
Chapter 6

Arithmetic identities for some
analogues of 5-core partition
function

6.1 Introduction

In the notation of (1.2.4), the generating function (1.11.1) of ct(n) may be recast as

∞∑
n=0

ct(n)q
n =

f t(−qt)
f(−q)

. (6.1.1)

Recently, Gireesh, Ray and Shivashankar [33, Eq. (1.2)] considered an analogue

at(n) of ct(n) with f(−q) is replaced by φ(−q) in (6.1.1), namely,

∞∑
n=0

at(n)q
n =

φt(−qt)
φ(−q)

.

They obtained some arithmetic identities and multiplicative formulas for a3(n), a4(n)

and a8(n) by using Ramanujan’s theta functions (It is to be noted that Theorem

1.1 in their paper [33] holds true only for α = 1. The induction process in the proof

of the theorem is not quite correct). Employing the theory of modular forms they

also studied the arithmetic density of at(n) and found the following Ramanujan type

congruence for a5(n) [33, Theorem 1.10]: For all n ≥ 0,

a5(20n+ 6) ≡ 0 (mod 5). (6.1.2)
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Note that

∞∑
n=0

a5(n)q
n =

φ5(−q5)
φ(−q)

= 1 + 2q + 4q2 + 8q3 + 14q4 + 14q5 + 20q6 + 24q7 + · · · . (6.1.3)

In this chapter, we revisit the function a5(n) in conjunction with c5(n) as well

as another function b5(n) defined by

∞∑
n=0

b5(n)q
n =

ψ5(−q5)
ψ(−q)

= 1+q+q2+2q3+3q4−q5+2q7−2q9+6q10+ · · · , (6.1.4)

where ψ(−q) is defined in (1.2.3).

Note that, the sequence (c5(n)) is A053723 in [58]. We have recently added the

sequences (a5(n)) and (b5(n)) as A368490 and A368495, respectively, in [58].

We state our results in the following theorems and corollaries. In the sequel, we

assume that c5(n) = a5(n) = b5(n) = 0 for n < 0.

A recurrence relation for a5(n) and some relations between a5(n) and c5(n) are

stated in the following theorem.

Theorem 6.1.1. For any nonnegative integer n,

a5(5n+ 2) = 4c5(5n+ 1), (6.1.5)

a5(5n+ 3) = 4c5(5n+ 2), (6.1.6)

a5(10n+ 1) = 2c5(10n), (6.1.7)

a5(10n+ 9) = 2c5(10n+ 8), (6.1.8)

a5(20n+ 6) = 10c5(10n+ 2), (6.1.9)

a5(20n+ 14) = 10c5(10n+ 6). (6.1.10)

Furthermore, for any integer k ≥ 2,

a5(5
kn) =

(
5k − 1

4

)
a5(5n)−

(
5k − 5

4

)
a5(n). (6.1.11)

The following corollary is immediate from the above theorem.
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Corollary 6.1.2. For any nonnegative integer n and k ≥ 2,

a5(20n+ 6) ≡ 0 (mod 10), (6.1.12)

a5(20n+ 14) ≡ 0 (mod 10), (6.1.13)

and

4a5(5
kn) ≡ 5a5(n)− a5(5n)

(
mod 5k

)
.

Note that (6.1.12) implies (6.1.2). However, even stronger results implying

(6.1.12) and (6.1.13) are stated in Corollary 6.1.5.

Now we state some recurrence relations for b5(n).

Theorem 6.1.3. For any nonnegative integer n and k ≥ 2, we have

b5(4n+ 3) = 2b5(2n) (6.1.14)

and

b5
(
5k(n+ 3)− 3

)
=

(
5k − 1

4

)
b5(5n+ 12)−

(
5k − 5

4

)
b5(n). (6.1.15)

Next we state some identities connecting b5(n) with a5(n) and c5(n).

Theorem 6.1.4. For any nonnegative integer n, we have

b5(4n+ 1) = c5(n)− 2b5(2n− 1), (6.1.16)

b5(10n) =
1

2
c5(10n+ 2), (6.1.17)

b5(10n+ 1) = c5(5n+ 1), (6.1.18)

b5(10n+ 2) =
1

4
a5(2n+ 1) +

1

2
c5(2n), (6.1.19)

b5(10n+ 3) = c5(5n+ 2), (6.1.20)

b5(10n+ 4) =
1

2
c5(10n+ 6), (6.1.21)

b5(10n+ 6) = 0, (6.1.22)
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b5(10n+ 8) = 0, (6.1.23)

b5(20n+ 5) = −c5(5n+ 1), (6.1.24)

b5(20n+ 7) =
1

2
a5(2n+ 1) + c5(2n), (6.1.25)

b5(20n+ 9) = −c5(5n+ 2), (6.1.26)

b5(20n+ 15) = 0, (6.1.27)

b5(20n+ 19) = 0. (6.1.28)

From (6.1.9), (6.1.10), (6.1.17) and (6.1.21) we arrive at the following corollary,

implying the congruence of (6.1.2) by Gireesh et al.[33, Theorem 1.10].

Corollary 6.1.5. For n being any non-negative integer,

a5(20n+ 6) = 20b5(10n), (6.1.29)

a5(20n+ 14) = 20b5(10n+ 4). (6.1.30)

In the following corollary some infinite families of congruences are stated.

Corollary 6.1.6. For any nonnegative integer n and k ≥ 2,

4b5
(
5k(n+ 3)− 3

)
≡ 5b5(n)− b5(5n+ 12)

(
mod 5k

)
,

b5(5
k(20n+ 18)− 3) ≡ 0

(
mod

5k − 1

4

)
,

and

b5(5
k(20n+ 22)− 3) ≡ 0

(
mod

5k − 1

4

)
.

Proof. The first congruence readily follows from (6.1.15). Again, from (6.1.27),

(6.1.28) and (6.1.15) it follows that, for any positive odd integer n and k ≥ 2,

b5(5
k(20n+ 18)− 3) =

(
5k − 1

4

)
b5(100n+ 87),

b5(5
k(20n+ 22)− 3) =

(
5k − 1

4

)
b5(100n+ 107),

which implies the last two congruences in the corollary.
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The results of this chapter have been submitted for publication [14].

We arrange the rest of the chapter as follows. In Section 6.2, we provide some

preliminary lemmas. Section 6.3 is devoted to proving the identities stated in The-

orem 6.1.1. The proofs of Theorems 6.1.3 and Theorem 6.1.4 are given in Section

6.4 and Section 6.5 respectively. Finally, we conclude the paper with an observation

on the sign of b5(n).

6.2 Preliminary lemmas

In the following lemma, we state some known theta function identities.

Lemma 6.2.1. We have

φ5(q5)

φ(q)
+ 4q

f 5(q5)

f(q)
= φ(q)φ3(q5), (6.2.1)

ψ5(−q5)
ψ(−q)

− ψ5(q5)

ψ(q)
= 4q3

ψ5(q10)

ψ(q2)
+ 2q

f 5(−q20)
f(−q4)

, (6.2.2)

ψ2(q)− qψ2(q5) =
f(−q5)φ(−q5)

χ(−q)
= f(q, q4)f(q2, q3), (6.2.3)

f 5
5

f1
− 4q3

f 5
20

f4
=
f 5(q5)

f(q)
+ 2q

f 5
10

f2
. (6.2.4)

Proof. Identity (6.2.1) is taken from Entry 9.(ii) of [19, Chap. 19]. For the proofs

of (6.2.2) and (6.2.3), we refer to Entry 15 and Entry 18 of [20, Chap. 36]. Identity

(6.2.4) can be found in [16, Eq. (4.7)].

In the following lemma we recall two results involving the 5-core partition func-

tion.

Lemma 6.2.2. For n being any non-negative integer,

c5(4n+ 1) = c5(2n), (6.2.5)

c5(5n+ 4) = 5c5(n). (6.2.6)

Proof. See [16, Eq. (4.8)] and [34, Eq. (5.1)].
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6.3 Proof of Theorem 6.1.1

Proofs of (6.1.5) and (6.1.6). Replacing q by −q in (6.2.1), we have

φ5(−q5)
φ(−q)

= 4q
f 5
5

f1
+ φ(−q)φ3(−q5), (6.3.1)

which, by (1.11.1) and (6.1.3), may be recast as

∞∑
n=0

a5(n)q
n = 4

∞∑
n=0

c5(n)q
n+1 + φ(−q)φ3(−q5). (6.3.2)

Replacing q by −q in (1.8.3) and then using the resulting identity in the above,

we have

∞∑
n=0

a5(n)q
n = 4

∞∑
n=0

c5(n)q
n+1

+ φ3(−q5)
(
φ(−q25)− 2qf(−q15,−q35) + 2q4f(−q5,−q45)

)
. (6.3.3)

Equating the coefficients of q5n+2 and q5n+3 from both sides of the above, we arrive

at (6.1.5) and (6.1.6), respectively.

Proofs of (6.1.7) and (6.1.8). Multiplying both sides of (6.2.4) by
f 5
5 f2
f 5
10f1

, we have

φ5(−q5)
φ(−q)

− 4q3
ψ5(−q5)
ψ(−q)

=
φ5(−q10)
φ(−q2)

+ 2q
f 5
5

f1
.

which, by (1.11.1), (6.1.3) and (6.1.4), yields

∞∑
n=0

a5(n)q
n − 4

∞∑
n=0

b5(n)q
n+3 =

∞∑
n=0

a5(n)q
2n + 2

∞∑
n=0

c5(n)q
n+1. (6.3.4)

Comparing the coefficients of q2n+1 from both sides, we find that

a5(2n+ 1)− 4b5(2n− 2) = 2c5(2n). (6.3.5)

Replacing n by 5n and 5n+ 4, we obtain

a5(10n+ 1) = 4b5(10n− 2) + 2c5(10n)
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and

a5(10n+ 9) = 4b5(10n+ 6) + 2c5(10n+ 8),

respectively. Using (6.1.22) and (6.1.23) in the above, we arrive at (6.1.7) and

(6.1.8).

Proofs of (6.1.9) and (6.1.10). Equating the coefficients of q2n from both sides of

(6.3.4), we have

a5(2n)− 4b5(2n− 3) = a5(n) + 2c5(2n− 1), . (6.3.6)

From (6.3.5) and (6.3.6), it follows that

a5(4n+ 2)− 4b5(4n− 1) = a5(2n+ 1) + 2c5(4n+ 1), (6.3.7)

a5(4n)− 4b5(4n− 3) = a5(2n) + 2c5(4n− 1), (6.3.8)

a5(4n+ 1)− 4b5(4n− 2) = 2c5(4n), (6.3.9)

a5(4n+ 3)− 4b5(4n) = 2c5(4n+ 2). (6.3.10)

Again, employing (1.11.1) and (6.1.4), it follows from (6.2.2) that

∞∑
n=0

b5(n)q
n −

∞∑
n=0

b5(n)(−q)n = 4
∞∑
n=0

(−1)nb5(n)q
2n+3 + 2

∞∑
n=0

c5(n)q
4n+1. (6.3.11)

Equating the coefficients of q4n+3 from both sides of the above, we have

b5(4n+ 3) = 2b5(2n). (6.3.12)

It follows from (6.3.5) and (6.3.12) that

a5(2n+ 1) = 2c5(2n) + 2b5(4n− 1).

Using (6.2.5) and the above identity in (6.3.7), we obtain

a5(4n+ 2) = 3a5(2n+ 1)− 2c5(2n), (6.3.13)

which by replacement of n with 5n+ 1 yields

a5(20n+ 6) = 3a5(10n+ 3)− 2c5(10n+ 2). (6.3.14)
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Again, replacing n by 2n in (6.1.6), we have

a5(10n+ 3) = 4c5(10n+ 2). (6.3.15)

It follows from (6.3.14) and (6.3.15) that

a5(20n+ 6) = 10c5(10n+ 2),

which is (6.1.9).

Next, replacing n by 5n+ 3 in (6.3.13), we have

a5(20n+ 14) = 3a5(10n+ 7)− 2c5 (10n+ 6) . (6.3.16)

Again, replacing n by 2n+ 1 in (6.1.5), we have

a5(10n+ 7) = 4c5(10n+ 6). (6.3.17)

It follows from (6.3.16) and (6.3.17) that

a5(20n+ 14) = 10c5(10n+ 6),

which is (6.1.10).

Proof of (6.1.11). With the aid of (6.1.3), we recast (6.3.1) as

∞∑
n=0

a5(n)q
n = 4q

f 5
5

f1
+ φ(−q)φ3(−q5), (6.3.18)

By using the 5-dissections of φ(−q) from (1.8.3) and that of 1/f1 from (1.8.2) in the

above identity and extracting the terms involving q5n from both sides, we find that

∞∑
n=0

a5(5n)q
n = 20q

f 5
5

f1
+ φ3(−q)φ(−q5). (6.3.19)

Subtracting (6.3.18) from (6.3.19),

∞∑
n=0

a5(5n)q
n −

∞∑
n=0

a5(n)q
n = 16q

f 5
5

f1
+ φ(−q)φ(−q5)

(
φ2(−q)− φ2(−q5)

)
.

(6.3.20)
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Again, using (1.8.2) and (1.8.3) in the above and then extracting the q5n terms, we

obtain

∞∑
n=0

a5(25n)q
n −

∞∑
n=0

a5(5n)q
n

= 80q
f 5
5

f1
+ φ(−q)

(
φ3(−q5)− 24qφ(−q5)f(−q3,−q7)f(−q,−q9)

)
− φ(−q)φ(−q5).

Replacing q by −q in (5.2.1) and then employing in the above identity, we find that

∞∑
n=0

a5(25n)q
n −

∞∑
n=0

a5(5n)q
n = 80q

f 5
5

f1
+ 5φ(−q)φ(−q5)

(
φ2(−q)− φ2(−q5)

)
,

which, by (6.3.20), yields

∞∑
n=0

a5(25n)q
n −

∞∑
n=0

a5(5n)q
n = 5

∞∑
n=0

a5(5n)q
n − 5

∞∑
n=0

a5(n)q
n.

Equating the coefficients of qn from both sides, we find that, for any nonnegative

integer n,

a5(25n) = 6a5(5n)− 5a5(n). (6.3.21)

Now (6.1.11) follows by mathematical induction on k ≥ 2.

6.4 Proof of Theorem 6.1.3

Note that (6.1.14) is identical to (6.3.12). Therefore, we proceed to prove only

(6.1.15).

Replacing q by −q in (6.2.3), we have

qψ2(−q5) = f(q5)φ(q5)

χ(q)
− ψ2(−q).

Multiplying both sides of the above identity by
ψ3(−q5)
ψ(−q)

, we find that

q
ψ5(−q5)
ψ(−q)

=
f 5
10

f2
− ψ(−q)ψ3(−q5), (6.4.1)
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which, by (6.1.4), can be recast as

∞∑
n=0

b5(n)q
n+1 =

f 5
10

f2
− ψ(−q)ψ3(−q5). (6.4.2)

Employing the 5-dissection of ψ(−q) from (1.8.4) and that of 1/f2 from (1.8.2) in

(6.4.1), and then extracting the terms involving q5n+3 from both sides of the resulting

identity, we obtain

∞∑
n=0

b5(5n+ 2)qn = 5q
f 5
10

f2
+ ψ3(−q)ψ(−q5). (6.4.3)

Multiplying (6.4.2) by q and subtracting from (6.4.3),

∞∑
n=0

b5(5n+ 2)qn −
∞∑
n=0

b5(n)q
n+2

= 4q
f 5
10

f2
+ ψ(−q)ψ(−q5)

(
ψ2(−q) + qψ2(−q5)

)
. (6.4.4)

Again, using (1.8.2) and (1.8.4) in the above identity and extracting the terms

involving q5n+4 from both sides, we have

∞∑
n=0

b5(25n+ 22)qn −
∞∑
n=0

b5(5n+ 2)qn

= 20q
f 5
10

f2
+ ψ(−q)

(
6ψ(−q5)f(q2,−q3)f(−q, q4)− qψ3(−q5)

)
− ψ3(−q)ψ(−q5). (6.4.5)

Replacing q by −q in (6.2.3) and employing in the above identity, we obtain

∞∑
n=0

b5(25n+ 22)qn −
∞∑
n=0

b5(5n+ 2)qn

= 20q
f 5
10

f2
+ 5ψ(−q)ψ(−q5)

(
ψ2(−q) + qψ2(−q5)

)
. (6.4.6)

From (6.4.4) and (6.4.6) it follows that

∞∑
n=0

b5(25n+ 22)qn −
∞∑
n=0

b5(5n+ 2)qn = 5
∞∑
n=0

b5(5n+ 2)qn − 5
∞∑
n=0

b5(n)q
n+2.

Comparing the coefficients of qn from both sides of the above equation, we find that,

for any nonnegative integer n,

b5(25n+ 72) = 6b5(5n+ 12)− 5b5(n). (6.4.7)
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The general recurrence relation (6.1.15) now follows by mathematical induction on

k ≥ 2.

6.5 Proof of Theorem 6.1.4

Proofs of (6.1.16), (6.1.17) and (6.1.21). Equating the coefficients of q4n+1 from

both sides of (6.3.11), have

b5(4n+ 1) = c5(n)− 2b5(2n− 1),

which is (6.1.16).

Replacing n by n+ 1 in (6.3.5) and rearranging the terms,

4b5(2n) = a5(2n+ 3)− 2c5(2n+ 2). (6.5.1)

Replacing n by 5n in the above identity and using (6.3.15), we have

4b5(10n) = a5(10n+ 3)− 2c5(10n+ 2)

= 4c5(10n+ 2)− 2c5(10n+ 2)

= 2c5(10n+ 2),

which leads to (6.1.17).

Next, replacing n by 5n+ 2 in (6.5.1) and employing (6.3.17), we obtain

4b5(10n+ 4) = a5(10n+ 7)− 2c5(10n+ 6)

= 4c5(10n+ 6)− 2c5(10n+ 6)

= 2c5(10n+ 6),

implying (6.1.21).

Proofs of (6.1.18), (6.1.20), (6.1.22) and (6.1.23). Employing (1.8.4) in (6.4.2), we

have

∞∑
n=0

b5(n)q
n+1
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=
∞∑
n=0

c5(n)q
2n − ψ3(−q5)

(
f(q10,−q15)− qf(−q5, q20)− q3ψ(−q25)

)
. (6.5.2)

Comparing the coefficients of the terms involving q10n+2, q10n+4, q10n+7 and q10n+9

from both sides of the above identity, we arrive at the desired results of (6.1.18),

(6.1.20), (6.1.22) and (6.1.23).

Proofs of (6.1.24), (6.1.26), (6.1.27) and (6.1.28). Replacing n by 5n+1 in (6.1.16)

and then applying (6.1.18),

b5(20n+ 5) = c5(5n+ 1)− 2b5(10n+ 1)

= c5(5n+ 1)− 2c5(5n+ 1)

= −c5(5n+ 1),

which proves (6.1.24).

Replacing n by 5n+ 2 in (6.1.16) and using (6.1.20), we arrive at (6.1.26).

Similarly, replacing n by 5n+3 in (6.1.14) and then employing (6.1.22), we have

b5(20n+ 15) = 2b5(10n+ 6) = 0,

which proves (6.1.27).

Finally, replacing n by 5n+4 in (6.1.14) and utilizing (6.1.23), we obtain (6.1.28).

Proofs of (6.1.19) and (6.1.25). From (1.2.2) and (5.2.2), we see that

φ3(−q)φ(−q5) = f 6
1 f

2
5

f 3
2 f10

=
f 2
1 f

6
5

f2f 3
10

− 4q
f 3
1 f5f

2
10

f 2
2

= φ(−q)φ3(−q5)− 4q
f 5
5

f1
+ 16q2

f 5
10

f2
.

Utilizing (6.3.20), the above identity can be recast as

∞∑
n=0

a5(5n)q
n =

∞∑
n=0

a5(n)q
n + 12q

f 5
5

f1
+ 16q2

f 5
10

f2
.

Extracting the terms with odd powers of q from both sides, we arrive at

a5(10n+ 5) = a5(2n+ 1) + 12c5(2n). (6.5.3)
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Now, replacing n by 10n+ 5 in (6.3.6),

4b5(20n+ 7) = a5(20n+ 10)− a5(10n+ 5)− 2c5(20n+ 9).

Employing (6.3.13) with n replaced by 5n+2, and (6.2.5) with n replaced by 5n+2,

the above identity can be recast as

4b5(20n+ 7) = 3a5(10n+ 5)− 2c5(10n+ 4)− a5(10n+ 5)− 2c5(10n+ 4)

= 2a5(10n+ 5)− 4c5(10n+ 4)

= 2a5(10n+ 5)− 20c5(2n).

Applying (6.5.3) in the above expression, we obtain

2b5(20n+ 7) = a5(2n+ 1) + 2c5(2n)

which implies (6.1.25).

Finally, replacing n by 5n+ 1 in (6.1.14) and then applying (6.1.25), we have

b5(10n+ 2) =
1

2
b5(20n+ 7)

=
1

4
a5(2n+ 1) +

1

2
c5(2n),

which is (6.1.19).

6.6 Concluding observation

We close this chapter with an observation on the sign of b5(n).

For positive integers n, b5(n) is 0 for at least 30%, greater than 0 for at least

52%, and less than 0 for at least 10%.

Identities (6.1.22), (6.1.23), (6.1.27) and (6.1.28) readily imply the observed fre-

quency of zeroes. Similarly, (6.1.24) and (6.1.26) imply the frequency of negatives.

From the identities of (6.1.5), (6.1.6), (6.1.7) and (6.1.8), we observe that the se-

quence (a5(2n+ 1)) is positive in at least 4 out of 5 cases. Together with (6.1.17)–

(6.1.21) and (6.1.25), this implies that the frequency of positives is at least equal
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to
2 + 2 + 2× (4/5) + 2 + 2 + 1× (4/5)

20
,

that is, 52%.
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