Bibliography

[1] Agarwal, A. K. and Andrews, G. E. Rogers-Ramanujan Identities for partitions with " N Copies of N ". Journal of Combinatorial Theory, Series A, 45:40-49, 1987.
[2] Alladi, K. Partitions with non-repeating odd parts and q-hypergeometric identities. In Alladi, K., Klauder, J. R. and Rao, C. R, editors, The Legacy of Alladi Ramakrishnan in the Mathematical Sciences. Springer, New York, 169182, 2010.
[3] —. Partitions with non-repeating odd parts and combinatorial identities. Annals of Combinatorics, 20:1-20, 2016.
[4] Andrews, G. E. A generalization of the Göllnitz-Gordon partition theorems. Proceedings of the American Mathematical Society, 8:945-952, 1967.
[5] -. Two theorems of Gauss and allied identities proved arithmetically. Pacific Journal of Mathematics, 41:563-578, 1972.
[6] -. Partitions and Durfee dissection. American Journal of Mathematics, 101:735-742, 1979.
[7] Andrews, G. E. and Berndt, B. C. Ramanujan's Lost Notebook, Part I. Springer, New York, 2005.
[8] Andrews, G. E. and Deutsch, E. A note on a method of Erdös and the StanleyElder theorems. Integers, 16: Article A24, 2016.
[9] Baldwin, J., Depweg, M., Ford, B., Kunin, A., and Sze, L. Self-conjugate t-core partitions, sums of squares and p-blocks of A_{n}. Journal of Algebra, 297:438-452, 2006.
[10] Bandyopadhyay, S. and Baruah, N. D. The n-color partition function and some counting theorems. Integers, 21: Article A83, 2021.
[11] -. A note on the number of representations of a positive integer as a sum of generalized polygonal numbers. Integers, 23: Article A40, 2023.
[12] . On some restricted overpartition functions. Submitted.
[13] —. Arithmetic properties of 10-cores and self-conjugate 10-cores. Submitted.
[14] —. Arithmetic identities for some analogues of 5-core partition function. Journal of Integer Sequences, 27: Article 24.4.5, 2024.
[15] Baruah, N. D. and Begum, N. M. Exact generating functions for the number of partitions into distinct parts. International Journal of Number Theory, 14:19952011, 2018.
[16] Baruah, N. D. and Berndt, B. C. Partition identities and Ramanujan's modular equations. Journal of Combinatorial Theory, Series A, 114:1024-1045, 2007.
[17] Baruah, N. D. and Boruah, B. Colored partition identities conjectured by Sandon and Zanello. The Ramanujan Journal, 37:479-533, 2015.
[18] Berkovich, A. and Garvan, F. G. Some observations on Dyson's new symmetries of partitions. Journal of Combinatorial Theory, Series A, 100:61-93, 2002.
[19] Berndt, B. C. Ramanujan's Notebooks, Part III. Springer-Verlag, New York, 1991.
[20] —. Ramanujan's Notebooks, Part V. Springer-Verlag, New York, 1998.
[21] —. Number Theory in the Spirit of Ramanujan. American Mathematical Society, Providence, RI, 2006.
[22] Berndt, B. C. and Ono, K. Ramanujan's unpublished manuscript on the partition and tau functions with proofs and commentary. In Foata, D. and Han, G. -N., editors, The Andrews Festschrift. Springer-Verlag, Berlin, 39-110, 2001.
[23] Chen, W. Y. C., Hou, Q. -H., Sun, L. H., and Zhang, L. Ramanujan-type congruences for overpartitions modulo 16. The Ramanujan Journal, 40:311322, 2016.
[24] Chen, W. Y. C., Sun, L. H., Wang, R. -H., and Zhang, L. Ramanujan-type congruences for overpartitions modulo 5. Journal of Number Theory, 148:6272, 2015.
[25] Chen, W. Y. C. and Xia, E. X. W. Proof of a conjecture of Hirschhorn and Sellers on overpartitions. Acta Arithmetica, 163:59-69, 2014.
[26] Chern S. and Dastidar, M. G. Some congruences modulo 5 and 25 for overpartitions. The Ramanujan Journal, 47:435-445, 2018.
[27] Cho, H., Kim, B., Nam, H. and Sohn, J. A survey on t-core partitions. HardyRamanujan Journal, 44:81-101, 2021.
[28] Comtet, L. Advanced Combinatorics: The Art of Finite and Infinite Expressions. D. Reidel Publishing Co., Dordrecht, 1974.
[29] Corteel, S. and Lovejoy, J. Overpartitions. Transactions of the American Mathematical Society, 356:1623-1635, 2004.
[30] Cui, S. -P., Gu, W. X., and Ma, Z. S. Congruences for partitions with odd parts distinct modulo 5. International Journal of Number Theory, 11:21512159, 2015.
[31] Fang, H., Xue, F., and Yao, O. X. M. New congruences modulo 5 and 9 for partitions with odd parts distinct. Quaestiones Mathematicae, 43:1573-1586, 2020.
[32] Fortin, J. -F., Jacob, P., and Mathieu, P. Jagged partitions. The Ramanujan Journal, 10:215-235, 2005.
[33] Gireesh, D. S., Ray, C. and Shivashankar, C. A new analogue of t-core partitions. Acta Arithmetica, 199:33-53, 2021.
[34] Garvan, F., Kim, D. and Stanton, D. Cranks and t-cores. Inventiones Mathematicae, 101:1-17, 1990.
[35] Granville, A. and Ono, K. Defect zero p-blocks for finite simple groups. Transactions of the American Mathematical Society, 348:331-347, 1996.
[36] Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers. Oxford University Press, Oxford, 1979.
[37] Hirschhorn, M. D. The Power of q, A Personal Journey. Springer, New York, 2017.
[38] Hirschhorn, M. D. and Hunt, D. C. A simple proof of the Ramanujan conjecture for powers of 5. Journal für die reine und angewandte Mathematik (Crelle's Journal), 326:1-17, 1981.
[39] Hirschhorn, M. D. and Sellers, J. A. Arithmetic relations for overpartitions. Journal of Combinatorial Mathematics and Combinatorial Computing, 53:6573, 2005.
[40] -. An infinite family of overpartition congruences modulo 12. Integers, 5: Article A20, 2005.
[41] -. Arithmetic properties of overpartitions into odd parts. Annals of Combinatorics, 10:353-367, 2006.
[42] ——. Arithmetic properties of partitions with odd parts distinct. The Ramanujan Journal, 22:273-284, 2010.
[43] Huang, X. Q. and Yao, O. X. M. Proof of a conjecture on a congruence modulo 243 for overpartitions. Periodica Mathematica Hungarica, 79:227-235, 2019.
[44] Jha, S. K. An identity involving number of representations of n as a sum of r triangular numbers. arXiv:2011.11038, 2020.
[45] -. An identity for the sum of inverses of odd divisors of n in terms of the number of representations of n as a sum of r squares. Rocky Mountain Journal of Mathematics, 51:581-583, 2021.
[46] Kim, B. The overpartition function modulo 128. Integers, 8: Article A38, 2008.
[47] ——. A short note on the overpartition function. Discrete Mathematics, 309:2528-2532, 2009.
[48] Lovejoy, J. and Osburn, R. Quadratic forms and four partition functions modulo 3. Integers, 11: Article A4, 2011.
[49] MacMahon, P. A. (Andrews, G. E. (Ed.)) Collected Papers, Vol. 1. MIT Press, Cambridge, MA, 1978.
[50] Mahlburg, K. The overpartition function modulo small powers of 2. Discrete Mathematics, 286:263-267, 2004.
[51] Merca, M. On the Ramanujan-type congruences modulo 8 for the overpartitions into odd parts. Quaestiones Mathematicae, 45:1567-1574, 2022.
[52] Merca, M. and Schmidt, M. D. A partition identity related to Stanley's Theorem. The American Mathematical Monthly, 125:929-933, 2018.
[53] —. The partition function $p(n)$ in terms of the classical Möbius function. The Ramanujan Journal, 49:87-96, 2019.
[54] Radu, S. and Sellers, J. A. Congruence properties modulo 5 and 7 for the pod function. International Journal of Number Theory, 7:2249-2259, 2011.
[55] Ramanujan, S. Some properties of $p(n)$, the number of partitions of n. Proceedings of the Cambridge Philosophical Society, 19:207-210, 1919.
[56] —. The Lost Notebook and Other Unpublished Papers. Narosa, New Delhi, 1988.
[57] Rogers, L. J. Second memoir on the expansion of certain infinite products. Proceedings of the London Mathematical Society, 25:318-343, 1894.
[58] Sloane, N. J. A. The On-Line Encyclopedia of Integer Sequences (OEIS). Retrieved on 25 December, 2023 from http://oeis.org, 2023.
[59] Stanley, R. P. Theory and application of plane partitions, Part 1. Studies in Applied Mathematics, 50:167-188, 1971.
[60] -. Theory and application of plane partitions, Part 2. Studies in Applied Mathematics, 50:259-279, 1971.
[61] —. Enumerative Combinatorics, Volume 2. Cambridge University Press, Cambridge, 2001.
[62] Wang, L. Another proof of a conjecture by Hirschhorn and Sellers on overpartitions. Journal of Integer Sequences, 17:Article 14.9.8, 2014.
[63] -. New congruences for partitions where the odd parts are distinct. Journal of Integer Sequences, 18:Article 15.4.3, 2015.
[64] Xia, E. X. W. New infinite families of congruences modulo 8 for partitions with even parts distinct. Electronic Journal of Combinatorics, 21:Article P4.8, 2014.
[65] -. Some new infinite families of congruences modulo 3 for overpartitions into odd parts. Colloquium Mathematicum, 142:255-266, 2016.
[66] -. Congruences modulo 9 and 27 for overpartitions. The Ramanujan Journal, 42:301-323, 2017.
[67] Xia, E. X. W. and Yao, O. X. M. New Ramanujan-like congruences modulo powers of 2 and 3 for overpartitions. Journal of Number Theory, 133:1932-1949, 2013.
[68] Xue, F. and Yao, O. X. M. Explicit congruences modulo 2048 for overpartitions. The Ramanujan Journal, 54:63-77, 2021.
[69] Yang, X., Cui, S. P., and Lin, B. L. S. Overpartition function modulo powers of 2. The Ramanujan Journal, 44:89-104, 2017.
[70] Yao, O. X. M. Congruences modulo 64 and 1024 for overpartitions. The Ramanujan Journal, 46:1-18, 2018.
[71] Zhang, W. and Shi, J. Some infinite families of congruences for overpartitions. International Journal of Number Theory, 2019. DOI: https://doi.org/10. 1142/S1793042119500179
[72] Zuckerman, H. S. Identities analogous to Ramanujan's identities involving the partition function. Duke Mathematical Journal, 5(1):88-110, 1939.

