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Preface 

 

Microwave absorbers have found irreplaceable applications in wireless communication 

since its first implementation in World War II. Miniaturization of wireless communication 

technology has led to placement of wireless and electronic devices in close proximity 

resulting in enormously undesirable and uncontrolled electromagnetic wave (EM) 

radiations causing malfunctions of the components. A need for lightweight, thin, flexible, 

absorbers is necessary to obtain an electromagnetic interference free environment.  

Meta-structure absorbers (MSAs) are an effective replacement to volumetric broadband 

conventional absorbers with the advantages of flexibility and low thickness similar to 2D 

structured metamaterial absorbers (MMAs) and outstand MMAs in terms of performance 

bandwidth and ease of fabrication. 

Gel is chosen here as the lossy dielectric material to develop the resonating periodic 

structures embedded in low dielectric matrix to design and construct flexible, planar 

meta-structure absorbers operating in the microwave X-band range.  Slime, a water based 

gel and ionic DES gel are used to develop the resonating structures, while silicone-rubber 

is used as flexible matrix. Symmetrical resonator shapes are taken for polarization angle 

independent absorption performance.  The absorbers are designed and optimized to 

obtain a wide >90% absorption bandwidth in the operating band. A thin cover of 

environmentally inert matrix is placed on the top of the developed structure to protect it 

from damages and make the MSAs more robust. The absorbers are kept planar with a 

thickness of ~λ/10 for convenience of mounting on any surfaces.  

The developed gel based MSAs are tested for antenna isolation, RCS reduction and 

revertibility usages. 

Optically transparent DES gel MSA is developed by using optically transparent urethane 

rubber as matrix.  The conventional PEC reflecting back is replaced by copper mesh to 

obtain a standalone MSA tile (15 × 15 cm2). The fabricated transparent absorber is found 

to effectively low the RCS of solar panels without much effecting its performance.   

Keywords: Flexible, polarization insensitive, wide band, meta-structure absorber, slime, 

deep eutectic solvent gel, urethane rubber, revertibility, radar cross section reduction, 

antenna isolation, camouflaging solar panel. 
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Relative conversion efficiency of OT-MSA with reference to solar panel. 
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6.23 Copper mesh backed OT-MSA covered solar panel (a) schematic of 

operating mechanism, (b) photograph and (c) relative conversion 

efficiency in reference to solar panel. 
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ix  

List of abbreviations and symbols 

 

MSA Meta-structure absorber 

EM Electromagnetic 

2D Two dimensional 

3D Three dimensional 

IL Ionic liquid 

EMI Electromagnetic Interference 

RCS Radar cross section 

RCSR Radar cross section reduction 

E Electric field 

H Magnetic field 

TGA Thermo Galvanometric Analysis 

TE Transverse Electric 

TM Transverse Magnetic 

VNA Vector Network Analyzer 

CST Computer simulation technique 

TRL Trough Reflection Line 

GHz Gigahertz 

DES Deep eutectic solvent 

BW Bandwidth 

RF  Resonant frequency 

RL  Reflection loss 

4FS Four-fold symmetry 

6FS Six-fold symmetry 

OT Optically transparent 

Cu Copper 

𝑓 Frequency 

𝜆 Wave length



x  

                             𝜀𝑎 Permittivity 

𝜀𝑎
′  Real part of complex permittivity 

𝜀𝑎
′′ Imaginary part of complex permittivity 

𝜀0 free space permittivity= 8.86 × 10−12𝐹𝑚−1  

𝜇𝑎 Permeability 

𝜇𝑎
′  Real part of complex permeability 

𝜇𝑎
′′ Imaginary part of complex permeability 

𝜇0 free space permeability= 4𝜋 × 10−7𝐻𝑚−1 

𝜔 Angular frequency 

𝜃 Theta 

 𝜑 Phi 

 𝜋 Pi 

𝑡𝑎𝑛𝛿𝑒  Dielectric loss tangent 

dB Decibel 

 𝑍 Impedance of free space 

 𝑍𝑎 Impedance of absorber 

   𝜎 Conductivity 

 𝜌 Density 

℃ Degree Celsius 

𝑆11 Scattering parameter (reflection) 

𝑆21 Scattering parameter (transmission) 

𝐴𝜔 Absorption magnitude 

𝑅𝜔 Reflection co-efficient 

𝑇𝜔  Transmission co-efficient 

mm Millimeter 

nm Nanometer 

MPa Mega Pascal 

g Gram 

h Hour/Hours 

wt. % Weight percentage 
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