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chain. 
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5.1 Proposed catalytic cycle for A. epoxidation of styrene, B. 

hydroxylation of phenol and C. oxidation of sulfides to sulfoxides (M 

= Nb or Ta). “ * ” represents polymer chain. 
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6.1 Synthesis of oxidoniobium(V) complex 6.1 and peroxidoniobium(V) 

complexes, 6.2 and 6.3. 
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LIST OF ABBREVIATIONS 

 

NMRI Nuclear magnetic resonance imaging 

MRI Magnetic resonance imaging 

PON Polyoxoniobate 

CFI Complement factor I 

Hb Hemoglobin 

KNN K0.5Na0.5NbO3 

MCF Mesocellular foam 

SBA Santa Barbara Amorphous 

MCM-41 Mobil Composition of Matter No. 41 

MOF Metal organic framework 

Cp Cyclopentadiene 

thd 2-[3-[(4-Amino-2-methyl-5-pyrimidinyl)methyl]-

2-(1,2-dihydroxyethyl)-4-methyl-1,3-thiazol-3-

ium-5-yl]ethyl trihydrogen diphosphate  

acac Acetylacetonato 

silox Siloxide 

dmpe 1,2-Bis(dimethylphosphino)ethane 

PPP Phosphinophenylphosphine 

pV Peroxidovanadium 

pNb Peroxidoniobium 

TpNb [Nb(O2)4]
3- 

gu Guanidinium 

DTPA Diethylenetriaminepentaacetic acid 

EDTA Ethylenediaminetetraacetic acid 

hq Hydroxyquinolinate 

quin-2-c Quinoline-2-carboxylate ion 

ox Oxalate 

tart Tartaric acid 

glyc Glycollate 

Hmal Malic acid 

Asc Ascorbate anion 
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Httha Triethylenetetraminehexaacetic acid 

pdta Propanediaminetetraacetate 

pic Picolinic acid 

dipic Pyridine-2,6-dicarboxylic acid 

bpy 2,2'-Bipyridine 

phen Phenanthroline 

pzdc Pyrazine-2,3-dicarboxylate 

FFA Free fatty acid 

IL Ionic liquid 

CE Crown ether 

TBA/LA Tetrabutylammonium/lactate 

NPs Nanoparticles 

TPPTS P(m-C6H4SO3Na)3 

MR Merrifield resin 

PS-DVB Polystyrene divinylbenzene copolymer 

CSDVB Cross-linked poly(styrene-divinylbenzene) 

PPESK Poly(phthalazinone ether sulfone ketone) 

PA Poly(sodium acrylate) 

PMMA Poly(methylmethacrylate) 

PS-BBP Polystyrene functionalized with 2,6-

bis(benzimidazolyl)pyridine 

POP Porous organic polymer 

TPA Triphenyl amine 

PAN Polyacrylonitrile 

PEI Polyethyleneimine 

PAAc Polyacrylic acid 

P4VP Poly(4-vinyl pyridine) 

PEG Polyethyleneglycol 

P-HPHZ Polymer anchored N,N'-bis (o-hydroxy 

acetophenone) hydrazine 

PS-naph Amino polystyrene anchored azo ligand 

PNB Polynorbornene 

c-PMAn Cross-linked poly(methyl acrylate) 
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PAACA Poly(acrylic acid-co-acrylamide) 

PS-An Chloromethylated polystyrene functionalized with 

anthranilic acid 

HCPs Hyper-cross-linked polymers 

COP Covalent organic polymer 

DIOP 4,5-bis(diphenylphosphinomethyl)-2,2-dimethyl-

1,3-dioxidolane 

NHC N-heterocyclic carbene 

PS Polystyrene 

WSP Water-soluble polymer 

EDX Energy Dispersive X-Ray 

AAS Atomic absorption spectroscopy 

ICP-OES Inductively coupled plasma optical emission 

spectrophotometer 

CHN Carbon, hydrogen and nitrogen 

SEM Scanning Electron Microscope  

PXRD Powder X-ray diffraction  

XPS X-ray photoelectron spectroscopy 

BET Brunauer–Emmett–Teller 

TGA Thermogravimetric analysis 

HPLC High performance liquid chromatography 

GC-MS Gas chromatography-mass spectrometry 

MPS Methyl phenyl sulfide 

RT Room temperature 

MRVNb [Nb(O2)3(val)]2-–MR [val = valine] 

MRNNb [Nb(O2)3(asn)]2-–MR [asn = asparagine] 

MRGNb [Nb(O2)3(gly)]2-–MR [gly = glycine] 

Sty Styrene 

TLC Thin layer chromatography 

Calix Calixarene 

KIT Korea Advanced Institute of Science and 

Technology 

MMM Mixed matrix membrane 
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CNTs Carbon nano tubes 

DMC Dimethyl carbonate 

NbPMA [Nb(O2)3(carboxylate)]2-–PMA [PMA = 

poly(sodium methacrylate 

HMF 5-Hydroxymethyl-2-furfural 

HMFCA 5-Hydroxymethyl-2-furancarboxylic acid 

wt. Weight 

ChpNb [Nb(O2)3(NH2)(OH)]--chitosan 

PH Phenol 

RB Round-bottomed flask 

TpTa [Nb(O2)4]
3- 

BJH Barrett-Joyner-Halenda 

eq. Equivalent 

LD50 Lethal dose, 50% 

malt Maltol 

def Deferiprone 

EC50 Half maximal effective concentration 

ACP Acid phosphatase 

ALP Alkaline phosphatase 

p-NPP p-nitrophenyl phosphate 

IC50 Half maximal inhibitory concentration 

GST-PTP1B Glutathione S-transferase-tagged protein 

tyrosine phosphatase 1B 

PTPase Protein tyrosine phosphatase 
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