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Intensive agriculture is practiced worldwide to meet the huge food demand of rapidly 

growing population. This leads to environmental consequences like soil and water 

quality deterioration and greenhouse gases (GHGs) emission. Nitrous oxide (N2O), 

carbon dioxide (CO2), and methane (CH4) are the major long-lived greenhouse gases 

(GHGs) that are emitted from agricultural soils including both anthropogenic 

activities and natural process [1], [2]. About 60-80% of the annual anthropogenic N2O 

and CH4 emissions are estimated from agricultural lands [3]. Agriculture contributes 

to GHGs emissions mostly due to enteric fermentation (CH4), addition of chemical 

fertilizers (N2O), and soil tillage (CO2) [4]. Nitrous oxide is a key greenhouse gas 

with half-life of 114 years in the atmosphere posing 298-fold higher potential for 

global warming than carbon dioxide [5]. Atmospheric N2O has risen steadily from 

approximately 290 ppb in 1940 [6] to 334 ppb in 2021 [7]. Application of inorganic 

nitrogenous fertilizers is the main reason of increased agricultural N2O emission, and 

the emission becomes higher when it is escorted by rainfall or irrigation [8]. 

Moreover, the readily available nitrogen substrates for microbial processes and high 

volatile nature of inorganic nitrogen fertilizers are the cause of increased N2O 

emission [9], [10]. Nitrous oxide in soil is mostly produced due to the nitrification and 

denitrification processes [11], [12]. These processes occur naturally in soil when 

inorganic nitrogen (NH4
+ and NO3

−) substrates become available for the microbes 

[13], [14]. According to the Indian Ministry of Chemicals and Fertilizer, an average of 

500 lakhs metric tonnes of fertilisers are used in India each year, out of which 2/3 are 

nitrogenous fertilisers [15]. However, the emission could be reduced, or agriculture 

induced global warming could be mitigated by actively managing the inorganic 

fertilizer uses and other agricultural procedures.  

It is well accepted that organic farming is a sustainable option to maintain soil-plant 

ecological relationship and to reduce GHGs emission from agricultural lands. It 

emphasises on use of organic fertilizers for enhancing soil properties, nutrient cycling 

and crop health to mitigate climate change [16]. However, to meet the demand of 

organic fertilizer is a huge challenge. In this regard, use of biochar prepared from 

agricultural waste is achieving significant attention in recent time. Different 

organic feedstocks such as agricultural and garden wastes, plant-based feedstocks, 

animal litters, algae, and other solid wastes, etc. are used for biochar preparation [17]. 

India generates approximately 500 Mt of agro-waste every year and production of 

biochar using this huge waste will be a sustainable environment-friendly approach 
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[18], [19].  The unique features of biochar such as high carbon content, pH, large 

specific surface area, high adsorption potential and water retention capacity, and high 

recalcitrance potential to microbial degradation make it a potential amendment for 

soil application [20], [21]. Biochar improves soil microbial diversity, physico-

chemical properties and nutrient status that boost crop production [22]. Several 

studies documented proficiency of biochar in climate change mitigation by reducing 

GHGs emission from agroecosystems [23], [24], [25]. Moreover, it offers prospects to 

sequester carbon for considerably longer times than raw biomass or solid waste [26]. 

The larger specific surface area of biochar contributes to profuse microbial growth by 

enhancing natural soil respiration rate [27]. Biochar application decreases the 

availability of environmental pollutants in soil by forming complexes and thereby 

reduce their hazard in food chain [28], [29]. Infiltration of water in landfill covers and 

slopes can also be managed by application of biochar [30], [31]. Furthermore, biochar 

is an alternative source of clean energy due to lower sulphur content and higher 

calorific value [32]. However, some of the research studies documented damaging 

effects of biochars on soil health and increased GHGs emission from agricultural soils 

[33], [34], [35]. These contrasting results of using biochar as soil amendment may be 

due to the properties of both biochar. Since, the role of biochar is governed by its 

specific properties [36] which relies on the characteristics of feedstock, production 

temperatures as well as the method [37], [38]. Several methods are used to produce 

biochar namely pyrolysis, gasification, conventional char production, hydrothermal 

treatment, torrefaction, carbonization and flash carbonization [39]. The production 

temperature determines the yield and physico-chemical properties of biochar [40]. 

Generally, biochar produced at lower temperature (below 350°C) has low 

recalcitrance and are found to be less effective as a soil amendment [41]. Whereas 

studies have shown that advanced and sustainable biochar can be produced over a 

prolonged temperature treatment (between 400 and 700°C) of several hours [42], [43]. 

Additionally, higher production temperature of biochar enables better recalcitrance of 

carbon with greater pH, EC, specific surface area and nutrient availability. This 

increases the possibility of their use for improving soil quality and crop growth [44], 

[45]. Similarly, carbon and nutrient composition of biochar depends on the specific 

characteristics of the feedstocks. Higher carbon and lesser nutrient composition were 

documented in hard wood derived biochar, while agro-waste based biochar displayed 

contrasting results [46]. Thus, according to the differences in cellulose, 
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hemicelluloses, lignin and elemental contents in feedstocks, and production 

temperature and methods, the characteristic of produced biochar varies [47], [48].  

Influence of feedstocks and different production methods on biochar properties and 

their role as soil amendment were studied earlier. However, field experiment using 

biochar as amendment on North-eastern Indian soil is hardly been addressed. 

Moreover, most of the locally available feedstocks for biochar production remain 

unused due to the unavailability of production facility. Whereas, studies on 

conventional low-cost biochar production method are not getting adequate 

importance.  

Assam is the largest tea producing state of India (51.77 million kg during January-

April 2021, according to tea board of India) and tea pruning litter is one of the major 

agro-waste of the state. Additionally, Assam is rich in wood timber production, and 

good quantity of woodchips are produced from wood-based industries. However, 

documentation regarding use of these locally available feedstock in biochar 

production are scanty. Therefore, a research initiative was undertaken to produce 

biochar using tea pruning litter and mixed wood chips under different production 

technologies i.e., pyrolyser, gasifier and conventional methods. Present study 

investigates the physico-chemical properties of the produced biochars. Moreover, the 

study explores current understanding and knowledge gaps of biochar application as a 

tool to reduce N2O and CO2 emissions and impacts of biochar on crop yield and soil 

quality in acidic sandy loam soils of Assam. 

 

Hypothesis of the study: 

• Biochars produced from some commonly available feedstocks (tea pruning 

litters, and mixed wood chips) with different production techniques 

(gasification, pyrolysis and conventional methods) will exhibit different 

characteristics. 

• Screening of proper feedstock and production technology for biochar can 

reduce the use of chemical fertilizers, improve crop growth, soil property and 

mitigate GHGs emission from agroecosystems. 
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Objective of the study: 

1. To study the characteristics of biochars produced from different feedstocks 

and methodologies. 

2. To investigate the impact of biochar application on soil properties and crop 

health. 

3. To estimate the impact of biochar application on emission of GHGs (N2O, 

CO2) from agroecosystems. 
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