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Chapter-5 

 

NUCLEUS-ACOUSTIC WAVES IN DEGENERATE ONe AND CO 

WHITE DWARF CORES AND NEARLY DEGENERATE 

ENVELOPES  

 

Abstract: This Chapter presents a theoretic investigation to analyze the low-frequency 

nucleus-acoustic waves excitable in the completely degenerate cores of ONe (oxygen-

neon) and CO (carbon-oxygen) white dwarfs and their nearly degenerate envelopesϮ. 

We use a quantum hydrodynamic formalism to model the complex system dynamics 

comprising of the electronic species, light nuclear species, and heavy nuclear species. 

The inner concentric layer-wise electronic pressures are judiciously modelled. The 

electronic energy distribution, governed by the Fermi-Dirac thermostatistical 

distribution law, involves both the thermodynamical temperature and chemical 

potential. It emphasizes on the transition state between the thermodynamical 

temperature (classical) and the Fermi temperature (quantum) for the borderline regions 

of intermediate degeneracy for the first time. The model closure is obtained with the 

help of the gravito-electrostatic Poisson formalism. A normal Fourier-centric spherical 

mode analysis procedurally yields a generalized linear dispersion relation (sextic in 

degree). A numerical illustrative platform is employed to highlight the nucleus-acoustic 

wave propagatory and dispersive features. It is demonstrated that the nucleus-acoustic 

wave in ONe (CO) white dwarfs exhibits sensible growth features in the transcritical 

(supercritical) wave space. Its temperature-sensitivity is more (less) prominent in ONe 

(CO) white dwarfs, and so forth. In distinction, a full nucleus-acoustic wave dispersion 

portrayal is illustratively presented and interpreted. The astronomical circumstances 

sensible to the presented explorative study are finally outlined.  

 

5.1 INTRODUCTION  

This is a well-known fact that white dwarfs are the end products of stellar evolution for  

most of the low and medium mass main-sequence stars [1, 2]. After the thermonuclear 

hydrogen fusion ceases, the temperature of the stellar core is sufficient to fuse helium 
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(He), resulting in the formation of carbon (C) and oxygen (O). The outer layers expand 

and cool, thereby leading to the formation of a red giant. The star then sheds its outer 

layers, forming a gaseous shell (planetary nebula) around the core [3]. This remnant 

core, with no nuclear fuel left for burning to counter the inward self-gravity action, 

forms white dwarf. As the core is usually made up of C and O, it forms CO white dwarf 

[3-5]. For massive stars having masses (M) in the range M8 ≲M ≲ M11  (where, 

301098.1 M  kg is the solar mass), the temperature is sufficient to fuse C, but not 

neon (Ne), leading to the formation of ONeMg cores of white dwarfs [6, 7].  

As stated in the previous chapters, white dwarfs are supported against gravity by 

means of their electron degeneracy pressure. The electron degeneracy pressure is a 

purely quantum pressure with no classical analog. In addition to the electron degeneracy 

pressure, there are several other important quantum effects that must be taken into 

account to get a view of the all the quantum-mechanical effects acting on the system. 

Some such effects are the exchange and correlation effects. The exchange energy is a 

direct consequence of the Pauli exclusion principle [8, 9]. As a result, electrons with 

same spin tend to repel each other. As such,  it reduces the Coulomb repulsion that 

would otherwise exist between them in absence of the same spin condition [8, 9]. 

Correlation interaction gives a metric to determine how much the mobility of one 

electron is influenced by the presence of the surrounding electrons [9-11]. 

Mathematically, correlation energy is the difference between the total electronic energy 

and the energy obtained from Hartree-Fock approximation after simplifying a many-

body quantum-mechanical system into an equivalent single one via the Slater 

determinant [11]. A large number of investigations in a wide variety of domains, 

ranging from nanoscales-to-waves and instabilities in compact astrophysical objects 

[12-25] have been reported taking into account the exchange and correlation effects.  

In our proposed semi-analytic study, we investigate the excitation, propagation, 

and dispersion characteristics of the nucleus-acoustic waves. It is pertinent to add that 

the nucleus-acoustic wave of current concern is of a hybrid hydrokinetic type. The 

considered system refers to the completely degenerate ONe and CO cores and their 

nearly degenerate surrounding regions depicting the transition between thermodynamic 

temperature (T, classical), and Fermi temperature (TF, quantum). It consists of three 

constitutive species: electrons, light nuclear species ( 𝐶6
12  for CO white dwarf and 𝑂8

16  
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for ONe white dwarf), and heavy nuclear species ( 𝑂8
16  for CO white dwarf and 𝑁𝑒10

20  for 

ONe white dwarf).  

The electrons are governed by an equation of state that was developed 

exclusively for the study of the white dwarfs [8, 9]. The above mentioned equation of 

state takes into account the contribution due to the electronic pressure (degenerate Fermi 

pressure for the completely degenerate core and the nearly degenerate pressure for the 

surrounding transition region around the core), pressure due to the interaction of the 

electrons with other electrons and surrounding nuclei, exchange interaction, and 

correlation interaction, explicitly. The constitutive light nuclear species and heavy 

nuclear species are governed classically by an appropriate equation of state taking into 

account their thermal pressures.  

The quantum electrons, governed by the Fermi-Dirac (FD) statistical distribution 

law, are characterized by two important parameters: temperature (T) and chemical 

potential ( μ) [26-29]. In addition to the completely degenerate pressure in the core of 

the considered white dwarfs, our study also emphasizes on the nearly degenerate 

pressure in the borderline region (with an intermediate degree of degeneracy) around the 

core which is neither strongly degenerate, nor strongly non-degenerate. This is achieved 

by means of a temperature degeneracy parameter, expressed with a usual symbolism 

(unfolded later in the text), as      2325 LiLiGe  [26-29]. The degeneracy of the 

system is described with the help of 


 e  (thermodynamic beta, TkB1 ), a 

function of    and T [26-29]. A large number of observational evidences and stellar 

evolutionary models have been reported in favour of the ONeMg white dwarfs [6, 7, 30-

35]. Recent model calculations have established O and Ne as the most significant 

components of the dwarf core, thereby reducing the Mg abundance [7], thus making it 

essentially an ONe white dwarf system. Likewise, several models and observational 

findings have also been reported in favour of the CO white dwarfs [4, 5, 34, 35]. In fact, 

very recently, IRAS00500+6713, an object having super-Chandrasekhar mass, has been 

observationally reported, which is believed to be a merger product of a ONe and CO 

white dwarf [35]. Thus, we see that there are quite a few numbers of studies dealing 

with observational and astrophysical aspects of ONe and CO white dwarfs. A large 

number of semi-analytic investigations on nucleus-acoustic waves have also been 

reported [36-39]. However, no work has been done concerning ONe and CO white 
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dwarfs from the plasma perspective to the best of our knowledge. This served as the 

main motivating force behind the conducted study. It is a well-known fact that in the 

process of stellar evolution, after the red giant phase, the star sheds its outer layers, 

forming a gaseous shell (planetary nebula) around the core [3]. This remnant core forms 

the white dwarf. Thus, the white dwarf is a purely quantum system due to extreme 

density. And the surrounding gaseous nebular shell is classically distributed due to 

sparse particle distribution. Thus, as we move from the classical nebular region to the 

quantum white dwarf region, we assume that there is no sharp demarcating boundary 

between the completely non-degenerate (classical) nebular region and completely 

degenerate (quantum) white dwarf core. Thus, there must be a transition region of 

intermediate degeneracy between these two domains. The main novelty of the 

exploration lies in the fact that it is the first study dedicated to specific white dwarf 

members (ONe and CO white dwarfs) from the plasma-based instability perspective. 

Additionally, unlike most of the previous studies available in the literature, this 

investigation focuses on not only the quantum core, but also the transition region of 

intermediate degeneracy (nearly degenerate zone) between the completely degenerate 

quantum core and the completely non-degenerate classical nebula for the first time to 

the best of our knowledge. All these points obviously strengthen the main novelty 

aspects of the current semi-analytic study comprehensively. Thus, the study of plasma 

wave excitation and propagation in these white dwarfs explicitly (completely degenerate 

core and nearly degenerate transition region around the core of ONe and CO white 

dwarfs), has still been lying as an open problem that is yet to be well-addressed. In our 

proposed model analysis, we investigate the same in a semi-classical and semi-analytic 

approach with all the said relevant realistic key factors taken into account.  

 

5.2 PHYSICAL MODEL AND FORMALISM  

We consider a theoretic quantum hydrodynamic model in a spherically symmetric 

geometrical construct to study the degeneracy-dependent radial white dwarf core 

behaviours from the nucleus-acoustic wave stability perspective. Most of the 

astrophysical structures, mainly the white dwarfs, are found to be spherical in shape due 

to the nature of gravity forces [40, 41]. Thus, the approximation of spherical symmetry 

(pure radial dependency) is more appropriate for modelling astrophysical bounded 

structures, such as white dwarfs, neutron stars, etc. The assumption of spherical 
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symmetry simplifies a complicated spherical three-dimensional problem into a 

simplified radial one-dimensional problem due to the omission of complicating polar 

and azimuthal counterparts. This is the basic idea behind the consideration of 

spherically symmetric geometry. In other words, a spherically symmetric model, with 

perturbations varying along the radial direction only [41], is considered in the current 

study due to the above reasons. The adopted model consists of three constitutive 

species; namely, quantum electrons, classical light nuclear species, and classical heavy 

nuclear species. The equation of state of the quantum electrons considers the 

contributions due to the electronic pressure resulting from temperature degeneracy (both 

completely degenerate pressure in the core and nearly degenerate pressure in the 

transition region around the core with the T-TF demarcation [26], interaction of 

electrons with other electrons and surrounding nuclei, exchange interaction, and 

correlation interaction effects conjointly [8, 9]. The classical light nuclear species and 

heavy nuclear species are governed by a proper equation of state on their respective 

thermal pressures. The dynamics of all the three constitutive species are governed by the 

flux conservation continuity equation, force-balancing momentum equation, and their 

respective equations of state. The model closure is finally obtained by means of the 

electrostatic and self-gravitational Poisson equations dealing with the respective 

potential distributions originating from the corresponding density fields. The respective 

equations governing the electronic dynamics with all generic notations [8, 9, 36, 37] are 

accordingly cast as 

 

  022  
eeret unrrn ,                                                                                             (5.1) 

 

  02 2

1

222

1
121 

































































errereerer nrrnmPne  ,                                     (5.2) 

 

correxcieele PPPPP  .                                                                                           (5.3) 

 

Similarly, the basic equations governing the generalized dynamics of the classical 

particles (with l  for light nuclear species and h  for heavy nuclear species) are 

given as 
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  022  
 unrrn rt

,                                                                                           (5.4) 

 

      0
11 


  PnmmZeu rrrt ,                                                       (5.5) 

    

TknP B  .                                                                                                               (5.6) 

 

The system closing electrostatic Poisson equation taking into account the electrostatic 

interactions of all the three species is given as  

 

    hhllerr nZnZnerr   1
0

22  .                                                                       (5.7) 

 

Likewise, the self-gravitational Poisson equation is written as 

 

    hlrr Grr   422 .                                                                               (5.8) 

 

All the symbols and values used here are quite in a customary form [26-29, 36, 

37]. The notations en  and eu  denote the number density and flow speed of the electronic 

species. 
19106.1 e  C denotes the electronic charge. 31101.9 em kg is the 

electronic mass. 2h ~
3410 J s is the reduced Planck constant. eP

 
denotes the 

effective electronic pressure, which is composed of the pressure due to the temperature 

degeneracy, interaction with surrounding nucleons, exchange and correlation 

interaction. 


 eeel nGP
 
stands for the electronic pressure due to the temperature 

degeneracy. We employ an explicit function describing the temperature degeneracy 

parameter defined for the transition between T  and FT  in generic notations [26-29] as 

 

     2325 LiLiGe .                                                                                           (5.9) 
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Here,  pLi  is the polylogarithmic function with index p and 

  TkBeeT
 


, [26-29]. The general form of  pLi  signifying temperature 

degeneracy effects [26-29] for 0p  is 

 

       ,1
0

1111
dtetpLi tp

p  
 

                                                                   (5.10) 

 

where,   dxexp xp 




0

1  is the gamma function.                                                                         

For the completely degenerate limit (  ), we get 

 

  1
52


 eG   where,  FTT ,                                                                              (5.11)                                                                                                                                                                                                

 

and for the nearly degenerate limit ( 1 ), we get 

 

      121
12152


 eG .                                                                                   (5.12) 

 

231038.1 Bk  J K-1 is the Boltzmann constant signifying energy-temperature 

correlationship.    342323423234
48.034818.1 eeie neZneZP  

 
gives the resultant 

pressure due to the interaction of electrons with other neighbouring electrons and 

surrounding nuclei [8, 9], where Z denotes the atomic number. 

   3423434
25.03481916.0 eeexc nenP   stands for the pressure due to the electronic 

exchange interactions [8, 9].   0
2

0
2 0104.060622.0 aneaneP eecorr  gives the 

pressure due to the electronic correlation interactions [8, 9]. 11
0 1029.5 a m is the 

Bohr unit. It is noted that equation (5.3) is developed specially for modelling white 

dwarf interiors [8].  

As already mentioned above, l  for the light nuclear species ( 𝐶6
12  for CO 

white dwarf and 𝑂8
16  for ONe white dwarf), and h  for the heavy nuclear species 

( 𝑂8
16  for CO white dwarf and  𝑁𝑒10

20  for ONe white dwarf) in equations (5.4)-(5.6). n
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and u  stand for the number density and flow velocity. Z denotes their charge states. 

Likewise, P  stands for the thermal pressure.   and   give the electrostatic and 

gravitational potentials, respectively. 12
0 1085.8   F m-1 denotes the permittivity of 

the plasma medium.  In equation (5.8),  00 llllll nnm    and 

 00 hhhhhh nnm  
 
are used to model the Jeans swindle. 

111067.6 G  N 

m2 kg-2 is the universal gravitational constant.  

A number of points regarding the above equations are noteworthy. Equation 

(5.1) is the equation of continuity depicting the conservation of flux of the electronic 

species. Equation (5.2) is the force-balancing momentum equation, where the forces due 

to the electrostatic potential (1st term), electronic pressure (2nd term), and Bohm 

potential (3rd term) exactly balance each other. It may be highlighted that quantum 

plasmas are known to occur naturally in dense astrophysical objects, like white dwarfs, 

Jovian planets, etc., under extreme conditions of temperature and density [42]. When 

quantum effects start playing a role, the de-Broglie wavelength ( B ) becomes 

important. Physically, B  represents the spatial extension of the particle wavefunction. 

Thus, quantum effects start playing a significant role when B  becomes similar to or 

larger than the average interparticle distance (
31n ) [42]. For the ONe white dwarf, the 

core density is ~
1210  kg m-3 and core temperature ~

98 1010   K [6]. Thus, the 

interparticle distance becomes ~
1510

 m. Mathematically, B  of the constitutive 

particles (electrons) is given as TeB vm , where,   21
eBT mTkv   is the thermal 

velocity [42]. For ONe white dwarf, one finds by estimation 1310~ 
B  m. Thus, the 

de-Broglie wavelength of the constitutive particles is larger than the average 

interparticle distance, thereby making the inclusion of quantum effects important. This 

is how quantum-mechanical effects are inevitable in our model consideration. Likewise, 

for CO white dwarf, the core density is ~
910  kg m-3 and core temperature ~

76 1010   K 

[34]. Thus, the interparticle distance becomes ~
1410

 m and 1110~ 
B  m. Thus, even 

in CO white dwarfs, the incorporation of quantum-mechanical (non-local) effects 

become equally important as in the previous case.  
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In constructing a fluid model formalism for quantum plasmas ( 13 Bn ), in 

contrast to the hydrodynamical equations for classical plasmas ( 13 Dn ), a 

fundamental difference lies in the addition of the Bohm potential term in the fluid 

momentum equation modelling the former [43]. While mathematically, the Bohm 

potential is equivalent to a pressure to be inserted in the momentum transport (force-

balancing) equation; physically, it indeed corresponds to typical quantum-mechanical 

phenomena, such as tunneling, wave packet spreading, propensity to quantum 

overlapping, etc [43]. Therefore, it is not exactly a pressure in the purely 

thermodynamical sense [43]. Besides, several quantum plasma models, applicable in 

similar scenarios of dense plasmas, like white dwarfs, neutron stars, etc., have 

simultaneously incorporated the effects of the Bohm potential and exchange-correlation 

terms in the basic governing equations [16, 19, 20]. Thus, the inclusion of the Bohm 

potential term in our quantum plasma fluid model is quite judicious. Besides, equation 

(5.3) is the equation of state for the electronic species, taking into account the pressures 

due to temperature degeneracy (1st term), interaction of electrons with other electrons 

and surrounding nuclei (2nd term), exchange interaction (3rd term), and correlation 

interaction (4th term). It is a well-known fact that the white dwarf core is completely 

degenerate due to extreme conditions of temperature and density [42]. In the planetary 

nebula, the particles are not as tightly packed as the core, and hence, treated classically. 

A parameter TTF  must be defined in order to express the degeneracy of the system 

[44]. Since,    3232331 Bn  , the quantum degeneracy becomes important when 

1  or 13 Bn . Thus, in the completely degenerate core, TF  becomes more 

significant than T. We assume that the shift from classical completely non-degenerate 

nebula (where T is dominant) to completely degenerate white dwarf core (where TF is 

dominant) has a transition region of intermediate degeneracy (surrounding the core) that 

describes the shift between T and TF. This explains the physical reason for the first term. 

The next term takes into account the pressure due to the interaction of electrons with 

surrounding electrons and other ions. The third and the fourth term take into account the 

contribution due to the exchange and correlation interaction, respectively. The exchange 

energy is a direct consequence of the Pauli exclusion principle [8, 9]. As a result, 

electrons with same spin tend to repel each other. In other words, electrons having same 
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spins already repel each other, thereby reducing the Coulomb repulsion that would 

otherwise exist between them in absence of the same spin condition [8, 9]. Correlation 

interaction gives a metric to determine how much the mobility of one electron is 

influenced by the presence of the surrounding electrons [9-11]. Equation (5.4) denotes 

the equation of continuity for the classical species (light nuclear species + heavy nuclear 

species). Likewise, equation (5.5) is the analog of equation (5.2), but for classical light 

nuclear species and heavy nuclear species, where the forces by virtue of their motion 

(1st term), electrostatic potential (2nd term), gravitational potential (3rd term), and 

thermal pressure (4th term) are exactly balanced by each other. Equation (5.6) is the 

equation of state taking into account their thermal pressure.  Equations (5.7)-(5.8) give 

the closure of the system in terms of the electrostatic and self-gravitational Poisson 

equations, respectively. 

 For a scale-invariant analysis, we employ a standard astronomical normalization 

scheme [36-38]. The dimensionless set of the basic governing equations are now cast as 

 

  022  
eeRe MNRRN ,                                                                                     (5.13) 
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The dynamics of the classical light nuclear species in normalized form are given as 

 

  022  
llRl MNRRN ,                                                                                     (5.15) 

 

  0*  TNANNMN lRelRlRlll  .                                                           (5.16) 

 

Analogously, the dynamics of the heavy nuclear species in normalized form are given as 
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  022  
hhRh MNRRN

,                                                                                   (5.17) 

 

  0*  TNANNMN hRehRhRhhh  .                                                   (5.18) 

 

The system closing electrostatic and self-gravitational Poisson equations in 

dimensionless forms are respectively given as 

 

    hleRR NNNRR   122 ,                                                                   (5.19) 

 

      11 122  
hlRR NNRR  .                                                             (5.20) 

 

 In the above equations (5.13)-(5.20), the spatial coordinate is normalized as 

DlrR  ; where,   212
00

2 eZncm lleDl   is the light nuclear Debye length. The 

temporal coordinate is normalized as 
1 plt  ; where,   21

0
22

0  lllpl meZn  is the 

light nuclear plasma oscillation frequency.  Normalized population density of the 

constitutive particles is given as 0sss nnN  ; where, 0sn  is the equilibrium population 

density, s being hle ,,  for the electronic species, light nuclear species, and heavy 

nuclear species respectively. Normalized form of flow velocity is given by lss CuM  ; 

where,   212
lell mcmZC   is the light nuclear transit speed. The normalized completely 

degenerate pressure coefficient is given as 
2* cmpp edpdp  ; where, 

32
0

251.1 edp nep   is 

the completely degenerate pressure coefficient. The normalized pressure coefficient due 

to interaction of electrons with other electrons and nuclei is given as 2* cmpp eieie  ; 

where, 31
0

23264.0 eie neZp   is the unnormalized pressure coefficient due to similar 

electronic interactions. The normalized pressure coefficient due to electronic exchange 

interaction is given as 2* cmpp eexcexc  ; where, 31
0

233.0 eexc nep   is the unnormalized 

pressure coefficient resulting from exchange interaction. 2* cmpp ecorrcorr  gives the 

normalized pressure coefficient due to electronic correlation interaction. Here, 
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0
20104.0 aepcorr   is the unnormalized pressure coefficient due to correlation 

interaction of the electrons. 2* cmTkT eB  is the normalized temperature. 

2
Feepl vmH   is the quantum parameter signifying the ratio of the plasmon energy 

associated with the light nuclear species to that of the electronic Fermi energy 

associated. The Fermi Mach number is given as cCvM lFeFe
2 ; where, Fev  is the 

Fermi velocity. hllh mZmZ
 

is the relative nuclear charge-to-mass coupling 

parameter. 00 llhh nZnZ
 
is the ratio of the charge densities of the heavy-to-light 

nuclear species. 22
lleel CmcmA   stands for the ratio of the relativistic electronic 

energy to that of the light nuclear species energy. 22
lheeh CmcmA   

is the analogous 

term for the heavy nuclear species. The ratio of the square of the Jeans frequency to 

light nuclear plasma oscillation frequency is given as 
22
plJl   ; where,

  21
04 llJl nGm   is the light nuclear Jeans frequency. The normalized gravitational 

potential 2
lC  . 2cme e  is the normalized electrostatic potential. 

 

5.3 LINEAR STABILITY ANALYSIS 

The relevant physical fluid parameters (F) for the plasma fluid are linearly perturbed 

(F1) about their hydrostatic homogeneous equilibrium values (F0) using a normal 

spherical mode analysis [45] in an auto-normalized Fourier form given as 

 

         ,exp,, *1

10010 RkiRFFRFFRF                                            (5.21)   

 

  ,
T

ss MNF                                                                                      (5.22)    

                                                                                                       

  ,00010
T

F                                                                                      (5.23)   

                                                                                                         

  .11111
T

ss MNF                                                                                      (5.24)  
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 The spatial and temporal operators get modified in the defined Fourier space 

 *,k  as  RikR 1*   
and   i . Here,   pl

 
denotes the 

normalized fluctuation frequency and 
*k  12  Dlk   designates the normalized 

wavenumber. The relevant fluid parameters appearing in equations (5.13)-(5.20) in the 

new wave-space can be written as 

 

  1
1*1

1 ee MRikiN    ,                                                                                      (5.25) 

 

    221*1*
11 4 Feee MHPRikiM   ,                                                             (5.26) 

 

  1
1*1

1 ll MRikiN    ,                                                                                       (5.27) 

 

      1
1

2*
1

*
1

1*
1

22 












 LMRkkiRikM hl  ,                                         (5.28) 

 

  1
1*1

1 hh MRikiN    ,                                                                                       (5.29) 

 

     1
1

1
*2*1*

1

22 












 HLkRkiRikMh  ,                                           (5.30) 

 

  111
*

1 1
2

hle NNNk  


,                                                                         (5.31) 

 

 1
1

1
*

1

2

hl NNk 


 .                                                                                     (5.32) 

 

In the above set of equations, the various substituted terms in an expanded form are 

given as 

 

*****
correxciedpe ppppP 

  
(for the completely degenerate case),                     (5.33.1)  

 

*****
correxcieee pppTGP 


  (for the nearly degenerate case),                            (5.33.2)   
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    22 **2*1 

  kTARkiL el  ,                                                               (5.34) 

  

       
























1

*22*2*
1

*12* 2222

LkRkTAkiRkiH eh  .  (5.35)  

 

A standard procedure of algebraic elimination and simplification among equations 

(5.25)-(5.32) yields a generalized linear (sextic) dispersion relation on the 

electrodynamic spatiotemporal response scales of the constitutive light nuclear species 

with all the generic notations [36, 38] given as 

 

00
2

2
4

4
6  AAA  .                                                                                   (5.36) 

 

The different coefficients appearing in equation (5.36) can be written in an expanded 

form as 

 

          1**1**2*
4 22122

222  


 kTAEAATEkRkA elehel

 

     
    1

** 1
2 

 EkETAeh ,                                                                            (5.37) 

 

       1*2*1***
2

2*
2 1122

2222  


 kETATAETAAEkRkA elehehel  

     
          elehelehelel AATATATAkTAEk  

21112
222 ***1*2**   

     
          222 *1**1

2
* 211



  kAEEkAAETk elehel   

        1
** 12

22 




 EkkE ,                                                                           (5.38) 

 

          
  12

22222 *21**2***
3

2*
0 kEAATkkTATAEARkA elehelehel  

    
            2223 *

1
*

1
*3**22*1 2111






 kkEkTATAATAE elehelel   

   
         










 

2
*2*1

2
**** 222

2 kTAEEkTAkTEA eleleh   



86 
 

     1
*** 112

22 




 EkTAkE el .                                                               (5.39) 

 

In equations (37)-(39), *221* 4 kMHPE Fee
  .                                                         (5.40) 

 

For our instability analysis, equation (5.36) with the relevant  -moderation of 

current interest ( 20  qq ) can be written as 

 

00
2

2  AA   .                                                                                                          (5.41) 

 

 It is worth mentioning here that the mathematical expressions for  *
22 ,kRAA   

and  *
00 ,kRAA   are already given by equations (5.38) and (5.39), respectively. A 

number of interesting white dwarf features are clearly evident from the reduced 

dispersion relation (equation (5.41)). We use  ir i  1  to characterize the 

nucleus-acoustic wave instability behaviours. Here, r  (normal) characterizes the 

propagatory aspects (where,
*kv rp  , *dkdv rg  ). In contrast, i (perturbation) 

depicts the growth/damping behaviour of the same by making the wave amplitude 

modulated by a factor of )exp( i  [46]. It is evident from equations (5.38)-(5.41) that 

the dynamics of the nucleus-acoustic waves in the completely degenerate states of ONe 

and CO cores; and their nearly degenerate transition regions is influenced by the 

concentrations of the constituent species, their mutual electrostatic interactions, 

temperatures, and so forth.  

 

5.4 RESULTS AND DISCUSSIONS  

The stability, propagatory, and dispersive nature of the nucleus-acoustic waves in the 

completely degenerate ONe and CO white dwarf cores and the nearly degenerate 

transition regions are analyzed herein using a three-component quantum hydrodynamic 

plasma model. The quantum electronic species evolves under the conjoint pressures due 

to temperature degeneracy, interaction with surrounding electrons and other nuclei, 

exchange energy, and correlation energy. Likewise, the classical thermal pressures are 

retained for the larger classical species (light nuclear species + heavy nuclear species). 
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A normal spherical mode analysis yields a generalized linear sextic dispersion relation 

(equation (5.36)), which is modified using the low-frequency approximation (equation 

(5.41)). A numerical illustrative platform is provided to reveal the nature of the derived 

dispersion relation (equation (5.41)). The growth rate corresponding to the nucleus-

acoustic wave instability, its propagatory and dispersive features are illustrated 

pictorially in figures 5.1-5.20. To get a clear idea of the dispersive nature, we use 

illustrative Matlab profiles depicting the phase dispersion and group dispersion, in 

addition to the phase and group velocities. The different input values used herein have 

been calculated using preliminary data available in different trustworthy literary sources 

[3, 26-29, 32, 34, 47]. 

 

5.4.1 Analysis of the completely degenerate ONe core 

In figure 5.1, we depict the profile structures of the normalized real angular frequency (

r ) (Fig. 1(a)) and normalized imaginary angular frequency ( i ) (figure 5.1(b)) with 

the normalized angular wavenumber (
*k ) for different values of the thermodynamic 

temperature (T). The different coloured lines link to r  for 9106T K (blue solid 

line), 9107T K (red dashed line), and 9108T K (black dotted line). Figure 5.1 

clearly shows that i  exists in the low 
*k -space (figure 5.1(b)), indicating an unstable 

behaviour. For a given value of T , i  increases with increasing 
*k , becomes 

maximum, and then decreases to zero. For gradually increasing values of T , the 
*k -

value at which i  attains peak shifts towards the left side of the 
*k -axis, that is, 

towards smaller 
*k -values.  As we proceed towards higher values of 

*k , we have r  

(figure 5.1(a)), indicating the propagatory nature of nucleus-acoustic waves.  

Figure 5.2 depicts the profile of the phase velocity ( pv ) in the same conditions as 

figure 5.1. The different coloured lines link to different pv  for 9106T K (blue solid 

line), 9107T K (red dashed line), and 9108T K (black dotted line). It is 

clearly seen that for a value of T , pv  increases with 
*k . Thus, pv  depends on 

*k , 

indicating the dispersive nature of the system [46, 48-50]. pv
 

gives the speed of 

travelling waves. In other words, pv  denoted by the blue solid line indicates the velocity 
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of the nucleus-acoustic wave at 9106T K, and so on. Higher the T  of the core, 

higher is the pv , and vice-versa. 

 

               

Figure 5.1: Profile of the normalized (a) real angular frequency( r ) and (b) 

imaginary angular frequency ( i ) with the normalized angular wavenumber (
*k ) for 

different values of the thermodynamic temperature (T ) in the completely degenerate 

case of the ONe white dwarf core.  

 

                                   

Figure 5.2: Profile of the normalized nucleus-acoustic wave phase velocity  pv  in the 

same conditions as figure 5.1. 

 

Figure 5.3 depicts the group velocity ( gv ) profile with variation in 
*k for 

different indicated values of T . Different coloured lines correspond to different gv  for 

9106T K (blue solid line), 9107T K (red dashed line), and 9108T K 

(black dotted line). Considering the clearly visible trends depicted by figure 5.3(a), it 

can be fairly commented that for a given value of T , gv  first forms a peak, then 
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decreases and becomes almost constant with increasing 
*k . As the value of T  increases, 

gv -peak increases and vice-versa (figure 5.3(b)). It is a well-known fact that gv  is the 

velocity at which a bump travels in a wave [50]. In general, the macroscopic nucleus-

acoustic wave propagates through the plasma medium consisting of spectral 

components of many different acoustic frequencies. If these components are to travel 

together, then they form a bump as per the wave packet model. A bump is essentially 

the point at which the phases of the different components become equal and thus, add 

constructively forming a peak. However, due to different speeds and phases of the 

different components, the peak gradually dissolves. A second peak may be observed 

when the phase and amplitude coordinations among the different components take place 

[48-50].  

 

            

Figure 5.3: Profile of the normalized nucleus-acoustic wave group velocity  gv  in the 

same conditions as figure 5.1. The distinct panels depict gv  in: (a) 50* k  and (b) 

9.11* k . 

 

Figure 5.4 gives the profile of the phase dispersion ( pkp vD * ) [46, 49] in the 

same conditions as figure 5.1. As clearly indicated, the different lines connect to 

different pD  for 9106T K (blue solid line), 9107T K (red dashed line), and 

9108T K (black dotted line).  Gradually increasing T leads to gradual pD  

enhancement. However, the 
*k -value at which pD attains peak (maxima) shifts towards 

left with increase of T (as clearly indicated by figure 5.4(b)). Figure 5.4(c) depicts the 
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magnified version in the range 52.4* k . The dispersive nature of the system in 

terms of the nucleus-acoustic wave response is further confirmed in figure 5.4. 

 

 

Figure 5.4: Profile of the nucleus-acoustic wave phase dispersion  pD  in the same 

conditions as figure 5.1. The distinct panels give pD  in: (a) 50* k , (b) 9.11* k , 

and (c) 52.4* k . 

 

            

Figure 5.5: Profile of the nucleus-acoustic wave group dispersion  gD  in the same 

conditions as figure 5.1. The distinct panels give gD  in: (a) 50* k  and (b) 

8.11* k .  

 

In figure 5.5, we depict the group dispersion ( gkg vD * ) [46, 49] in the same 

conditions as figure 5.1. The different lines link to different gD  for 9106T K (blue 

solid line), 9107T K (red dashed line), and 9108T K (black dotted line).  As 

we proceed from 1* k  towards 3.1* k , we observe that gD lines tend to decrease, 
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that is frequency shift and gD  follow opposite trends, implying an unstable situation 

[45]. However, on moving towards right starting from 3.1* k , gD  starts to increase 

again with increase of 
*k , implying a propagatory nature. This further confirms the 

obtained 
*k -range (figure 5.1) for   to show unstable ( i ) and propagatory ( r ) 

behaviours. 

 

5.4.2 Analysis of the nearly degenerate transition region around ONe core 

Figure 5.6 shows the same as figure 5.1, but for the nearly degenerate transition region 

around the ONe core. The colour coding of the three lines is the same as figures 5.1-5.5. 

As in figure 5.1, we find that i  exists for lower 
*k -values (figure 5.6(b)). In figure 

5.6(b), for a particular T, i  first increases, becomes maximum and then decreases 

back. As T gradually increases, the peak at which i  becomes maximum shifts towards 

the left side in the 
*k -axis. As we move towards right in the 

*k -axis, that is, as the value 

of 
*k  increases, we have real values of  , that is, r  (figure 5.6(a)), which indicates 

propagatory behaviour of the nucleus-acoustic wave in the high-
*k  space. A spike is 

observed in both the figures 5.6(a)-5.6(b), unlike previous figures 5.1(a) and 5.1(b). 

 

                     

Figure 5.6: Same as figure 5.1, but for the nearly degenerate case.  

 

Figure 5.7 shows the same as figure 5.2, but for the borderline region around the 

core. The different coloured lines indicate that pv  increases with increasing 
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pv  increases with increasing T. In other words, higher T indicates higher pv , and vice-

versa, same as the completely degenerate core (figure 5.2).  

 Figure 5.8 shows the same as figure 5.3, but for the surrounding nearly 

degenerate borderline region depicting the transition between T and TF. It is clearly seen 

from figure 5.8(a) that gv  forms a peak and then decreases and becomes almost constant 

with gradually increasing 
*k . However, as T gradually increases, gv  decreases (figure 

5.8(b)), in contrast to the completely degenerate ONe core (figure 5.3). Thus, the point 

at which the phases of the different components of the wave add up constructively to 

form a peak is lower for higher T. Thus, in the nearly degenerate borderline region, gv  

decreases with increasing T. 

 

                                   

Figure 5.7: Same as figure 5.2, but for the nearly degenerate case.  

 

          

Figure 5.8: Same as figure 5.3, but for the nearly degenerate case. The distinct panels 

depict the same in: (a) 50* k  and (b) 21* k . 
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In a similar fashion, figure 5.9 shows the same as figure 5.4, but for the nearly 

degenerate region around the core. The pD  profiles further confirm the dispersive 

nature of the plasma. It is seen that the features exhibited by the pD  curves in the nearly 

degenerate surrounding of the core are the same as that in completely degenerate core 

(figure 5.4). pD
 
increases with increasing T and the pD  maxima (peak) shifts towards 

the left of the 
*k -axis with T enhancement.  Figures 5.9(b) and 5.9(c) show the sectional 

magnified versions of figures 5.9(a) in the range 29.0* k  and 8.44* k , 

respectively.  

 

 

Figure 5.9: Same as figure 5.4, but for the nearly degenerate case. The distinct panels 

depict the same in: (a) 50* k  (b) 29.0* k , and (c) 8.44* k . 

 

     

Figure 5.10: Same as figure 5.5, but for the nearly degenerate case. The distinct panels 

depict the same in: (a) 50* k  (b) 21* k . 
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Likewise, figure 5.10 shows the gD  profile with variation in 
*k for different T values, 

that is, same as figure 5.5, but in the nearly degenerate region. If we proceed from 

2.1* k  towards 5.1* k , we see that gD  decreases. Thus, gD  and 
*k  follow opposite 

trends ( gD  decreases with increase of  
*k ), thereby indicating unstable behaviour in the 

low-
*k space [49]. However, as we proceed from 5.1* k  towards right in the 

*k -axis, 

gD increases. Thus, gD  and 
*k  follow the same trend, showing a propagatory 

behaviour in the high-
*k space. This reinforces the accuracy of the trends obtained in 

figures 5.6(a) and 5.6(b). In other words, r  (propagatory nucleus-acoustic wave) 

exists from 5.1* k  onwards (figure 5.6(a)), whereas i (growing nucleus-acoustic 

wave) exists in the low-
*k space till 5.1* k  (figure 5.6(b)).  

 

5.4.3 Analysis of the completely degenerate CO core 

Figure 5.11 shows the same as figure 5.1, but for the completely degenerate CO white 

dwarf cores. The different coloured lines link to different r  (figure 5.11(a)) and i  

(figure 5.11(b)) values with variation in 
*k  for 6102T K (blue solid line), 

7102T K (red dashed line), and 8102T K (black dotted line). The 

observations are the same as the completely degenerate ONe core (figures 5.1(a) and 

5.1(b)), that is, for a given T, i (unstable) exists for the low-
*k values (figures 

5.11(b)). Towards high-
*k values, we get r , which implies propagatory behaviour 

(figure 5.11(a)). The only difference between figure 5.1 and figure 5.11 is the 
*k -range 

in which   shows unstable and propagatory behaviours. The 
*k -range in figure 5.11 is 

much higher than that in figure 5.1.  

 Figure 5.12 shows the same as figure 5.2, but for the completely degenerate 

core. The various coloured lines correspond to different pv  for 6102T K (blue solid 

line), 7102T K (red dashed line), and 8102T K (black dotted line). For a 

given T, pv  starts increasing from the 
*k -point from which r  comes into existence, 

after which the pv -curve attains an almost constant value with increasing 
*k . That is, pv  
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gives the velocity of the propagatory nucleus-acoustic wave. For increasing T, pv  

increases and vice-versa. It implies that pv  is 
*k -dependent and hence, the system is 

dispersive [49, 50]. 

  

             

Figure 5.11: Same as figure 5.1, but for completely degenerate CO white dwarf core. 

     

                                     

Figure 5.12: Same as figure 5.2, but for completely degenerate CO white dwarf core. 

 

Figure 5.13 shows the same as figure 5.3, but for the CO core. The different 

lines link to different gv  for 6102T K (blue solid line), 7102T K (red dashed 

line), and 8102T K (black dotted line). For a given T, gv  starts increasing from the 

*k -point from which r  comes into existence, attains peak for a very small 
*k -range, 

after which it starts to decrease again. gv -curve attains an almost constant value with 

increasing 
*k after decreasing from the peak. The peak attained is highest for 

8102T K, followed by 7102T K and so on. With increase of T, the peaks 
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attained by the gv -curves shift towards the smaller 
*k -values. It clearly shows that the 

phases of the different components of the nucleus-acoustic wave add up constructively 

for a very short frequency range, thus forming the gv -peaks for very small 
*k -range.  

 

                                       

Figure 5.13: Same as figure 5.3, but for completely degenerate CO white dwarf core. 

 

The dispersive nature of the considered plasma system is further confirmed by figure 

5.14, which shows the same as figure 5.4, but for the completely degenerate CO white 

dwarf core. As clearly indicated by figures 5.14(a) and 5.14(b), the different coloured 

lines link to different pD  for 6102T K (blue solid line), 7102T K (red dashed 

line), and 8102T K (black dotted line). The observations are the same as figure 5.4, 

except for the fact that the pD  exists for a much higher 
*k -range in figure 5.14 than that 

in figure 5.4. pD  first increases from the 
*k -value from which r  comes into 

existence. It then attains peak and starts to decrease towards very low pD  value. With 

increase of T, the pD -peak shifts towards low-
*k  values and vice-versa (as clearly seen 

from figure 5.14(a)). 

Figure 5.15 shows the same as figure 5.5, but for the completely degenerate CO 

core. The different lines link to different gD  for 6102T K (blue solid line), 

7102T K (red dashed line), and 8102T K (black dotted line). In the low-
*k  

space, gD  forms a peak and then decreases with increasing 
*k . Thus, gD  and 

*k  follow 

opposite trends, indicating an unstable situation. However, starting from the point at 
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which different r  for different T  come into existence, the gD -curves start to increase 

again with 
*k , thus showing propagatory nature of the considered nucleus-acoustic 

wave. This further re-confirms the obtained 
*k -range for existence of r  and i  

(figures 5.11(a) and 11(b)). 

 

                

Figure 5.14: Same as figure 5.4, but for completely degenerate CO white dwarf core. 

 

           

Figure 5.15: Same as figure 5.5, but for completely degenerate CO white dwarf core.  

 

5.4.4 Analysis of the nearly degenerate transition region around CO core 

Figure 5.16 shows the same as figure 5.6, but for the nearly degenerate transition region 

around the CO core. The colour coding adopted here is the same as figures 5.11-5.15. It 

is observed that for the low-
*k  space, i  exists for different T (figure 5.16(b)), thereby 

indicating an unstable behaviour. The i -peaks shift towards the smaller 
*k -values 
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with increasing T. As we move towards higher 
*k -values, r  comes into existence 

(figure 5.16(a)), indicating the propagatory nature of nucleus-acoustic wave.  

 

                       

Figure 5.16: Same as figure 5.6, but for CO nearly degenerate transition region. 

 

                                         

Figure 5.17: Same as figure 5.7, but for CO nearly degenerate transition region. 

 

Figure 5.17 shows the same as figure 5.7, but for the nearly degenerate region 

around the core. It can be clearly observed that pv  depends on 
*k for a given T. This 

clearly hints towards the dispersive nature of the considered plasma system. In addition, 

pv  increases with increasing T. 

 Figure 5.18 shows the same as figure 5.8, but for the nearly degenerate transition 

region around the CO core. The peak at which the phases of the different components of 

the propagatory nucleus-acoustic wave become equal and add up constructively exists 

for a very small 
*k -range for a particular T. With gradually increasing T, the gv -peak 

shifts towards the low 
*k -values.  
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Figure 5.19 depicts the same as figure 5.9, but for the nearly degenerate region 

around the CO core. The observations are the same as figure 5.9, except for the fact that 

pD  exists for a much higher 
*k -range as compared to figure 5.9. It confirms the 

dispersive nature of the plasma medium, which is the same as figure 5.9. The pD -peaks 

shift towards the lower 
*k -values with T enhancement. 

 

                                        

Figure 5.18: Same as figure 5.8, but for CO nearly degenerate transition region. 

 

          

Figure 5.19: Same as figure 5.9, but for CO nearly degenerate transition region. 

 

Figure 5.20 shows the same as figure 5.10, but for the borderline region around 

the completely degenerate CO core. In the low-
*k  space, gD  forms a peak and then 

tends to decrease with increasing 
*k . Thus, gD  and 

*k  follow opposite trends, 

indicating an unstable situation. However, starting from the point at which different r  

for different T come I nto existence, the gD -curves start to increase again with increase 
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of 
*k , thus showing propagatory nature of the considered nucleus-acoustic wave. This 

further affirms the obtained 
*k -range for the existence of r  and i  (figures 5.16(a) 

and 5.16(b)). 

 

             

Figure 5.20: Same as figure 5.10, but for CO nearly degenerate transition region. 

 

 In the obtained scale-free figures 5.1-5.20, 
*k  signifies a broader space of the 

auto-normalized wavenumber,  1* 2  DlDl kkkk  , as per the adopted Fourier 

transformation (equation (5.21)). Accordingly, the hydrodynamic regime (low-

frequency fluctuations) is characterized by a subcritical angular wavenumber defined as 

1*  Dlkkk . In this purview, the kinetic regime (high-frequency fluctuations) is 

characterized by a supercritical wavenumber, specified as: 1*  Dlkkk . The hybrid 

(hydrokinetic) class of intermediate collective fluctuations is described by a transcritical 

wavenumber, 1*  Dlkkk . As a result, the graphical analysis of the proposed wave 

instability investigation founded on a generalized hydrodynamic formalism evidently 

encloses both the extreme regimes of the hybrid nucleus-acoustic wave fluctuations 

defined clearly by the critical 
*k -scalings (as shown parametrically in figures 5.1-5.20). 

Therefore, we can infer from our analysis that, a microphysically low-frequency 

(hydrodynamic) regime (decided on the  -scale) can macrophysically have mixed-

frequency (hydrokinetic) fluctuation counterpart regimes, found on the extreme 
*k -scale 

as critical instability behaviours.  
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5.5 CONCLUSIONS 

A three-component spherically symmetric quantum plasma model is developed to 

analyze the stability, propagatory, and dispersive behaviour of nucleus-acoustic waves. 

These modes are excited in the completely degenerate ONe and CO white dwarf cores 

and their nearly degenerate surrounding envelopes. The model comprises of quantum 

electrons and classical light-heavy nuclear species assumed initially to lie in a 

hydrostatic homogeneous equilibrium configuration. The constitutive electrons are 

acted upon by the pressures due to temperature degeneracy, interaction with 

surrounding electrons and other nuclei, exchange energy, and correlation energy 

explicitly. The pressures due to exchange and correlation are purely quantum-

mechanical in origin, having no classical analogs. The classical thermal pressure acting 

upon the light nuclear species and heavy nuclear species are retained in their respective 

equations of state. A standard normal spherical mode analysis yields a sextic 

generalized linear dispersion relation for low-frequency fluctuation analysis.  

It is seen numerically that for both the completely degenerate core and the nearly 

degenerate transition region, we find propagatory feature of nucleus-acoustic wave ( r

) towards high-
*k space (figures 5.1(a), 5.6(a), 5.11(a), 5.16(a)). Unstable behaviour (

i ) exists for the low-
*k space (figures 5.1(b), 5.6(b), 5.11(b), 5.16(b)). The pv -

evolution shows similar trends in both the completely degenerate core and the nearly 

degenerate envelope for both the dwarfs (figures 5.2, 5.7, 5.12, 5.17). In both the cases, 

pv  is dependent on 
*k , thereby indicating its dispersive nature. In the case of the 

completely degenerate ONe core, the point at which different components of the 

propagatory nucleus-acoustic waves add up constructively to form a peak gradually 

increases with T (figure 5.3), in contrast to nearly degenerate envelope (figure 5.8). 

However, both the completely degenerate CO core and nearly degenerate transition 

envelope show a common trend, that is, higher gv -peaks with increase of T (figures 

5.13, 5.18). pD  observed for the completely degenerate core and nearly degenerate 

ambience of both the ONe and CO white dwarfs re-confirm the dispersive nature of the 

medium (figures 5.4, 5.9, 5.14, 5.19). The trends observed for gD for both the ONe and 

CO completely degenerate cores and nearly degenerate ambience reaffirm the observed 
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*k -ranges for the propagatory and unstable behaviour of the proposed nucleus-acoustic 

wave modes (figures 5.5, 5.10, 5.15, 5.20).  

The constitutive electrons in compact astrophysical objects can have their Fermi 

energy greater than or equal to their rest mass energy (i.e., 2
0 cmTk eFB  ) [52]. It hereby 

implicates a fundamental requirement for a refined modelling of the presented analysis with 

the proper incorporation of collective relativistic mechanics [52]. We expect to see 

significant effects due to all the pressure terms on the plasma system stability upon 

proper refinement of the proposed model with the inclusion of the said relativistic 

effects [52, 53]. 

 It may be noteworthy that, unlike the presented pulsational study (radial), 

several pulsations (angular) have previously been reported in PG1159 pre-white dwarfs, 

variable DB, and variable DA [2]. In fact, recent investigations reveal that pulsations 

have been discovered in carbon atmosphere white dwarfs [54]. A large number of 

parameters of white dwarfs like stellar mass, rotation rates, etc. have been calculated, 

but so far no attempt has been made to asteroseismologically probe the microphysical 

dynamics of white dwarfs. It implicates that there are fair possibilities for the detection 

of the proposed modes in dwarf family stars and closely related compact astrophysical 

circumstances in the near future with the needful refinements in modern astronomy and 

space exploration systems [55]. Thus, there is an impending need of state-of-art 

technology to actually explore the dynamics of the interparticle interactions in white 

dwarfs [56]. Finally, our theoretic analysis can open an emerging research area on 

diversified collective waves, oscillations, and instabilities excitable in the ONe and CO 

white dwarfs and similar compact astrophysical circumstances in an asteroseismic 

probing perspective rooted in quantum plasma processes [50, 55, 57]. 
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