I hereby declare that the thesis entitled "Biochar to mitigate GHGs emission from acidic sandy loam soils of Assam: Role of feedstock and production technique" being submitted to the Department of Environmental Science, School of Sciences, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy is a record of original research work carried out by me under the supervision of **Dr. Nirmali Gogoi**, and Co-supervision of **Prof. Debendra Chandra Baruah**, Department of Environmental Science, Tezpur University.

I also declare that neither this work as a whole nor a part of it has been submitted to any other university or institute for award of any other degree or diploma.

All helps received during thesis writing from various sources have been duly acknowledged.

Juri Chefia

Place: Tezpur, Assam Date: **Juri Chetia** Registration Number: TZ155975 of 2015

DEPARTMENT OF ENVIRONMENTAL SCIENCE TEZPUR UNIVERSITY Napaam, Tezpur – 784028, Assam, India

Dr. Nirmali Gogoi Assistant Professor Department of Environmental Science Tezpur University **Phone:** +91-94350 83469 **Email:** nirmali@tezu.ernet.in nirmalievs@gmail.com

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis entitled **"Biochar to mitigate GHGs emission from** acidic sandy loam soils of Assam: Role of feedstock and production technique" submitted to the School of Sciences, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Environmental Science is a record of research work carried out by **Ms. Juri Chetia** under my supervision and guidance.

All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Dr. Nirmali Gogoi

Place: Tezpur, Assam Date: 07/03/2024

DEPARTMENT OF ENVIRONMENTAL SCIENCE TEZPUR UNIVERSITY Napaam, Tezpur – 784028, Assam, India

Prof. Debendra Chandra Baruah Director of innovative research Department of Energy Tezpur University Phone: +91-94355 08563 Email: baruahd@tezu.ernet.in Fax: +91 3712 267005

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis entitled **"Biochar to mitigate GHGs emission from acidic sandy loam soils of Assam: Role of feedstock and production technique"** submitted to the School of Sciences, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Environmental Science is a record of research work carried out by **Ms. Juri Chetia** under my supervision and guidance.

All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Place: Tezpur, Assam Date: 07/03/2024

Prof. Debendra Chandra Baruah

TEZPUR UNIVERSITY Napaam, Tezpur – 784028, Assam, India

CERTIFICATE OF EXTERNAL EXAMINER

This is to certify that the thesis entitled **"Biochar to mitigate GHGs emission from acidic sandy loam soils of Assam: Role of feedstock and production technique"** submitted to the School of Sciences, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Environmental Science is a record of research work carried out by **Ms. Juri Chetia** has been examined by us on 23rd April, 2024 and found to be satisfactory.

The committee recommends her for the award of the degree of Doctor of Philosophy.

Supervisor

Dr Nirmali Gogoi Date:23/04/2024

External Exminer

Scille Morne

Dr. Sidhu Murmu Date:23/04/2024

I am extremely pleasant to express my thanks and gratitude to all, who contributed in countless conducts to complete this research study and because of them my doctoral experience has been one that I will cherish forever.

At this moment of accomplishment of my Ph.D, first of all I would like to convey my deepest sense of gratitude and sincere acknowledgement to my supervisor *Dr. Nirmali Gogoi* for her irreplaceable inspiration, guidance and constant encouragement throughout the course of my research work. From finding an appropriate subject in the beginning to the process of writing the thesis, she offered her immense assistance, support and guidance and directed me to finish my thesis step by step. Her enthusiasm, integral view on research and mission for providing high quality work will always motivate me to explore new possibilities.

I would like to give my sincere gratitude and thanks to my co-supervisor *Prof. Debendra Chandra Baruah* for his valuable guidance, support and continuous encouragement throughout my Ph.D journey.

I would like to offer my sincere thanks to the member of my Ph. D. doctoral committee *Prof. Ishan Kalita* for his constructive criticism, insightful suggestions and extensive discussion around my work. I also offer my gratitude and sincere thanks to all the faculty members of the Department of Environmental Science, Tezpur University *Prof. R. R. Hoque, Prof. A. K. Das, Dr. A. L. Devi, Dr. S. S. Bhattacharya, Dr. S. Handique, Dr. A. Prakash, Dr. Nayanmoni Gogoi, Dr. S. Kalita and Dr. P. Deka, Prof. K. Marimuthu for their valuable advice and suggestions during the Ph. D. tenure. I covey my gratitude to <i>Dr. Sanjib Mahanta*, Assistant professor, Dept. of Chemical Science, Tezpur University for his help.

I would like to acknowledge the authority of Dhekiajuli Tea Estate, Assam, India, specially *Ananda Pandey* (Assistant Manager, Dhekiajuli Tea Estate) for helping me with the sample and data collection.

My special thanks go to the technical staff of the Dept of Environmental Science, Tezpur University for their help and support during my study. I extend my sincere thanks to the entire family of Department of Environmental Science, Tezpur University for the valuable support throughout the course of my research.

vii

I am extremely thankful to my fellow lab-mates *Nijara*, *Subham*, *Palakshi Ba*, *Abhijit Da*, *Dipankar Da*, *Banashree Ba*, *Dipti Ba*, *Amlan*, *Premia*, *Anuran*, *Diksha* for their endless help and support throughout the period of my study. I am deeply indebted to my dear friends *Happy*, *Sharfaa Ba*, *Bidya Ba*, *Sabrina Ba* for staying besides me and for their endless help, support and encouragement.

I would be thankful to Tezpur University for providing me the opportunity and all the necessary facilities to carry out my research work.

I would like to express heart-felt gratitude to my family members who have been a constant source of love, concern, support and strength all these years. I am extremely indebted to my father *Mr. Mularam Chetia* and my mother *Mrs. Mamoni Sonowal Chetia* for their invaluable sacrifices to afford me a suitable environment for concentrating on research. I am also grateful to my sister *Prarthana* and brother *Jishu* for their constant love and motivation. I also extent my heart-felt gratitude to *Ritu Paban, Nitumoni, Niyar* for their infinite encouragement, support and care.

Above all, I also place on record, my sense of gratitude to one and all who directly or indirectly have lent their hands in this endeavor.

Finally, I owe it all to the Almighty God for granting me the wisdom, health and strength to undertake this research task and enabling me to its completion.

> Sincerely Juri Chetia

LIST OF TABLES

Table No.	Title	Page No.
Chapter 4 4.1	Characteristics of feedstocks	5
4.2	Elemental content of the feedstocks and biochars	5
4.3	Characteristics of biochars	6
4.4	Existing EPA PAHs in the produced biochars	6
4.5	Germination percentage of bean and mustard seeds as influenced by the biochars and its application doses	13
4.6	Germination index of bean and mustard seeds as influenced by the biochars and its application doses	14
4.7	Vigor index of bean and mustard seeds as influenced by the biochars and its application doses	15
4.8	Dry matter yield (mg seedling ⁻¹) of bean and mustard seedlings as influenced by the biochars and its application doses	16
4.9	Influence of biochar on soil physico chemical parameters of the bean and mustard seedbed	17
4.10	Biomass yield of mustard plant as influenced by applied treatments	27
4.11	Biomass yield of french bean plant as influenced by applied treatments	28
4.12	Physiochemical properties of the FYM and experimented soil	42
4.13	Physicochemical properties of the soil as influenced by applied treatments in mustard field	43
4.14	Physicochemical properties of the soil as influenced by applied treatments in french bean field	44
4.15	Soil nitrogen fractions in mustard field as influenced by applied treatments	45

4.16	Soil nitrogen fractions in french bean field as influenced by applied treatments	46
4.17	Elemental content of soil in the mustard field as influenced by applied treatments	49
4.18	Elemental content of soil in the french bean field as influenced by applied treatments	50
4.19	Organic carbon fractions and bacterial colony count of soil as influenced by applied treatments in mustard field	51
4.20	Organic carbon fractions and bacterial colony count of soil as influenced by applied treatments in french bean field	52
4.21	Global warming potential (GWP) and carbon equivalent emission (CEE) as influenced by the applied treatments	64
4.22	Amendment effect index on GWP of N ₂ O and CO ₂ flux	65

LIST OF FIGURES

Figure No. Chapter 3	Title	Page No.
3.1	Experimental site at North Bank Plain Zone of Assam, India	12
3.2	Meteorological graph showing maximum and minimum air	13
	temperature (°C) and rainfall (mm) during the crop growth period	
	(a) November, 2018 to February, 2019 and (b) November, 2019 to	
	February, 2020	
Chapter 4 4.1	Fourier transform infrared spectrum of the biochars	7
4.2	Temperature programmed oxidation (thermo-gravimetric analysis) of biochars	7
4.3	Percent inhibition of seed germination in bean (B) and mustard (M) as influenced by different doses of tested biochars	16
4.4	Photosynthetic rate of mustard plant as influenced by applied treatments	22
4.5	Photosynthesis rate of french bean plant as influenced by applied treatments	23
4.6	Transpiration rate of mustard plant as influenced by applied treatments	24
4.7	Transpiration rate of french bean plant as influenced by applied treatments	25
4.8	Seed yield of mustard plant as influenced by applied treatments	26
4.9	Pod yield of french bean plant as influenced by applied treatments	26
4.10	Available soil N, P, K in mustard field as influenced by applied treatments	47
4.11	Available N, P, K in french bean field as influenced by applied treatments	48

4.12	Soil enzyme activities (A= urease B= dehydrogenase, C= phosphatase) as influenced by applied treatments in the mustard field	53
4.13	Soil enzyme activities (A= urease B= dehydrogenase, C= phosphatase) as influenced by applied treatments in french bean field	54
4.14	N ₂ O fluxes from the mustard field	60
4.15	Cumulative N ₂ O fluxes from the mustard field	60
4.16	N ₂ O fluxes from the french bean field	61
4.17	Cumulative N ₂ O fluxes from the french bean field	61
4.18	Soil CO_2 efflux from the mustard field as influenced by the treatments	62
4.19	Soil CO ₂ efflux from the french bean field as influenced by the treatments	63
4.20	PCA analysis in the A= mustard germination-biochars, B= french bean germination-biochar, C= Soil-mustard-GHGs emission, D= Soil-french bean-GHGs emission	69

LIST OF IMAGES

Figure No. Chapter 3	Title	Page No.
3.1 Chapter 4	Images showing (a) pyrolysis, (b) gasification and (c) conventional apparatus (kiln) used for biochar production	32
4.1	Scanning electron microscope (SEM) images of the biochar surfaces	8
4.2	Pearson correlation matrix of studied biochar properties	9
4.3	Pearson correlation matrix of germination performance and biochar characteristics. Where, A= mustard, B= french bean	18
4.4	Pearson correlation matrix of plant and soil parameters and GHGs emission from mustard field	66
4.5	Pearson correlation matrix of plant and soil parameters and GHGs emission from french bean field	67

LIST OF ABBREVIATIONS

Abbreviation	Full form
AC	Adsorption capacity
AEI	Amendment effect index
ANOVA	Analysis of variance
BD	Bulk density
С	Control
CEC	Cation exchange capacity
CEE	Carbon equivalent emission
CFU	Colony forming unit
CSP	Carbon sequestration potential
CV	Calorific value
DAS	Days after sowing
DMRT	Duncan's multiple range test
EC	Electrical conductivity
ECD	Electron capture detector
EPA	Environmental Protection Agency
FAC	Fulvic acid carbon
FC	Fixed carbon
FTIR	Fourier transform infrared spectroscopy
FYM	Farmyard manure
GCMS	Gas chromatography mass spectrophotometry
GHG	Greenhouse gas
GI	Germination index
GWP	Global warming potential
ha	Hectares
HAC	Humic acid carbon
LC	Labile carbon
LSD	Least significance difference
MBC	Microbial biomass carbon
MC	Moisture content
NPK	Nitrogen, phosphorus and potassium

PCA	Principal component analysis
PIG	Percent inhibition germination
SA	Specific Surface area
SAIC	Sophisticated analytical instrumentation centre
SEM	Scanning electron microscope
SOC	Soil organic carbon
Т	Temperature
t	Ton
TGA	Thermo-gravimetric analyser
TL	Tea pruning litter
TLC	Tea pruning litter conventional
TLG	Tea pruning litter gasification
TLP	Tea pruning litter pyrolysis
VI	Vigor index
VM	Volatile matter
WC	Mixed wood chips
WCC	Mixed wood chips conventional
WCG	Mixed wood chips gasification
WCP	Mixed wood chips pyrolysis
WHC	Water holding capacity
WHC	Water holding capacity