

 

2.4 RESULTS AND DISCUSSIONS 

The dynamics of the gravitational instability is investigated in a spherically symmetric 

self-gravitating viscoelastic fluid medium. The system is modelled using the generalized 

hydrodynamic framework. A standard normal spherical mode analysis yields a unique 

generalized form of quadratic dispersion relation (equation (2.15)). A unique 

combination of bulk and shear viscosities is found to arise due to the curvature effect, in 

addition to the effective generalized viscosity. This new viscous influence is termed as 

the compound viscosity. A numerical illustrative platform is provided to clearly analyze 

the influence of different parameters in stabilizing/destabilizing the considered system, 

that is, to analyze the growth rate of the considered instability. The different input 

values employed herein have been taken from different trustworthy literary sources [14, 

21, 24].  
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Figure 2.1: Profiles of the Jeans-normalized growth rate  i  with variation in the 

Jeans-normalized wavenumber *k  for different values of the Jeans-normalized cloud 

size  R . The different lines link to 7.0R  (blue solid line), 8.0R  (red dashed line), 

and 9.0R  (black dotted line), respectively.  

 

In figure 2.1, we depict the profile for the variation of normalized growth rate 

 i  of the system with variation in normalized wavenumber  *k  for different values 

of the normalized radial size of the cloud  R . The different coloured lines correspond to 

7.0R (blue solid line), 8.0R  (red dashed line), and 9.0R (black dotted line), 

respectively. The different multiparametric input values used are 
5

0 1067.1   kg m-3 

( nm0 , 2210n  m-3 is the particle concentration and m 271067.1   kg is the 

hydrogenic particle mass),
 

210m s, 110  kg m-1 s-1, 210  kg m-1 s-1. It is seen 

that, as the cloud size increases with its mass and material density kept constant, the 

instability growth rate decreases gradually, exhibiting simultaneous shifting towards the 

lower *k -regime; and vice-versa. Thus, an interesting unusual inference which could be 

drawn herefrom is that larger clouds for a given mass and density are more stable; and 

vice-versa. The physical reason for this unusual inference of the cloud stability 

enhancement with its size in a given specified fluidic configuration can be traced back 

to the unique unipolar virtue of the long-range Newtonian inverse-square law of 

gravitational interaction. That is, larger the interparticle distance, smaller is the 

gravitational interaction for a given system of particles; and vice-versa. We, herein, in 

other words, increase the cloud size; but, the cloud mass and particle concentration 

remain the same. As a result, the self-gravitational attraction (inward, organizing) gets 

0.5 0.53 0.56 0.59
0

0.4

0.8

1.2

1.6

Wavenumber

G
ro

w
th

 r
a

te

R = 0.9

R = 0.8

R = 0.7



23 
 

reduced in its strength with the constituent rarefaction (dilution in concentration) and 

falls weaker in comparison with the radiative pressure force (outward, randomizing). 

The dominancy of the latter over the former is indeed actively responsible for the cloud 

stability enhancement with its increasing geometrical size against the canonical Jeans 

collapse dynamics. It is again stressed that this contrast will occur only if the radius of 

the spherical cloud is increased without increasing its mass or number density. In other 

words, the anti-gravitational cloud stability is responsible for a relatively reduced rate of 

structure formation in the galaxies in the open cosmos. Thus, spherical geometry 

introduces a curvature term which reduces the growth rate of the instability. 

In figure 2.2, we depict the same as figure 2.1, but for different values of the 

combined viscosity   . It is seen that, for a fixed  , i  decreases towards the higher 

*k -regime, and vice-versa. In fact, such growth behaviours become visibly more 

significant as we gradually increase the value of   from 10-4 kg m-1 s-1 (blue solid line) 

to  10-3 kg m-1 s-1 (red dashed line), and finally, to  10-2  kg m-1 s-1 (black dotted 

line). We see the three distinct i -patterns for the different  -values (figure 2.2), 

which enable us to conclude that i decreases with enhancement in  ; and vice-versa. 

Thus, the geometric curvature-induced compound viscosity,  , acts as a stabilizing 

agency to the gravitating fluid instability dynamics. It is physically attributable to the 

constitutional molecular resistive influences sourced in the interlayer microscopic 

frictional effects. 

 

 

Figure 2.2: Same as figure 2.1, but for the different viscosity    values. The varied 

coloured lines link to  410  kg m-1 s-1 (blue solid line), 310  kg m-1s-1 (red dashed 

line), and 210 kg m-1 s-1 (black dotted line), respectively. 
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Figure 2.3: Same as figure 2.1, but for the different values of the viscoelastic relaxation 

time  m  with variation in the Jeans-normalized wavenumber  *k . The three distinct 

coloured lines link to different values of 410m s (blue solid line), 310m  s (red 

dashed line), and  210m  s (black dotted line), respectively. 

 

In figure 2.3, we display the same as figure 2.1, but for the different values of 

the viscoelastic relaxation time  m . The different coloured lines show the trend of the 

growth variation for 
410m  s (blue solid line), 310m  s (red dashed line), and 

210m  s (black dotted line). As m  increases, i  decreases; and vice-versa. Thus, 

larger the m -value, the more stable is the fluid; and vice-versa. So, m  plays a key role 

in the dynamics as a stabilizing factor. It, hereby, physically indicates a parametric 

index of how memory effects modify the shear wave propagation in the fluid. Thus, it is 

evident that m  is a crucial factor determining the effect of shear viscosity in the fluids. 

As such, it plays a key role in determining the viscoelastic behaviour. As a 

consequence, the viscoelastic relaxation time plays a key role in determining the 

stability of extremely dense astrocosmic objects and their neighbouring atmospheres 

collectively made up of correlative fluids. 

 

2.5 CONCLUSIONS 

The Jeans gravitational instability dynamics excited in self-gravitating spherical 

complex fluids is analyzed in the generalized hydrodynamic fabric on the astrophysical 

spatiotemporal scales. The effect of geometrical curvature moderated with 
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viscoelasticity is specifically included in the basic model setup. A spherical normal 

mode analysis over the perturbed complex fluid results in a quadratic dispersion relation 

with atypical  multiparametric coefficients. A numerical illustrative platform is 

constructed to identify and characterize different stability factors. It is seen that the 

compound viscosity (  ) introduces a stabilizing influence to the instability. It is 

interestingly seen that the fluid system moves towards higher stability with an 

enhancement in the cloud size (R) and vice-versa. The viscoelastic relaxation time ( m ) 

is found to play a stabilizing role on the fluid. 

The investigated results in the proposed Chapter can be extensively employed  in 

the stability analysis of degenerate molecular clouds, dense nebula, compact 

astrophysical structures and their dense correlated atmospheres well known to be 

composed of viscoelastic fluids. The derived results, despite some facts and faults, 

could be fairly applicable to see the instability evolutionary processes in the compact 

astroobjects, such as white dwarf stars, neutron stars, and so forth. Also, the theoretic 

analysis in the spherical geometry might come handy in rigorous application to several 

special astrosystems, where the planar geometry-approximation is both improper and 

inappropriate. It would, of course, require a proper inclusion of the gravitational effects 

with the judicious replacement of the non-relativistic Newtonian gravity by the 

relativistic Einstein gravitational formalism due to the fact that compact astrofluids are 

widely relativistic in nature. It is finally admitted that the presented theoretic 

investigation is a simplified one. It is based on the spatiotemporally fixed viscoelasticity 

coefficients. It hereby opens a new research scope for more refined ameliorations with 

all the zeroth-order inhomogeneity effects inclusively. 
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