Abstract

In this thesis, we find new arithmetic identities involving sums of polygonal numbers, n-color partitions, certain restricted overpartitions, the 10 -core partitions and some analogues of the 5 -core partition function. The approaches utilized to discover the mentioned arithmetic identities encompass various techniques such as combinatorial reasoning, dissections of q-products, Ramanujan's theta function identities, and certain identities related to the Rogers-Ramanujan continued fraction.

Recently, Jha (arXiv:2011.11038, 2020; Rocky Mountain Journal of Mathematics, 51:581-583, 2021) has found identities that connect certain sums over the divisors of n to the number of representations of n as a sum of squares and triangular numbers. In Chapter 2, we prove a generalized result that gives such relations for s-gonal numbers for any integer $s \geq 3$. Jha's results follow as corollaries.

Merca and Schmidt (The American Mathematical Monthly, 125:929-933, 2018; The Ramanujan Journal, 49:87-96, 2019) found some decompositions for the partition function $p(n)$ in terms of the classical Möbius function as well as Euler's totient. In Chapter 3, we define a counting function $T_{k}^{r}(m)$ on the set of n-color partitions of m for given positive integers k, r and relate the function with the n-color partition function and other well-known arithmetic functions like the Möbius function, Liouville function, etc. and their divisor sums. Furthermore, we use a counting method of Erdös to obtain some counting theorems for n-color partitions that are analogous to those found by Andrews and Deutsch (Integers, 16: Article A24, 2016) for the partition function.

In Chapter 4, we prove arithmetic properties of some restricted overpartition
functions in which the parts are from certain residue classes of 8 . For example, if $\bar{p}_{3,4,5}(n)$ and $\bar{p}_{1,4,7}(n)$ denote the number of overpartitions of a positive integer n into parts congruent to 3,4 , or 5 modulo 8 and congruent to 1,4 , or 7 modulo 8 , respectively, then $\bar{p}_{3,4,5}(16 n+1) \equiv 0(\bmod 16)$ and $\bar{p}_{1,4,7}(16 n+9) \equiv 0(\bmod 16)$ for all nonnegative integers n.

Chapter 5 is devoted to find new linear recurrence relations satisfied by the 10core and self-conjugate 10 -core partition functions. In the process, we also find several exact generating function representations and congruences satisfied by those functions.

Gireesh, Ray and Shivashankar (Acta Arithmetica, 199:33-53, 2021) have considered an analogue $\bar{a}_{t}(n)$ of the t-core partition function $c_{t}(n)$ and proved new identities involving $\bar{a}_{t}(n)$. In Chapter 6, we revisit the function $\bar{a}_{5}(n)$ in conjunction with $c_{5}(n)$ as well as another analogous function $\bar{b}_{5}(n)$. We find new recurrence relations for \bar{a}_{5}, \bar{b}_{5} and relations among $c_{5}(n), \bar{a}_{5}(n)$ and $\bar{b}_{5}(n)$. In the process, we prove a stronger version of one of their congruences for $\bar{a}_{5}(n)$.

