TABLE OF CONTENT

Contents		Page No.
ABSTRACT		i–viii
LIST OF FIGURES		ix-xiv
LIST OF SCHEMES		XV
LIST OF	TABLES	xvi-xvii
LIST OF	LIST OF SYMBOLS AND ABBREVIATIONS	
СНАРТЕ	R 1: INTRODUCTION	1-1-1-33
1.1	Background	1-1
1.2	Nanomaterials	1-2
1.2.1	Classification of nanomaterials	1-3
1.3	Metal oxides	1-5
1.3.1	Zinc oxide and tin dioxide	1-5
1.3.1.1	Structure of zinc oxide (ZnO) and tin dioxide (SnO ₂)	1-5
1.3.1.2	Properties of zinc oxide and tin dioxide	1-6
1.4	Metal oxide-based nanostructures	1-7
1.4.1	Synthesis of metal oxide-based nanostructures	1-8
1.4.2	Supported metal oxide-based nanostructures	1-9
1.4.3	Doped metal oxide-based nanostructures	1-10
1.4.4	Applications of metal oxide-based nanostructures	1-10
1.4.4.1	Organic transformation	1-12
1.4.4.1a	Friedel-Crafts acylation reaction	1-12
1.4.4.2	Wastewater treatment	1-15
1.4.4.2a	Adsorptive removal of dyes	1-16
1.4.4.2b	Photocatalytic degradation of dyes	1-18
1.5	Objectives of the present work	1-21
REFERENCES		1-22-1-33
СНАРТЕ	R 2: MATERIALS AND METHODS	2-1-2-18
2.1	Materials	2-1

2.2	Synthesis of metal oxide nanostructures	2-2
2.2.1	Synthesis of zinc oxide hierarchical nanostructures	2-2
2.2.2	Synthesis of tin dioxide nanoparticles	2-2
2.2.3	Synthesis of tin dioxide nanosheets	2-3
2.3	Synthesis of modified SBA-15 supported ZnO and	2-3
	SnO ₂ nanocatalysts	
2.3.1	Synthesis of modified SBA-15	2-3
2.3.2	Synthesis of modified SBA-15 supported ZnO	2-3
2.3.3	Synthesis of modified SBA-15 supported SnO ₂	2-3
2.4	Synthesis of reduced graphene oxide supported Cu-	2-4
	doped ZnO	
2.4.1	Synthesis of graphene oxide	2-4
2.4.2	Synthesis of reduced graphene oxide supported ZnO	2-4
2.4.3	Synthesis of reduced graphene oxide supported Cu-	2-4
	doped ZnO	
2.5	Characterization techniques	2-5
2.5.1	Thermogravimetric analysis (TGA)	2-5
2.5.2	Fourier transform infrared (FTIR) spectroscopy	2-5
2.5.3	X-ray diffraction (XRD)	2-6
2.5.4	Raman spectroscopy	2-6
2.5.5	X-ray photoelectron spectroscopy (XPS)	2-7
2.5.6	Scanning electron microscopy (SEM)	2-7
2.5.7	Transmission electron microscopy (TEM)	2-8
2.5.8	Energy-dispersive X-ray spectroscopy (EDS or	2-8
	EDX)	
2.5.9	Field emission scanning electron microscopy	2-8
	(FESEM)	
2.5.10	Atomic force microscopy (AFM)	2-9
2.5.11	Surface area, pore size and pore volume analysis	2-10
	(BET and BJH method)	
2.5.12	Temperature programmed desorption of ammonia	
	(NH ₃ -TPD)	2-10
2.5.13	Pyridine adsorbed FTIR spectroscopy (Py-FTIR)	2-11

2.5.14	Hammett indicator-amine titration	2-11
2.5.15	Ultraviolet-visible (UV-vis) spectroscopy	2-11
2.5.16	Diffuse reflectance ultraviolet-visible (DRUV-vis)	2-12
	spectroscopy	
2.5.17	Nuclear magnetic resonance (NMR) spectroscopy	2-12
2.5.18	CHN analysis	2-12
2.5.19	High Resolution Mass Spectrometry (HRMS)	2-13
2.6	Typical procedures of catalytic reactions	2-13
2.6.1	Friedel-Crafts acylation reaction under classical condition	2-13
2.6.2	Friedel-Crafts acylation reaction under microwave irradiation condition	2-14
2.6.3	Selective adsorption of organic dye pollutants	2-14
2.6.4	Photocatalytic degradation of methylene blue	2-15
REFERE		2-17-2-18
CHAPTE		
DIOXIDI		3-1–3-54
REACTION	ELECTIVE FRIEDEL-CRAFTS ACYLATION	
KEACII	OIN	
3.1 Pr	rologue	3-1
	3A: Time-driven morphology evolution and catalytic f porous ZnO hierarchical nanostructures	3-2-3-17
activity o	i porous ZnO merarchicai nanostructures	
3A.1	Results and discussion	3-2
3A.1.1	Characterization of the ZnO hierarchical	3-2
	nanostructures	
3A.1.2	Formation mechanism of ZnO hierarchical nanostructures	3-11
3A.1.3	Catalytic activity of ZnO hierarchical nanostructures	3-12
Section 3	B: SnO ₂ nanoparticles as reusable catalyst for Friedel-	3-18-3-25
Crafts be	nzoylation of anisole	

3B.1	Results and discussion	3-18
3B.1.1	Characterization of SnO ₂ nanoparticles	3-19
3B.1.2	Catalytic activity of SnO ₂ nanoparticles	3-22
Section 3	3C: Regioselective Friedel-Crafts acylation reaction	
using sin	gle crystalline and ultrathin nanosheet assembly of	3-26-3-44
scrutinyit	e-SnO ₂	
3C.1	Results and discussion	3-26
3C.1.1	Characterization of the SnO ₂ nanocatalyst	3-26
3C.1.2	Catalytic activity of SnO ₂ nanosheets under	3-35
	conventional condition	
3C.1.3	Proposed reaction mechanism for the FC acylation	3-39
	over SnO ₂ nanosheets	
3C.1.4	Catalytic activity of SnO ₂ nanosheets under	3-41
	microwave irradiation condition	
REFERE	NCES	3-45-3-54
СНАРТЕ	R 4: MODIFIED SBA-15 SUPPORTED ZnO AND	4-1-4-16
SnO_2	NANOCATALYSTS FOR FRIEDEL-CRAFTS	
ACYLAT	TION OF ANISOLE WITH BENZOIC ANHYDRIDE	
4.1	Prologue	4-1
4.2	Results and discussion	4-2
4.2.1	Characterization	4-2
4.2.2	Catalytic activity	4-9
4.2.2.1	Optimization study	4-9
4.2.2.1a	Effect of catalyst dosage	4-10
4.2.2.1b	Effect of temperature	4-11
4.2.2.1c	Effect of solvent	4-11
4.2.2.1d	Effect of molar ratio of substrates	4-11
4.2.2.2	Recyclability test	4-11

REFERE	NCES	4-13-4-16
	ANTS FROM THEIR MIXTURE USING SnO ₂	5-1-5-13
NANOST	RUCTURES	
5.1	Prologue	5-1
5.2	Results and discussion	5-2
5.2.2	Selective adsorption study by SnO ₂ nanostructures	5-2
5.2.2.1	Effect of contact time	5-2
5.2.2.2	Adsorption kinetics	5-3
5.2.2.3	Adsorption isotherms	5-5
5.2.2.4	Effect of pH	5-7
5.2.2.5	Adsorption mechanism	5-8
5.2.2.6	Reusability test	5-9
REFERE	NCES	5-11-5-13
СНАРТЕ	R 6: REDUCED GRAPHENE OXIDE SUPPORTED	6-1-6-22
Cu-DOPE	ZD ZnO NANOCATALYSTS FOR	
PHOTOC	ATALYTIC DEGRADATION OF METHYLENE	
BLUE		
6.1	Prologue	6-1
6.2	Results and discussion	6-3
6.2.1	Characterization	6-3
6.2.2	Photocatalytic degradation of methylene blue	6-7
6.2.2.1	Optimization study	6-8
6.2.2.1a	Effect of catalyst dosage	6-9
6.2.2.1b	Effect of dye concentration	6-9
6.2.2.1c	Effect of pH	6-9
6.2.2.2	Kinetic study	6-10
6.2.2.3	Proposed mechanism of dye degradation	6-11
6.2.2.4	Comparative study	6-12

6.2.2.5	Recyclability test	6-12
REFEREN	ICES	6-15-6-22
СНАРТЕ	R 7: CONCLUSION AND FUTURE SCOPES	7-1-7-4
7.1	Concluding remarks and outlook	7-1
7.2	Future scopes	7-3
LIST OF I	PUBLICATIONS	xxi
LIST OF O	CONFERENCES ATTENDED	xxii
APPENDIX		A-1-A-20