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Chapter-4 

 

BEHAVIOURS OF ION-ACOUSTIC WAVES IN RELATIVISTIC 

GYROMAGNETOACTIVE QUANTUM PLASMAS 

 

Abstract: We report a relativistic quantum hydrodynamic model formalism to 

investigate the behaviours of ion-acoustic waves excitable in ultra-dense quantum 

plasma systems. The judicious corrections are considered due to geometric and 

relativistic effectsϮ. The model evolves under the conjoint influence of the Coriolis 

rotation, Lorentz force, electrostatic confinement pressure, quantum Bohm potential, 

and so forth. A standard normal spherical wave analysis reduces the plasma model into 

a quartic linear dispersion relation. The significant stabilizing and destabilizing factors 

are illustratively discussed. A unique zero-growth bouncing point is reported to exist in 

the wave space for the first time. The implications and application are finally 

contextualized in real astronomical circumstances.  

 

4.1 INTRODUCTION 

There exist a significant number of realistic spheres extensively dominated by ultra-

dense quantum plasmas naturalistically [1-8]. The area of ultra-high density quantum 

plasmas in one-dimensional regime is one of the most researched fields. Its potential 

applications range from the terrestrial scales to astrophysical scales of space and time 

[1-8]. In the laboratory scales, it has important applications in laser plasma based ion-

acceleration [1], quantum diodes [2], momentum-resolved tunnelling in quantum wire 

[3]. Luttinger liquid theory is effectively used to describe one-dimensional quantum 

fluids in such systems [4]. One-dimensional quantum hydrodynamic model is also used 

to model the electronic dynamics in quantum wells [5]. In the astrophysical scales, such 

high-density quantum plasma is widely found in compact astrophysical objects like 

white dwarfs, brown dwarfs, neutron stars, and so on [8-12].  

 It is a well-established fact that in ultra-dense quantum plasma systems like 

white dwarfs, the electron quantum degeneracy pressure far exceeds the classical 

thermal pressure. Quite a good number of studies are present which report the observed 

magnetic field range in white dwarfs and pre-white dwarfs to be sufficiently high (~ 102 
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G). Likewise, the observed magnetic field in isolated neutron stars is reported to be in 

the range 1011-1015 G. The extremely intense magnetic fields in such compact 

astronomical fluids significantly modify the mobility of the constitutive charged 

particles (where gyration radius0 as magnetic field  ) in such a way that the 

fluid may essentially be approximated as a one-dimensional model [7, 8]. This 

geometric condition is consistent and correlative with the atmospheric plasmas of 

compact astroobjects, such as, brown dwarfs, white dwarfs, neutron stars, and so forth 

[7, 8]. Most of the bounded astrophysical structures are spherical in shape [9]. So, we, 

herewith, consider a spherically symmetric geometry of the confined plasma in one-

dimensional radial direction only so as to develop a simplified understanding of the 

underlying dynamical complications as a first step for the first time in this direction. 

Under such extreme conditions of magnetic field and pressure, the Fermi momentum of 

the quantum system becomes sufficiently high. As a consequence, the relativity 

parameter which is the ratio between the “electron Fermi-to-relativistic momentum 

ratio” given as mcpF , becomes sensibly large [12]. The equation of state also gets 

significantly modified due to inclusion of the relativistic effects [12, 13]. Thus, 

relativistic effects become of utmost importance in the considered scenario. Besides, 

rigorous investigations reveal that the electron plasma frequency in such ultra-compact 

plasmas reduces sensibly at higher density as a vital consequence of the sensible 

relativistic effects [14]. A good number of investigative studies have been conducted to 

study the relativistic ion-acoustic waves [15-22] and associated non-linear structures 

[23-35]. Recent observations in the X-ray and radio frequency bands have reported the 

dominacy of prominent magnetic activities near the magnetospheres of brown dwarf 

stars [35-37].

 

In the proposed work, we consider a gyromagnetoactive relativistic quantum 

plasma system composed of degenerate electrons and weakly coupled [38] singly 

charged ions. The system is studied in the fabric of compressible quantum 

hydrodynamic model formalism [21], but with no self-gravity [39]. It is electrostatically 

confined in a spherically symmetric geometry. The magnetic field considered in this 

model limits the fluctuations of the system in a one-dimensional spherically symmetric 

radial direction. The use of the Fermi-Dirac statistics for electrons enables us to take in 

to account the degeneracy pressure, by virtue of the Pauli exclusion principle. The 
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degeneracy pressure results in considerable increase in the Fermi momentum, thereby 

making the relativity parameter [12] sufficiently high. Unidirectionality and large value 

of relativity parameter prompts us to consider an equation of state which is similar to 

that of Chandrasekhar, but essentially that of one directional water-bag distribution [24]. 

Additionally, we also consider the conjoint effects of the Coriolis rotation, electrostatic 

confinement pressure (scaling quadratic in density), and quantum diffraction effects 

given by the Bohm potential. We have sufficient astronomical evidences regarding the 

active rotational effects and magnetic field in white dwarfs, pulsars [40], and other 

compact astroobjects [27-29]. Moreover, the electrostatic confinement pressure [25, 26] 

included in our study has been taken into consideration for the first time. The 

importance of the electrostatic confinement pressure can be realized from the fact that in 

compact astroobjects, like white dwarfs, pulsars, neutron stars, etc., the constitutive 

electrons and ions are usually confined in the system with the interaction of their bipolar 

electric fields. Thus, there are large mean electric fields contributing appreciably to the 

resultant pressure of the system, and this is much larger than the thermal pressure 

exerted by the ions [25, 26]. To increase the efficiency of the proposed model, the 

quantum diffraction effects have also been included in the current study, which was 

neglected in most of the previous studies [13-15, 18, 19]. It results in significant 

modification of the outcomes in the lower wavelength range. These are some of the 

main novelty factors of the considered study. All the effects considered herein are of 

great importance in the realistic compact astrocosmic backdrops. The main motivation 

behind the proposed study is driven by the fact that none of the previous authors has 

reported any analysis with all the above important active factors taken into account 

simultaneously in such circumstances as far as seen. More than hundred oscillation 

modes have already been reported to exist in white dwarfs [27, 32], like PG 1159-035, 

GD 358, and so forth. It clearly indicates that the ion-acoustic mode kinetics proposed 

herein under the joint action of various realistic parametric factors will be of extensive 

relevance in understanding the diversified compact astrophysical instability phenomena. 

 

4.2 PHYSICAL MODEL AND FORMALISM 

We propose a relativistic quantum hydrodynamic model to investigate the ion-acoustic 

wave excitation and propagation in an ultra-dense gyromagnetoactive spherical plasma 

system. It consists of a quantum-mechanical fluid of tiny electrons and a classical fluid 
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consisting of heavy ions. The system evolves under the conjoint action of the Coriolis 

rotation [11], Lorentz force field [19], and degenerate relativistic electronic pressure 

effects [14, 15]. We also consider the electrostatic confinement pressure effects [25, 26] 

for the first time as far as seen. Other than this, to increase the efficacy of the model, we 

also include the quantum diffraction effects by means of the Bohm potential, which is 

neglected in most of the previous studies [13-15, 18, 19]. The physical model setup 

adopted here is a weakly coupled plasma system of compact astrophysical relevance 

[15], validated only on the justifying grounds that, the collision frequency ( col 

  piln ~10-33 Hz; where, 21
0

32323
04 neT   denotes the population number 

of the constitutive particles in the Debye sphere [38]) is negligibly small with respect to 

the normal bulk plasma ion-acoustic wave frequency scale ( ipi me 0
2

0n   ~106 Hz 

[15]) in a weakly coupled relativistic system like ours. It implicates, in other words in 

the customary notations [38] that, the collision time scale (~1033 s) supersedes the 

corresponding bulk plasma ion-acoustic wave time scale (~ 10-6 s) on which our model 

is founded. It hereby means that the interparticle collisions may justifiably be ignored in 

our analysis in such environs bearing of compact astrophysical relevance. The practical 

relevancy of such complex bi-ion plasmas can be realized in brown dwarfs, which 

indeed consist of electrons and H-ions, with mass-scaling in the range 

08.001.0  MMBD , where M  is the solar mass [31, 33]. Similar circumstances 

dominated by plasma activities can also be found in He-white dwarfs, with the mass-

scaling ranging as 25.008.0  MMWD  [31, 33]. The basic equations governing 

the dynamics of the considered system are the flux conservation continuity equation, 

force-balancing momentum equation and the appropriate equation of state for each of 

the constituent species along with full relativistic corrections [13-15]. The equations 

governing the dynamics of the relativistic electronic species, in their customary 

notations [13, 14], are cast as 

 

    ,022  

eeereet vnrrn                                                                                        (4.1) 

 

         ,2 222
11221

ereteeretereeeerete nrncnmePcvnvvHm  
  (4.2) 
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Likewise, the equations governing the relativistic classical ionic fluid dynamics are cast 

as 

 

    ,022  

iiiriit vnrrn                                                                                        (4.4) 

 

      ,2
11

iriihiihiriiirit PnmvmeBvemvv 


                               (4.5) 

 

.2

ipii nCP                                                                                                                    (4.6) 

 

The electrostatic Poisson equation is given in customary notations [13-15] as 

 

    .1

0

22

iieerr nnerr                                                                                    (4.7) 

 

The notations,  ien  and  iev , denote the mass-weighted average population density 

and the mass-weighted average velocity of the electrons (ions) with their inertial mass 

 iem , respectively.      1
221



 cv ieie are their respective relativistic dilation 

factor. In equation (4.2), 
21 H

 
is the non-dimensional enthalpy density of the 

constitutive degenerate electrons [13, 14, 15, 21]. Here, cmnh ee 4  designates the 

electronic relativistic quantum action-to-momentum ratio. The term,  hiF vC 2 , 

stands the Coriolis rotational force [11], with   denoting the azimuthal component of 

the angular velocity and hiv  designating the polar component of the rotational velocity 

of the inertial ionic fluid. 
igi mBe    is the magnetic gyrofrequency for the 

relativistic ionic species, where B  is the magnetic field acting along the azimuthal 

direction. Cp is a constant of proportionality known as the polytropic constant associated 
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with the electrostatic confinement pressure of the ionic fluid. The electronic charge is 

given as Ce 19106.1  .  

 A number of points regarding the above equations are noteworthy. Equation 

(4.1) denotes the continuity equation for the electronic flux conservation. Equation (4.2) 

represents the force-balancing momentum equation for the electronic dynamics where 

forces due to the relativistic inertial motion (L.H.S), relativistic quantum-degeneracy 

pressure (1st term in R.H.S), electrostatic potential (2nd term in R.H.S), and Bohm 

potential (3rd term in R.H.S) exactly balance each other. It may be noted that the 

Coriolis rotational force for the electronic species,   vmC eFe 2 ,
 
is extremely small 

owing to their negligibly small mass. Additionally, the most pronounced effect of the 

magnetic field on electrons is on their spin dynamics. The spin dynamical evolution of 

the electrons is not included in our model setup. Hence, the Coriolis rotational force 

term and the magnetic field term are neglected in the force balancing momentum 

equation of the electrons (equation (4.2)). However, the effects of the intense magnetic 

field in restricting the motion of the electronic species to an essentially one-dimensional 

motion are accounted for with the help of an appropriately modified equation of state. 

Equation (4.3) is the equation of state that is modified appropriately for the relativistic 

electronic dynamics in an ultra-dense quantum plasma system [13, 14, 15, 21, 24]. 

Likewise, equation (4.4) is the analog of equation (4.1), but for the ionic species. 

Equation (4.5) for the ionic species forms an exact analog of equations (4.2), but with 

the Coriolis force (2nd term in R.H.S), Lorentz force (3rd term in R.H.S), and 

electrostatic confinement force (4th term in R.H.S) contributions incorporated in 

equation (4.5) afresh. The equation of state for the ionic species is given by equation 

(4.6), where, quite clearly, the confinement pressure scales quadratically with the ionic 

density [25, 26]. The model equations are closed with the help of the electrostatic 

Poisson equation, equation (4.7), describing the electrostatic potential distribution 

developed due to the local charge density fields of the plasma charged species.  

 We now apply a standard astronormalization scheme [13, 14, 15] in equations 

(4.1)-(4.7) for a scale invariant analysis of the basic set of governing equations. The 

dimensionless set of equations are respectively cast as 

 

    ,02*2*  

eeeRee MNRRN                                                                              (4.8) 
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    ,02*2*  

iiiRii MNRRN                                                                          (4.10) 

 

    ,022 2**1***  

ipiRhigiiFiERiiiRii NCMNCNNMMN               (4.11) 

 

    .**22

iieeERR NNeRR                                                                               (4.12) 

 

In our normalized system [13, 14, 15, 22], the spatial radial coordinate, r, is now 

rescaled as 0LrR ; where, piscL 0 is a characteristic spatial scale termed as the 

ion-acoustic wave scale length. The temporal coordinate, t , rescales as 
1 pit  , 

where ipi men 0
2

0    designates the ion plasma oscillation frequency. Similarly, 

iFes mEc 2  is the ion-acoustic phase speed in terms of the electronic Fermi energy. 

eFFe mpE 22 , with 40nhpF   as the corresponding Fermi momentum. The 

rescaled electronic (ionic) population density is given as     0nnN ieie  , where 0n  is 

the linear particle concentration in our radial one-dimensional problem. The normalized 

magnetic gyrofrequency is given as pigigi  *
.     sieie cvM   gives the Mach 

number of the electronic (ionic) species. The normalized relativistic dilation factor is 

given as       212* 1


 ieie M  for both the considered relativistic species. The quantum 

parameter,  cLmH ep  , gives the ratio of the plasmon energy to the Fermi energy. 

Then, 
ies mmcc 2

0
22   where  cmp eF0  is the electronic relativity 

parameter.  hiF MC ** 
 

gives the rescaled Coriolis rotation. The azimuthal 

component of angular velocity and the polar component of rotational velocity are 
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normalized as pi  
*

 and shihi cvM   , respectively.  higiM
*

 gives the 

normalized Lorentz force field. The constant of proportionality in the electrostatic 

confinement pressure, as given by equation (4.6), is rescaled as Fepp EnCC 0
*  . 

Lastly,  FeE Ee 2 

 

appearing in equation (4.12) is the normalized electrostatic 

potential on the Fermi potential scale.  

 

4.3 LINEAR STABILITY ANALYSIS 

We linearly perturb the relevant plasma parameters ( 1F ) appearing in equations (4.8)-

(4.12) about their homogeneous equilibrium values ( 0F ) by using a standard normal 

spherical mode analysis in an auto-normalized Fourier transformed wave space as 

 

  ,RF 10 FF     ,exp *

10

1

0 RkiFRF                                                      (4.13)   

 

  ,
T

Ess MNF                                                                                          (4.14) 

 

  ,0010

T
F                                                                                              (4.15) 

 

  .1111

T

Ess MNF    
                                                                                        (4.16) 

 

Here,    pi  denotes the normalized fluctuation frequency and 
*k

 1
0~ Lk  designates the normalized wavenumber. F1 denotes the considered 

fluctuations of the physical variables F on a linear scale, over the equilibrium fluid 

parameters, F0. It may be pertinent here to mention that the seed perturbation, as given 

in equation (4.13), could be sourced due to the available free energy associated with the 

initial inhomogeneities in the diversified constitutive parametric local density fields. In 

the new Fourier wave space ( *, k ), the linear spatial and temporal operators get self-

consistently transformed as  RikR 1*   and   i , respectively. 

Evidently, the term R1  appears in equation (4.13) as a geometric modulating factor, 

appearing due to the deviation from the plane-parallel geometrical approximation. It 
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shows how a Fourier wave spectral component (exponential term) gets modified due to 

non-planar geometric effects (curvature term). Most of the astronomical bounded 

systems are evidently found to have spherical structure because of the long-range 

inward self-gravity [9]. Thus, spherical mode analysis enhances the accuracy of the 

obtained results and increases its corresponding relevance in relation to the actual 

astrocosmical scenarios. However, the prime demerit of the aforesaid analysis lies in the 

time consuming arithmetic calculations due to the increase in number of terms having 

R1 -dependencies.  The linearly perturbed relevant physical parameters from equations 

(4.8)-(4.12) in the new wave space can respectively be cast as 

 

  ,1

1*1

1 ee MRikiN                                                                                          (4.17) 
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1 ii MRikiN                                                                                            (4.19) 

 

        .2 1

1
22**1**1*11*

1 EphigiFi RkCiMCRikiiRikM  
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where,       .1321 0

11

0

1

0  
A                                                                        (4.21) 

 

After performing the relevant algebraic procedures of elimination and substitution, we 

arrive at a linear generalized quartic dispersion relation cast as 
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The different coefficients appearing in equation (4.22) are given as 
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The substituted parameters in equations (4.23)-(4.25) in an expanded form are given as 
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In the present semi-analytic investigation, we are interested to study only the 

low-frequency ion-acoustic modes. Thus, ignoring all powers of   higher than 2 as per 

the traditional approach, we obtain the modified dispersion relation as 
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which, in turn, gives 
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               (4.29) 

Now, for the instability analysis, we split   in the L.H.S of equation (4.29) as 

ir i   [21], where r  and i  denote the real (regular) and imaginary (irregular) 

parts of  , respectively. It may be noteworthy that the positive value of i  gives the 

instability growth rate; whereas, its negative value measures the instability damping 

rate. Thus, on comparing the real and imaginary parts from both sides of equation 

(4.26), we find that only i  survives. It is clearly seen from equation (4.29) that the 
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ion-acoustic instability behaviour sensitively depends on the several important 

parameters considered herein like the relativity parameter, Coriolis force, Lorentz force 

field, quantum parameter, and so on. 

 

4.4 RESULTS AND DISCUSSIONS 

A semi-analytic investigation is put forward to study the relativistic ion-acoustic waves 

excitable in compact astrophysical structures like brown dwarfs, white dwarfs, etc. We 

consider a two-component plasma system comprising of electronic and ionic fluid. The 

ion-acoustic mode sustains because of the restoring force provided by the electronic 

species, and the inertial force provided by the weakly coupled heavier singly charged 

ionic species. The dynamics of the complex plasma system is modelled with the help of 

a quantum hydrodynamic formalism in a spherically symmetric geometry with 

perturbations along the radial direction. The system evolves under the conjoint influence 

of the Coriolis rotation, Lorentz force field, electrostatic confinement pressure, and 

quantum diffraction effects given by the Bohm potential, and so on in an ultra-dense 

plasma environment. After a systematic linear normal mode analysis, we derive a 

generalized linear quartic dispersion relation with atypical coefficients (equation 

(4.28)). A numerical illustrative platform is provided for this dispersion analysis to yield 

the various ion-acoustic results as displayed in figures 4.1- 4.6.  In the obtained scale-

free figures 4.1-4.6, 
*k  signifies a broader space of the auto-normalized wavenumber, 

1

0

* 2  Lkk  , as per the adopted Fourier transformation (equation 4.13). Accordingly, 

the hydrodynamic regime is characterized by a subcritical angular wavenumber defined 

as 12 1

0

*  Lkk  . In this purview, the kinetic regime is characterized by a 

supercritical wavenumber, specified as: 12 1

0

*  Lkk  . The hybrid (hydrokinetic) 

class of intermediate collective fluctuations is described by a transcritical wavenumber, 

12 1

0

*  Lkk  . It is noteworthy to mention here that the different input values 

employed in our numerical study correspond to realistic compact astronomic 

circumstances as depicted in the literature [14, 15, 22, 28].   

In figure 4.1, we depict the profile structure of the normalized growth rate  i  

with variation in the normalized wavenumber  *k  for different values of the Coriolis 

rotational force  *
FC . The various input values used herein are: 4835.00 

 
[15], 



61 
 

4* pC  [26],  1.0pH  [22], 41027.1   [15]. We estimate R = 104 , with the 

calculated value of pi ~ 106 Hz, cs ~ 106 m s-1, 1~0 piscL  m, *Rr ~ 10 km [31] 

so as to correspond to real astronomic circumstances. We further find that 

3* 10~pigigi  
 
with 

igi mBe   ~ 109 Hz for a mean 10B  T [11] linking to 

the same astronomic configurations. The different coloured lines link to 50* FC  (blue 

solid line), 100* FC  (red dashed line), and 150* FC  (black dotted line). It is clearly 

seen that, for a particular value of the *
FC , the instability growth rate of the system 

gradually increases from zero, reaches the maximum and then finally goes back to zero 

at a certain 
*k  (zero growth-bouncing point) with a strong propensity to increase again. 

As the value of the *
FC  increases, it is seen that the zero growth-bouncing point shifts 

towards the lower-
*k  region. It is found that, as *

FC  increases, the growth rate of the 

wave increases in the wave-space defined by 150* k . It can be attributed to the fact 

that an increase in the Coriolis rotation leads to an increase in the rotational kinetic 

energy (   221 rr IE  , where I is the moment of inertia around the axis of rotation, and 

r  is the rotational velocity of the system), and vice-versa. It is known that
2
gMKI  , 

where M is the net mass and Kg is the radius of gyration around the rotation axis of 

reference. Thus, higher the mass, higher the moment of inertia, higher the rotational 

kinetic energy, and higher is the resulting Coriolis rotation. It is an established fact that 

higher the mass of such systems, higher the possibility for exciting their gravitational 

instabilities. Thus, an enhancement in the Coriolis rotation increases the ion-acoustic 

wave growth (as a destabilizing agency), and vice-versa (figure 4.1(a)). This result is 

fairly consistent with the previously reported astronomical observations [28]. In this 

particular context, white dwarfs, such as U Geminorum, OY Car, etc., clearly indicate 

that collapsing dwarf stars having greater mass rotate faster, and vice-versa [28]. There 

is a growth bouncing effect on the wave-space (figure 4.1(b)), which can be attributed to 

the quantum diffraction effects which come into the picture due to the consideration of 

the Bohm potential term. Figure 4.2 shows a colourspectral pattern profile of the same 

variation with R as an additional parameter for a fixed 100* FC .  
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Figure 4.1: Profile of the normalized growth rate  i  of the ion-acoustic wave with 

variation in the normalized wavenumber  *k  for the different indicated values of the 

Coriolis rotational force  *
FC . The distinct panels depict the same in the domains: (a) 

150* k  and (b) 500* k .              

 

                                   

Figure 4.2: Colourspectral profile of the normalized growth rate  i
 
of the ion-

acoustic wave with variation in the normalized spatial coordinate  R  and normalized 

wave number  *k  for a fixed value of the Coriolis rotational force  100* FC . 

 

In figure 4.3, we show the same as figure 4.1, but for the different values of the 

normalized magnetic gyrofrequency  *
gi . The various coloured lines correspond to 

1000* gi  (blue solid line), 2000* gi  (red dashed line), 3000* gi  (black dotted 

line). A trend similar to that of figure 4.1 is observed for a particular 
*
gi . It is noticed 

that, as 
*
gi  increases, the zero growth-bouncing point shifts towards the higher-

*k  
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regime. It is clearly seen that increasing 
*
gi  increases the growth rate of the system in 

the 
*k range defined by k* = 0-15 (figure 4.3(a)), thereby allowing the ion-acoustic 

instability to grow sensibly. Usually, it is seen that an increase in the magnetic field and 

hence, magnetic gyrofrequency enhances the degree of particle confinement. However, 

figure 4.3(a) depicts exactly the opposite features. The magnetic gyrofrequency is 

directly related to the velocity of the constitutive particles. Thus, increase in the 

magnetic gyrofrequency leads to an enhanced particle velocity, thereby causing its 

escape from the natural magnetic confinement effects.  In our relativistic system, the 

escape of particles from the magnetic confinement becomes more pronounced due to the 

pre-existing relativistic velocities. An analogy that could be drawn here is the escape of 

an artificial satellite from the planetary (geo) gravitational confinement when it attains 

the escape velocity. The satellite cannot escape the gravitational confinement with any 

given random velocity. If and when the satellite reaches the escape velocity, it breaks 

the gravitational confinement and gets free to move out of its influence. Thus, the 

enhancing magnetic gyrofrequency increases the ion-acoustic growth rate, thereby 

destabilizing the system under consideration. In other words, the escape of the 

relativistic ions from the magnetic confinement results in an enhanced growth rate. In 

figure 4.3(b), after the phase bouncing at the zero growth-bouncing point, the 
*
gi  

effect on the growth gets reversed, that is, the growth rate corresponding to 1000* gi  

is the highest, followed by the lower ones ( 2000* gi , and 3000* gi ). Similarly, 

figure 4.4 shows the same spectral profile as figure 4.2, but for 2000* gi . The main 

difference noticed here (figure 4.4) is that the lowest growth occurs in a closer 

proximity to the centre than the previous case (figure 4.2), and so forth. 
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Figure 4.3: Same as figure 4.1, but for the different indicated values of the normalized 

magnetic gyrofrequency  *
gi . The distinct panels depict: (a) 150* k  and (b) 

700* k . 

 

                                        

Figure 4.4: Same as figure 4.2, but for a fixed value of the normalized magnetic 

gyrofrequency  2000* gi . 

 

In figure 4.5, we depict the same as figure 4.1, but for different values of the 

equilibrium linear ionic concentration  0n . The different lines correspond to 

11
0 104n  m-1 [13] (blue solid line), 11

0 108n  m-1 [15] (red dashed line), 

12
0 101n  m-1 [13] (black dotted line). For a fixed 0n , it follows the same pattern 

(figure 4.5(b)) as that of the previous *
FC -case (figure 4.1(b)). However, as 0n  

increases, zero growth-bouncing point shifts towards the lower-
*k  region. In the 

lowest-
*k  limit (k*=0-6), the instability growth increases with 0n  (figure 4.5(a)). As the 

wave progresses (k*=6-15), the confinement pressure achieves an appreciable value, 

resulting in growth reduction with increase in 0n  (figure 4.5(a)). After the phase-
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bouncing due to quantum diffraction effects, the 0n -dependency of the growth gets just 

reversed (figure 4.5(b)), as found before (figure 4.5(a)). This can possibly be traced 

back to the mutual coupling of the diffraction effects with the ionic confinement. Lastly, 

figure 4.6 shows the same behaviour as figure 4.2, but for 11
0 104n  m-1.  The only 

disparity noticed here as compared to the previous case (figure 4.2) is in the shifting of 

the lowest growth in an anti-centric-ward direction. 

 

           

Figure 4.5: Same as figure 4.1, but for the different indicated values of the equilibrium 

linear ionic concentration  0n . The distinct panels depict the above in: (a) 150* k  

and (b) 1500* k . 

 

It may be repeated here that none of the previous investigations done in this field 

[15-23] has considered all the concurrent realistic unavoidable effects simultaneously as  

proposed herein so as to see a comparative and supportive glimpse of our explored 

outcomes. Additionally, the electrostatic confinement pressure and gyromagnetoactivity 

are included in this study for the first time. The quantum diffraction effects had earlier 

been neglected in most studies related to relativistic ion-acoustic wave instability 

dynamics [13-15, 18, 19]. The consideration of quantum diffraction effects is another 

novelty against the previous studies [13-15, 18, 19]. As a consequence, the proposed 

spherical model analysis seems to go closest to real astrocosmic scenarios. The 

insufficiency of reported data in the literature may find it difficult to concretely and 

observationally support the existence of the ion acoustic-zero growth-bouncing points as 

investigated here. The proposed methodical analysis, despite facts and faults, should 

have wide-range applicability to explore the diversified wave modes of compact 
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astroobjects and their circumvent atmospheres in an asteroseismic perspective 

extensively useful in probing their interior structures.  

 

                                      

Figure 4.6: Same as figure 4.2, but for a fixed value of the equilibrium linear ionic 

concentration  111
0 104  mn . 

 

4.5 CONCLUSIONS 

In this Chapter we propose a relativistic gyromagnetoactive quantum plasma fluid 

model to investigate the dynamics of the ion-acoustic mode in a spherical geometry. It 

considers the constitutive ionic dynamics to evolve under the conjoint action of 

relativistic effects, electrostatic confinement effects, etc. The quantum-mechanical 

degenerate pressure and quantum diffraction effects are retained only in the electronic 

dynamics.  

In our normal spherical mode analysis, the effects of wave reflection from the 

plasma-confining boundaries are excluded for the sake of analytic simplicity only. It 

could be included by adding appropriate Fourier spectral components with opposite 

phase arguments to the usual Fourier spectral parameters in our formalism to explore 

the boundary reflection influences (geometric mirror effects) on the ionic modal 

propagatory dynamics. The formalism in the presence of the plasma boundary reflection 

effects could resemble the solar acoustic-cavity resonator (huge spherical fireball) 

exhibiting a plethora of standing non-propagatory wave spectral patterns in addition to 

the normal gravito-acoustic propagatory modes excited via the gravito-electrostatic 

sheath (GES) action [39]. Nevertheless, it would be significantly modified with the 

inclusion of various modal quantum numbers likely to appear in the characteristic 

spectral patterns under exploration.   
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The restoring force is provided here by the relativistic degenerate electronic 

species, governed by an appropriate equation of state of water-bag distribution law [24]. 

Heavy relativistic singly charged ionic species, confined electrostatically within the 

system, provide the inertial force for sustaining the ion-acoustic mode. A standard 

normal spherical mode analysis yields a generalized quartic linear dispersion relation 

with multiparametric coefficients. A numerical illustrative platform depicts the diverse 

microphysical aspects of the growth dynamics of the ion-acoustic mode in realistic 

astrophysical circumstances. 

 The Coriolis rotation and magnetic field increase the growth of the ion-acoustic 

mode in the lower wavenumber  *k  region (figures 4.1(a), 4.3(a)). Thus, the rotation 

and the field behave as its destabilizing agencies in this 
*k  range. Interestingly, a zero-

growth bouncing point is found in both the cases in the higher-
*k  region (figures 

4.1(b), 4.3(b)). It can be physically attributed to the effect of the electronic quantum 

diffraction. It may be worthwhile that this rotational destabilization aspect is 

interestingly in good agreement with the previously recorded astronomical 

observational data on the white dwarfs (U Geminorum, OY Car, etc.), which, in fact, 

clearly indicate that collapsing dwarfs having greater mass rotate faster, and vice-versa 

[28]. Figures 4.2 and 4.4 display the colourspectral profiles of the growth rate for the 

variation in the Coriolis rotation and magnetic field in a space defined by radial distance 

and 
*k , respectively. In figure 4.5 (a), the linear equilibrium ionic concentration first 

destabilizes the system in the low-
*k regime. However, the electrostatic confinement 

pressure attains an appreciable value as we move towards the high-
*k regime, thereby 

reversing the influence of the ionic concentration. That is, the linear equilibrium ionic 

concentration destabilizes the system. As we proceed further in the wavenumber space, 

we come across the zero-growth bouncing point (figure 4.5(b)). Figure 4.6 displays the 

colourspectral profile for a fixed value of ionic concentration. 

It is finally admitted herewith that the realistic effects considered in our study 

would exhibit their full influence on the ion-acoustic mode dynamics in diversified 

plasma parametric windows more prominently in a systematic non-linear analysis 

executed in similar circumstances. In this direction, the ion-acoustic modes of similar 

pattern have been predicted to exist in the atmospheres of white dwarfs, neutron stars, 

and so forth [7]. Also, the discovery of several pulsational modes in progenitors and 
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white dwarfs (PG 1159-035, GD 358) [27, 32] indicates the opening of a hotspot area of 

future research in the direction of the ion-acoustic modal signatures. It is in good accord 

with those explored in our current study as well. It hereby establishes fair correlations 

and consistencies of our asteroseismic ion-acoustic modal stability analysis investigated 

here in the realistic compact astronomical circumstances dominated by interdependent 

quantum plasma effects collectively. 
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