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NUCLEUS-ACOUSTIC WAVE DYNAMICS IN 

GYROGRAVITATING ELECTROSPHERICALLY CONFINED 

DEGENERATE QUANTUM PLASMAS  

 

Abstract: A theoretic model is presented to investigate the excitation and propagation 

dynamics of the nucleus-acoustic waves in a gyrogravitating electrostatically confined 

degenerate quantum plasma systemϮ. We consider a three-component spherically 

symmetric degenerate quantum plasma system, comprising of non-degenerate heavy 

nuclear species, light nuclear species, and degenerate electronic species. It is under the 

conjoint influence of the Bohm potential, Coriolis rotation, viscoelasticity, electrostatic 

confinement pressure, self-gravity, and so on. A standard normal spherical mode 

analysis yields a generalized linear dispersion relation (septic in degree). The 

dispersion coefficients have plasma multiparametric influences in an atypical fashion. 

We numerically illustrate and interpret various stabilizing and destabilizing factors 

extensively relevant in compact astro-environs.  

 

3.1 INTRODUCTION 

The area of quantum plasmas is one of the most rapidly growing research fields owing 

to its large-scale potential applications [1-4]. While traditional classical plasmas revolve 

around regions of low density and high temperature, quantum plasmas are characterized 

by high particle density ( 3629 1010~   m-3) and low temperature ( FTT ~ ) [1, 2, 4]. 

Widespread occurrence of such plasma is found in white dwarfs, brown dwarfs, neutron 

stars, and so on [4, 5]. Under extreme conditions of temperature and density, these 

qualify as degenerate quantum plasma systems. The degeneracy of these systems stem 

primarily from the combined action of the Pauli exclusion principle and the Heisenberg 

uncertainty principle [6-8]. According to Pauli exclusion principle, no two fermions can 

have all four set of quantum numbers identical. The fermionic particles are highly 

uncertain in their momenta as a result of their locations in highly confined phase space. 

As a result, when the electrons are subjected to extreme pressure of the highly dense 
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quantum plasma systems, they exert a very high counter quantum pressure known as the 

electron degeneracy pressure [9, 10].  

It is a well-known fact that white dwarfs are supported against gravity by the 

electron degeneracy pressure. Several studies have been conducted that highlight the 

fact that white dwarfs are composed of degenerate electronic species, weakly coupled 

light nuclear species (mostly hydrogen (H) and helium (He)), and strongly coupled 

heavy nuclear species (mostly carbon (C) and oxygen (O)) [11-13]. Electrons are 

relativistically degenerate within the inner core and non-relativistically degenerate in the 

outer mantle [1, 2]. Presence of particles of different masses has interactions among 

them, leading to excitation of different kinds of waves and instabilities. Nucleus-

acoustic waves are the propagatory longitudinal oscillations that arise as a result of the 

interplay between the elasticity contributed conjointly by the degenerate electronic 

species and light nuclear species, and inertial force provided by the heavy nuclear 

species [1]. The elasticity contributed by the electronic species is found to be 

significantly higher than the light nuclear species [1]. As such, nucleus-acoustic waves 

get excited essentially due to the elasticity of the lighter electronic species and inertia of 

the heavier nuclear species [1]. In other words, such modes are the rhythmic outcomes 

of any perturbation in the inertial nuclear fluid existing in a stable hydrostatic 

equilibrium with the non-inertial degenerate lighter ones acting as restoring agents in 

the composite plasma system. There exist a good number of investigations dealing with 

the nucleus-acoustic waves and non-linear structures associated with them [14-23]. 

However, very few studies have been dedicated to explore the linear dynamics of the 

nucleus-acoustic waves in the presence of realistic key parameters actually found in 

naturalistically occurring degenerate quantum plasma systems. In this context, one 

could not ignore the role of the quantum-mechanical diffraction effects (Bohm 

potential), gyration effects (Coriolis), non-thermal (electrostatic) confinements, etc. 

 In the present study, we consider a three-component spherically symmetric 

degenerate quantum plasma system to investigate the linear excitation of the nucleus-

acoustic waves. The consideration of spherical geometry can be justified on the grounds 

that most of the astrophysical bounded structures, like white dwarfs, brown dwarfs, etc. 

are spherical in shape. The considered system comprises of the degenerate electronic 

species, weakly coupled light-nuclear species, and strongly-coupled heavy nuclear 

species. Real astronomic evidences are present that highlight the actual composition of 
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white dwarfs to be similar to the considered composition. It evolves under the conjoint 

influence of the electrostatic confinement pressure [24], Bohm potential, Coriolis 

rotational force [25-26], viscoelasticity [28-29], self-gravity [27-29], and so on. Out of 

all the considered parameters, it is the electrostatic confinement pressure, scaling 

quadratically with number density, which has been considered in similar circumstances 

for the first time. It is assumed that in white dwarfs, the light and heavy nuclear species 

are confined in the system by means of their auto-generated electric fields [24]. As such, 

these mean electric fields contribute appreciably to the total pressure of the system [24]. 

Thus, the inclusion of the electrostatic confinement pressure becomes of utmost 

importance in the considered model set up. A significant fraction of white dwarfs have 

been observationally reported to show rotation [25, 26]. It is noteworthy herein that the 

angular momentum of the white dwarfs have primordial origin [25-27]. The effects 

considered in the current study have been found to significantly influence the white 

dwarf characteristics [30-34]. The practical realization of such a correlated physical 

plasma system could be achieved in the interiors of white dwarf stars, particularly the 

CO white dwarfs, having the asymptotic mass scaling in the range 

 MMM 825.0  ; where, 301098.1 M  kg is the mass of the Sun [35]. The 

simultaneous realistic effects considered here are mainly applicable to rapidly rotating 

collapsing white dwarfs [33]. It also finds applicability in the viscous evolution of 

remnants of white dwarf mergers, leading to detonation of their He envelope [34]. Thus, 

the considered model has widespread applicability to analyze the wave excitation 

dynamics in dwarf stars, like the white dwarfs, brown dwarfs, and their associated 

environments. 

 

3.2 PHYSICAL MODEL AND FORMALISM 

We consider a gyrogravitating degenerate electrostatically confined quantum plasma 

system, consisting of strongly coupled heavy nuclear species, weakly coupled light 

nuclear species, and non-relativistic and ultra-relativistic degenerate electronic species. 

The electronic species is treated quantum-mechanically, whereas, the light and heavy 

nuclear species are given classical treatment. We use a generalized hydrodynamic 

formalism to model the dynamics of the system. The considered model set up evolves 

under the simultaneous influence of the Bohm potential, Coriolis rotation, electrostatic 
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confinement pressure, viscoelasticity, and self-gravity. The basic equations governing 

the model are the flux conservation continuity equation, force-balancing momentum 

equation, and appropriate equations of state for each of the three constitutive species [1, 

2, 7, 24]. The model is systematically closed with the help of the electrostatic and 

gravitational Poisson equations. The equations governing the electronic dynamics, in 

their customary notations [1, 7], are respectively cast as  
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Likewise, the equations governing the dynamics of the light nuclear species [1, 2, 7, 24] 

are cast as 
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The heavy nuclear species dynamics [1, 2, 7, 24, 36, 37] can analogously be cast as   
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The system closing electrostatic and gravitational Poisson equations, in their generic 

notations [1, 2, 7] are respectively given as  

 

    hhllerr nZnZnerr 

0

22  ,                                                                    (3.10) 

 

    hlrr Grr   422 .                                                                            (3.11) 

 

The notation sn  stands for the population density associated with the sth species; s 

being e for the electrons, l for light nuclear species, and h for heavy nuclear species. 

ssss uPmZ ,,,  
signify the charge state, mass, pressure and flow speed of the sth species 

(s = e, l, h). T signifies the temperature of the system (in K). Bl and Bh are the 

electrostatic confinement constants associated with the light and heavy nuclear species, 

respectively. The azimuthal component of the angular velocity and polar component of 

the rotational velocity are respectively
 

denoted as   and 
v .   represents the 

electrostatic potential.   is the gravitational potential. 231038.1 Bk J K-1 is the 

Boltzmann constant signifying the energy-temperature coupling. 111067.6 G  N m2 

kg-2 is the universal gravitational constant through which gravitating matter interacts.   

and   are the bulk viscosity (resistance to transverse flow) and shear viscosity 

(resistance to longitudinal flow) coefficients, respectively. m  
is the viscoelastic 

relaxation time of the strongly coupled heavy nuclear fluid.  00 llllll nnm    

and  00 hhhhhh nnm    have been used to model the Jeans swindle. 

 A number of points regarding the above equations are noteworthy. Equation 

(3.1) denotes the equation of continuity for the degenerate electronic species. Equation 

(3.2) signifies the force-balancing momentum equation, wherein the forces by virtue of 

the electrostatic potential, degenerate pressure, and Bohm potential exactly balance each 

other. It should be noted that the Bohm potential term only appears in the momentum 

equation for the electronic species because in the current model set up, only the 

electronic species is treated quantum-mechanically. The physical reason behind this can 

be ascribed to the fact that the quantum behaviour becomes significant when the 
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interparticle distance becomes of the order of the de-Broglie wavelength ( mv ). As 

such, the quantum behaviour is reached much easily for the electrons as compared to the 

light and heavy nuclear species, owing to the extremely small mass of the electronic 

species. The Bohm potential term accounts for the quantum-like behaviour, like 

tunneling, wave-packet spreading, and so on. Equation (3.3) is the equation of state for 

the electronic species, accounting for their degeneracy pressure. The polytropic pressure 

law given as:
 

e

eee nKP


 ; where, the polytropicity constant, 53 cK Ce   (with 

cmeC   ), and the polytropicity exponent, 35e , for the non-relativistic limit. 

This is in contrast with the ultra-relativistic limit with their corresponding counterparts, 

given as, 34e  and 43 cKe   [9, 10]. Equation (3.4) gives the equation of 

continuity for the light nuclear species. Equation (3.5) gives the force-conservation 

momentum equation for the light nuclear species where the forces by virtue of their 

motion, electrostatic potential, gravitational potential, and pressure exactly balance each 

other. Equation (3.6) is the equation of state for the light nuclear species, taking into 

account the classical thermal pressure and the electrostatic confinement pressure, 

scaling quadratically with density. Equation (3.7) is the exact analog of equations (3.1) 

and (3.4). Equation (3.8) is the force-balancing momentum equation for the heavy 

nuclear species where the various forces exerted by virtue of their motion, electrostatic 

potential, gravitational potential, composite pressure, and Coriolis rotation are exactly 

balanced by the dissipative viscoelastic forces. Equation (3.9) is the analog of equation 

(3.6), but for the heavy nuclear species giving sum of the classical thermal pressure and 

the electrostatic confinement pressure. The model configuration is closed with the 

electrostatic and gravitational Poisson equations, given by equations (3.10) and (3.11).  

 The difference in forms of the equations of state of the electronic species 

(equation (3.3)) and light (equation (3.6)), and heavy nuclear species (equation (3.9)) 

can be physically ascribed to the fact that in dwarf plasmas, the degenerate pressure of 

the electrons far exceeds all other pressures acting on the species, such as the electron 

thermal pressure, electrostatic confinement pressure, etc. It hereby makes the degenerate 

electron pressure significantly prevail only on the quantum degenerate electronic 

species (equation (3.3)). Another important point that should be mentioned herein is that 

there is a significant difference in the mathematical forms of the force-balancing 

equations of the light nuclear species (equation (3.5)), and heavy nuclear species 
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(equation (3.8)), respectively. In order to explain the difference, it is noteworthy to 

mention the Coulomb coupling parameter. In simple terms, the Coulomb coupling 

parameter [38, 39], that is  , is defined as the ratio of the mean potential energy per 

particle to the mean kinetic energy per particle. For classical particles, 

  TakZe B
2 ; where, 

31na
 
is the interparticle separation [7, 38]. It is evident 

that 1   for the heavy nuclear species due to their high charge and low temperature. 

Thus, the heavy nuclear species are strongly coupled. The fact that kinetic energy of the 

heavy nuclear species is comparatively low owing to their higher mass also adds to the 

reasons behind the heavy nuclear species for being strongly coupled. Similarly, 1  

for the light nuclear species on account of their higher kinetic energy than the heavy 

species. In other words, the light nuclear species are weakly coupled. Viscoelastic 

behaviour is exhibited by only the strongly coupled fluid in the range c 1  ( c  is 

the critical limit beyond which the fluid crystallizes) [38]. Thus, the viscoelastic terms 

are included only in the momentum equation of the strongly coupled heavy nuclear 

species. Again, mathematically, the Coriolis rotational force is given as 

 


 vmFC 2 . Clearly, the rotational part,  


v , is constant for a uniformly 

rotating plasma system. Thus, the effect of the Coriolis rotation becomes extremely 

small for the tiny electrons with negligible mass. Due to similar reasons, the rotational 

term has been neglected in the momentum equation of the light nuclear species 

(equation (3.5)) as well.  

In order for a scale-invariant analysis of the proposed model [1, 2, 7, 24], we 

apply a standard astronormalization scheme to obtain a dimensionless set of normalized 

governing equations cast as 
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where, Dlr    is the normalized radial coordinate with the normalization parameter 

given as   212

0

2 eZncm lleDl  . Dl  is the light nuclear Debye length scale. 
1 plt 

 
is 

the normalized time coordinate. 
1*  plmm   is the normalized viscoelastic relaxation 

time. The time normalization factor is the light nuclear plasma oscillation time scale 

given as:   2122

0

1 eZnmt lllplpl   . lh ZZZ   denotes the ratio of the heavy-to-light 

nuclear charge number. 00 lh nnZ  stands for the ratio of the charge densities of the 

heavy-to-light nuclear species. The relative nuclear charge-to-mass coupling parameter 

is denoted by hl mmZ . The population densities of the constitutive particles have 

been normalized by their equilibrium number density as 0sss nnN  . The squared 

Fermi Mach number is given by 
2242 cCvM lFeFe  . Likewise, the normalized form of 

the fluid flow velocity is given by lss CuM  , where   212
lell mcmZC  gives the 

light nuclear transit speed. 
2
Feepl vmH 

 
denotes the quantum parameter 

signifying the ratio between the plasmon energy associated with the light nucleus and 

the Fermi energy associated with degenerate electrons. The ratio between the square of 

the Jeans frequency to that of the light nuclear plasma oscillation frequency is given as 

22
plJl   , where llJl mGn 04  . 

22
llel CmcmA   stands for the ratio of the 
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relativistic electronic energy to the light nuclear species energy. 
22
lheh CmcmA   is 

the analog for the heavy nuclear species. The constants 
*
lB  and 

*
hB  have been 

normalized as 
2

0

* cmnBB elll   
and 

2
0

* cmnBB ehhh  , respectively. 
2* cmTkT eB  

stands for the normalized isothermal nuclear plasma temperature of the bulk plasma 

fluid. The effective generalized viscosity given by  34   has been 

normalized as Dllhh Cnm  0
*  . The normalized polytropic constant for the 

electronic dynamics is given as 
21

0 cmnKK e
e

eee


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
. The normalized Coriolis force is 

denoted as  hF MC **   , where the azimuthal component of angular velocity and 

polar component of the rotational velocity are normalized as pl  
*

 and 

lh CvM   , respectively. 
2cme eE  

 
is the normalized electrostatic potential 

arising due to local plasma polarization effects. The normalized gravitational potential is 

given as 
2
lC  .  

 

3.3 LINEAR STABILITY ANALYSIS 

The relevant physical fluid parameters in equations (3.12)-(3.19) are linearly perturbed (

1F ) about their homogeneous equilibrium values ( 0F ) using a standard normal spherical 

mode analysis in an autonormalized Fourier form as 
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In the auto-normalized Fourier form,    pl  denotes the normalized fluctuation 

frequency and *k   12  Dlk   designates the normalized wavenumber. In the Fourier 

transformed wave space  *, k , the spatial and temporal operators get transformed as 

  1*  ik  and
   i , respectively.  The relevant fluid parameters 

appearing in equations (3.12)-(3.19) can respectively be written as  
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The substituted terms in equations (3.27) and (3.29) are given in an expanded form as 
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After a standard algebraic procedure of elimination and substitution in equations (3.24)-

(3.31), we arrive at a septic dispersion relation given as 
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The different coefficients in equation (3.34) in an expanded form are cast as 
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  .                                                               (3.41) 

 

We now apply the low-frequency approximation because we are interested to study the 

acoustic regime of the waves considered herein. In the ultra-low frequency limit (

10  aa ), equation (3.34) gets modified as 
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       .
1

***2**2 222 
  PkkEFkEiP m                                              (3.42) 

 

The various substituted terms in equations (3.35)-(3.42) in generic notations are given 

as 

 

    ,41
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  eFe KkMHF                                                                           (3.43) 
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QkFkEFkkkkEkP  


 (3.45) 

 

Thus, we see that the dispersion relation has major dependencies on different relevant 

effects considered herein, namely, the Bohm potential effect, Coriolis rotational force, 

radial distance, temperature, and so on.  

 

3.4 RESULTS AND DISCUSSIONS 

The semi-analytic study proposed herein puts forward a theoretic model to investigate 

the excitation and propagatory dynamics of the nucleus-acoustic waves in a rotating, 

self-gravitating, electrostatically confined degenerate quantum plasma system. The 

considered model is set up in the light of a spherically symmetric geometric construct. 

The concurrent influence of the Bohm potential, electrostatic confinement pressure, 

Coriolis rotation, self-gravity, and viscoelasticity is appropriately included. A linear 

normal mode analysis over the perturbed degenerate quantum plasma system yields a 

generalized dispersion relation (septic) of a unique pattern, characterizing the nucleus-

acoustic waves excitable in the system. A numerical illustrative platform is provided to 

reveal the microphysical dynamics of the derived dispersion law, which is, in fact, 

validated in the ultra-low frequency approximation. The growth rates of the model 

system fluctuations with variation in the normalized wavenumber, with minor 

differences for both the non-relativistic and ultra-relativistic limits, are illustrated 

pictorially in figures 3.1-3.6.     
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Figure 3.1: Profile of the normalized growth rate (
i ) with variation in the normalized 

angular wavenumber ( *k ) for different values of the charge density ratio of the heavy-

to-light nuclear species ( 00 llhh nZnZ ). The different subplots link to the (a) non-

relativistic (NR) limit, (b) ultra-relativistic (UR) limit, and (c) non-relativistic and ultra-

relativistic limits respectively.                   

  

In figure 3.1, we depict the profile structures of the growth rate with variation in the 

wavenumber for different values of the charge density ratio of the heavy-to-light nuclear 

species ( 00 llhh nZnZ ). The different subplots link to the (a) pure non-relativistic 

limit, (b) pure ultra-relativistic limit, (c) conjoint non-relativistic and ultra-relativistic 

limits, respectively. The different multiparametric input values used here are taken from 

the literature [1, 2, 7, 24, 26, 37] given as:  
210 , 1 , 10lA , 

210hA , 

2* 10m , 1.0H , 1FeM , 
3* 10 , 400* FC , 4* lB , 4* hB , 1 . As 

clearly visible from the distinct coloured lines (figure 3.1),   acts as a stabilizing 

agency for the fluctuations. It can be physically attributed to the dominancy of the 

inertial force imposed by the heavy nuclear species over the elasticity contributed 

conjointly by the light nuclear species and degenerate electronic species. Our model 

mimics the environment of a rapidly rotating contracting white dwarf star. If the 

contraction is large enough to increase the number density of heavy nuclei (number of 

nuclei present per unit volume), the value of   gradually increases. The heavier nuclei 

are larger in size as compared to the lighter nuclei. It is because the nuclear size goes as, 

  31
0ARAfR  , where 

15

0 102.1 R m and A is the mass number of the nucleus. 

It is to be noted that the contraction in the dwarf plasma volume results in an increase in 

the number density of the lighter nuclei. It, however, results in more closeness of heavy 
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nuclei (bigger) than that of lighter nuclei (smaller). As a result,   increases, thereby 

increasing the inertial action of the heavy nuclear species. Thus,   introduces a 

stabilizing influence on the growth rate of the considered instability. For a better 

confirmatory visualization on a colour phase space ( ,*k ), figure 3.2 shows the 

colourspectral profiles of the growth rate with variation in the radial distance and 

wavenumber for 5.0  in the (a) non-relativistic limit and (b) ultra-relativistic limit.  

 

                        

Figure 3.2: Colourspectral profile for the normalized growth rate for 5.0  in the (a) 

non-relativistic and (b) ultra-relativistic limits, respectively.  

 

As in figure 3.3, we show the same as figure 3.1, but for different values of the 

charge-to-mass coupling parameter ( hllh mZmZ ). It is clearly seen that the 

growth rate increases gradually with  . Thus, it can be fairly concluded that   

introduces a destabilizing influence on the system. An increase in ll mZ  (
1~  ) 

gradually increases the elastic effects provided conjointly by the degenerate electronic 

species and light nuclear species. Thus, decreasing   should increase the nucleus-

acoustic wave growth and vice-versa. But, a reverse is observed in both the non-

relativistic (figure 3.3 (a)) and ultra-relativistic (figure 3.3 (b)) limits. It can be ascribed 

to the electrostatic confinement pressure effects, dominating more in weakly coupled 

plasmas [24, 37]. Higher the ll mZ -value, higher is the electrostatic confinement 

pressure [24, 37] (due to higher lB ); and vice-versa. Thus, an enhanced electrostatic 

confinement pressure suppresses the instability growth (higher- ll mZ , lower- ); and 
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vice-versa. Similarly, figure 3.4 depicts the colourspectral profiles of the growth rate as 

figure 3.2, but for 5.0 . 

 In a similar manner, figure 3.5 shows the same as figure 3.1, but for different 

values of the Coriolis rotation force. The distinct coloured lines clearly indicate that an 

increase in the Coriolis force results in an enhanced growth rate, in both the non-

relativistic (figure 3.5(a)), and ultra-relativistic (figure 3.5(b)) limits. The Coriolis 

rotation destabilizes the system subject to the conjoint action of the concurrent effects of 

the considered factors simultaneously. The physical insight behind this is grounded on 

the fact that, greater the mass of the system, greater is the angular momentum, thereby 

leading to a higher degree of the Coriolis rotation. It is well established in the 

diversified astrocosmical scenarios that heavier objects gravitationally collapse faster, 

and vice-versa. It hereby enables us to infer that the Coriolis rotational force plays an 

active role in the destabilization process of the system against the non-local long-range 

gravity. Lastly, figure 3.6 depicts almost the same features as figure 3.4, but for 

400* FC . It is noted that there exists some minor quantitative disparities ascribable to 

the parametric domains under analysis.  

 

 

Figure 3.3: Same as figure 3.1, but for different values of charge-to-mass coupling 

parameter ( hllh mZmZ ) in the (a) non-relativistic limit, (b) ultra-relativistic limit, 

(c) non-relativistic and ultra-relativistic limits, respectively. 

 

It may be noteworthy that, figures 3.2, 3.4, 3.6 are the colourspectral profiles 

obtained by changing the Matlab camera’s line of sight (i.e., orientation or projection) 

of the three-dimensional surface plots (with the wavenumber, distance, growth rate 

taken in three mutually independent perpendicular axes with a common origin). The 
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actual three-dimensional surfaces are developed methodologically by executing the full 

numerical simulation of the generalized linear dispersion relation (septic in degree), 

given by equation (3.34), which is reduced in the low-frequency regime as equation 

(3.42), in the platform of the Matlab programming. More technically, these three-

dimensional figures are developed with the azimuthal and the elevation angles set equal 

to 0 and 90, respectively. Against this backdrop, it is already evident that figures 3.1, 

3.3, 3.5 are simply the two-dimensional spectral profiles obtained by the same 

dispersion analysis (with the wavenumber and growth rate taken in two independent 

perpendicular axes with a common origin).  

 

                      

Figure 3.4: Same as figure 3.2, but for 5.0
 in the (a) non-relativistic limit and (b) 

ultra-relativistic limit, respectively. 

 

    

Figure 3.5: Same as figure 3.1, but for different values of the Coriolis force ( *
FC ) in the 

(a) non-relativistic limit, (b) ultra-relativistic limit, (c) non-relativistic and ultra-

relativistic limits, respectively.  
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 The obtained results, mainly on the Coriolis rotational role as a destabilizing 

agency, are fairly correlative and consistent with the previous astronomical findings on 

the gyratory compact astroobjects, as widely evident in the literature [26]. In fact, it has 

been practically found in the case of a white dwarf stars, like SS Cygni, CM Del, and so 

forth that its rotational speed fairly increases during the unstable outburst phase, which 

reliably hints at the concretized accuracy of our proposed model analysis depicting 

rotation-induced destabilizing effects in such astrocompact circumstances. 

 

                      

Figure 3.6: Same as figure 3.2, but for 400* FC  in the (a) non-relativistic limit and 

(b) ultra-relativistic limit, respectively. 

 

 The above analysis is restricted to the excited wave instability features just in the 

core and mantle of a rapidly rotating collapsing white dwarf stellar configuration, where 

the dominance of the three considered species (degenerate electronic species, light 

nuclear species, heavy nuclear species) indeed prevails [11-13]. The crust and 

atmosphere of the white dwarfs consist of alkali metals, mainly lithium (Li) and 

potassium (K) [40], where our analysis would not be so appropriate to apply. It may be 

pertinent to add furthermore that the composition of the crust and atmosphere of 

degenerate white dwarfs can similarly be mapped to that of rocky planets, such as the 

Earth, Mars, and so forth [40]. Thus, the main limitation of our generalized 

hydrodynamic model-based study is the fact that the model analysis cannot be applied 

to the classical crust and atmosphere of a white dwarf star due to the postulated 

compositional disparity. Besides, the adopted idealized consideration of a spherically 

symmetric geometry with the polar and azimuthal wave-kinetic aspects completely 

ignored gives a clear indication for the future scope of a judicious model refinement in 
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this direction. Extensive applicability of the analysis, despite the above facts and faults, 

may be relevant in the viscous evolution of white dwarf merger remnants [34].  

 

3.5 CONCLUSIONS 

The theoretic analysis presented in this Chapter puts forward a semi-analytic model 

formulation to study the excitation and propagation dynamics of the nucleus-acoustic 

waves in a compact astrophysical fluid system. The model is founded in a generalized 

hydrodynamic fabric practically resembling white dwarf interior environs. It considers a 

three-component plasma system composed of heavy nuclear species, light nuclear 

species and tiny quantum degenerate electronic species. It is under the simultaneous 

action of the Bohm potential, Coriolis rotational force, electrostatic confinement 

pressure, self-gravity, and viscoelasticity. A standard normal spherical mode analysis 

over the perturbed degenerate quantum plasma system yields a generalized linear 

dispersion relation (septic). It highlights the explicit dependency of various atypical 

parametric constants on the diversified equilibrium plasma properties. A numerical 

illustrative platform is provided to explore the multiparametric influential dependencies 

of the degenerate quantum plasma fluctuation dynamics in detail. It presents different 

relevant two-dimensional growth-damping profiles (figures 3.1, 3.3, 3.5) and the 

corresponding colourspectral profiles (figures 3.2, 3.4, 3.6) with some minor 

quantitative differences in the non-relativistic and ultra-relativistic regimes of the 

electronic dynamics with wide astrocosmic relevance.  

The main conclusions drawn from this study include the fact that, in both the 

non-relativistic and ultra-relativistic limits, the charge density ratio of the heavy-to-light 

nuclear species ( ) introduces a stabilizing influence on the system (figure 3.1). The 

charge-to-mass coupling parameter ( ) destabilizes the system (figure 3.3). It can be 

further inferred from the proposed model analysis that the Coriolis rotation destabilizes 

the system (figure 3.5). The physical insights responsible behind are concisely 

illuminated in the relevant perspectives. It is substantiated fairly by the observed 

astronomical data [25, 26, 30], which, reinforcingly, hint at the same Coriolis rotational 

effects, as investigated here.  

White dwarfs are extremely compact astrophysical objects where the 

gravitational attraction is balanced by the non-thermal degenerate electronic pressure. 
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Thus, degenerate electronic pressure plays a significant role throughout the life of a 

white dwarf star. The effect of viscoelastic dissipation is mainly visible for strongly 

coupled heavy nuclear species in the parameter space defined by  m0  [38]. Also, 

for a rapidly rotating contracting white dwarf star approaching collapse, material in the 

envelope is shed when   cc RMGMv 
*2 2 ; where, 

*M  is the normalized mass of 

the star on the M -scale, cR
 
is the equatorial radius of the white dwarf star, and cv

 
is 

the equatorial velocity [33]. At this stage of collapse, the material in rapidly rotating 

white dwarf stars is highly viscoelastic [33]. A significant fraction of mass of white 

dwarf merger remnants is initially supported by rotation. Post merger viscous phase 

causes detonation of the helium (He) envelope in white dwarf mergers [34], thereby 

acting as potential triggering agents of Type-Ia supernovae. Thus, the obtained results 

may prove to be beneficial in understanding the diversified wave features in compact 

astroobjects, interiors, and correlated surroundings. It especially refers to white dwarfs, 

where the effects of viscoelastic dissipation, degenerate electron pressure, and strongly 

correlated inertial heavy nuclear species play a crucial role.   

  It has been reported that there exist a rich plethora of more than hundred 

oscillation (pulsation) modes, both in pre-white dwarf stars, such as PG1159-035 [13], 

and in variable white dwarf stars, such as GD-358 [13]. It has left behind an interesting 

scope for the future discovery of different collective waves, instabilities, and their 

saturation structures in such plasma media, with the proposed nucleus-acoustic waves 

and propagatory dynamics as their special cases in extreme conditions as proposed 

herein. Lastly, it is reiterated that our results may have concrete and promising 

applications in understanding the evolution, excitation, and propagation dynamics of the 

nucleus-acoustic and similar normal acoustic modes widely supported in compact 

correlated astroobjects and their correlated interiors.  
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