
“We stand on the shoulders of giants,

drawing wisdom from the works of

those who came before us.”

– Sir Isaac Newton

2
Formalism and Statistical Methodology

Neutrino non-standard interactions (NSIs) represent a fascinating and relatively unex-

plored frontier in the realm of particle physics. Unlike the well-known weak interactions

that neutrinos undergo through the exchange of W and Z bosons, NSIs involve interac-

tions beyond the scope of the Standard Model of particle physics. These interactions

could be mediated by hypothetical particles or new physics scenarios, potentially open-

ing doors to a deeper understanding of neutrino properties and their role in the universe.

Neutrino NSIs could manifest in various ways, altering the expected neutrino oscilla-

tion patterns, affecting neutrino propagation through matter, and even modifying their

interactions with other particles. Detecting and characterizing these NSIs present both

theoretical and experimental challenges, but their study holds the promise of unveiling

new insights into the fundamental nature of neutrinos and potentially shedding light on

the mysteries beyond Standard-Model physics.
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2.1 Non Standard interactions of neutrinos

The joint discovery of neutrino oscillations by the Super–Kamiokande (SK)[1] and Sud-

bury Neutrino Observatory (SNO)[2] has opened up a new avenue for probing physics

beyond the Standard Model (BSM). Neutrino oscillations unequivocally confirm the

neutrino’s mass and offer the initial experimental insight into BSM physics. Various

neutrino experiments extensively investigate the parameters related to neutrino oscil-

lations [3–6]. Neutrinos serve as promising portals to explore BSM physics in the lep-

tonic sector. BSM models, which elucidate neutrino masses and mixing, frequently ex-

plore novel, undiscovered couplings of neutrinos referred to as non–standard interactions

(NSIs). Given the unparalleled accuracy and precision achieved by current and forth-

coming neutrino experiments, these lesser-known effects on neutrino oscillations could

significantly shape the potential outcomes of these experiments. In this study, we pri-

marily investigate the ramifications of scalar-mediated NSIs on the measurements of the

leptonic phase δCP within three long-baseline (LBL) neutrino experiments: DUNE [81],

T2HK [82], and T2HKK [83]. Employing a model-independent approach, we conduct a

synergistic analysis that combines these LBL experiments to scrutinize the influence of

scalar NSIs.

In the precision-driven era of neutrino physics, ongoing and forthcoming neutrino

experiments are dedicated to achieving the utmost accuracy in measuring neutrino mix-

ing parameters. These experiments have a central objective: to address the three key

unknowns within the neutrino sector. These unknowns encompass the hierarchy of neu-

trino masses [84], the octant of the mixing angle θ23 [85], and the determination of the

CP phase (δCP ) within the leptonic sector [86]. The robust nature of these ongoing

and future neutrino experiments endows them with sensitivity to the subtler effects

of neutrinos. One such effect is Non-Standard Interactions (NSI), which can exert a

significant influence on the measurement of oscillation parameters in diverse neutrino

experiments. Originally introduced with the concept of neutrino interactions through

a vector mediator with environmental fermions [12], vector-mediated NSIs manifest as

matter potential terms within the neutrino oscillation Hamiltonian. Extensively ex-

plored [55–58, 87], vector-mediated NSIs offer a compelling avenue to explore physics

beyond the Standard Model, potentially reshaping the physics reach of various neutrino

experiments [88–112], with active exploration of these effects [113–129]. A comprehen-

sive overview of constraints on vector NSI parameters globally can be found in [130, 131].
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2.1.1 Vector Non Standard Interaction

In the realm of Beyond the Standard Model (BSM) physics, in addition to the well-

known charged-current (CC) and neutral-current (NC) weak interactions, there exists

the possibility of vector-mediated Non-Standard Interactions (NSI) of both CC and

NC varieties. CC-type vector NSIs have an impact on neutrino production and detec-

tion, while NC-type vector NSIs influence the propagation of neutrinos. The effective

Lagrangian for both CC and NC types is expressed in the following forms,

LV NSI
NC = −2

√
2GF

∑
f,P,α,β

ϵf,Pαβ (ν̄αγ
µPLνβ)(f̄γµPf) (2.1)

LV NSI
CC = −2

√
2GF

∑
f,P,α,β

ϵf,Pαβ (ν̄αγ
µPLlβ)(f̄γµPf ′). (2.2)

The ϵ terms measure the magnitude of non-standard interactions (NSI) relative to

the weak scale. The fermions of matter, denoted as f, f ′ ∈ (e, u, d), and the left and

right chiral operators, represented by P ∈ (PL, PR), play crucial roles. Introducing a NSI

term, as illustrated in equations 2.2 and 2.1, allows the effective neutrino Hamiltonian

to be formulated as follows,

HV NSI = Hmatter + VV NSI . (2.3)

Where, Hmatter is the standard neutrino matter Hamiltonian and VV NSI is generally

represented as,

VV NSI = A


ϵee ϵeµ ϵeτ

ϵµe ϵµµ ϵµτ

ϵτe ϵτµ ϵττ

 , (2.4)

with A = 2
√
2GFNeE and Ne being electron number density.

2.1.2 Scalar Non Standard Interaction: the concept & formal-

ism

Experiments [3–6] spanning a wide array of baselines and energies have validated the

concept of neutrino oscillations. This phenomenon establishes that neutrinos, owing

to their nonzero masses [46], can undergo flavor transformations. The empirical data

gathered from these experiments unequivocally demonstrate that the neutrino flavors
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(νe, νµ, ντ ) are actually composed of superpositions of their mass states (ν1, ν2, ν3) pos-

sessing massesm1,m2,m3 correspondingly. The interplay between these flavor and mass

eigenstates is dictated by a 3 × 3 matrix known as the Pontecorvo-Maki-Nakagawa-

Sakata (PMNS) matrix, denoted as U [45, 46, 132, 133].

U =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδCP

0 1 0

−s13e
iδCP 0 c13




c12 s12 0

−s12 c12 0

0 0 1

 . (2.5)

Here, sij = sin θij, cij = cos θij, and δCP represents the Dirac-type CP phase. This

form is referred to as the PDG parameterization [134] of the PMNS matrix. Further-

more, if neutrinos are regarded as Majorana particles, two additional phases known as

Majorana phases can emerge. However, these phases have no impact on neutrino oscil-

lations as they can be absorbed as a shared phase in the neutrino Hamiltonian. This

specific PMNS matrix parameterization will be employed consistently throughout the

course of this study.

Within the context of Standard Model interactions, neutrinos engage with matter

solely through weak interactions, facilitated by a mediator such as a W± or Z bo-

son [135]. The formulation of the effective Lagrangian governing these interactions is

expressed as [12, 136, 137],

Leff
cc = −4GF√

2
[νe(p3)γµPLνe(p2)] [e(p1)γ

µPLe(p4)] . (2.6)

In this context, PL and PR denote the left and right chiral projection operators,

respectively, defined as PL = (1 − γ5)/2 and PR = (1 + γ5)/2. The quantities pi

represent the momenta of incoming and outgoing states, while GF represents the Fermi

constant.

Typically, the effects of neutrinos interacting with matter stem from the forward

scattering of neutrinos, where there is negligible momentum transfer between the ini-

tial and final states. These effects manifest as matter potentials within the neutrino

Hamiltonian, namely VCC = ±
√
2GFne and VNC = ±GFnn√

2
. In this context, VCC and

VNC represent the matter potentials originating from charged-current (CC) and neutral-

current (NC) interactions of neutrinos with matter, respectively. The positive sign arises

from neutrino-matter interactions, while the negative sign corresponds to antineutrino-

matter interactions. Notably, the matter potential associated with NC interactions

(VNC) does not influence neutrino oscillations, as it merely introduces a common phase
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within the neutrino Hamiltonian. Therefore, the effective Hamiltonian (Hmatter) de-

scribing neutrino oscillations within a matter environment can be expressed as [13],

Hmatter ≈ Eν +
MM †

2Eν

± VSI , (2.7)

In this context, where Eν represents the energy of the neutrino, M denotes the mass

matrix of neutrinos, and VSI signifies the matter potential due to the effects of neutrino-

matter interactions. It is worth reiterating that the polarity of the term ‘VSI ’ arises

from neutrino or antineutrino modes. The neutrino mass matrix M in the flavor basis

takes the form of UDνU †, wherein Dν denotes the diagonal mass matrix of neutrinos,

specifically Dν ≡ diag(m1,m2,m3). Consequently, the simplified effective Hamiltonian

(Heff) governing neutrino oscillations within a matter medium can be derived as,

Heff = Eν +
1

2Eν

Udiag(0,∆m2
21,∆m2

31)U † + diag(VCC, 0, 0) , (2.8)

where, ∆m2
ij ≡ m2

i − m2
j are the neutrino mass-squared differences. The quantity

VCC ≡ ±
√
2GFne is the effective matter potential due to the coherent elastic forward

scattering of neutrinos with electrons in the matter through the SM gauge boson W .

While the exploration of vector-mediated NSIs has been extensive, alternative non-

standard effects can originate from different sources. One intriguing possibility involves

the coupling of neutrinos with a scalar particle, such as the Higgs boson, which possesses

nonzero vacuum expectation values contributing to neutrino mass generation. The

prospect of neutrino coupling with a scalar adds an interesting dimension to the study.

The effective Lagrangian governing such a scalar NSI scenario can be formulated as,

LS
eff =

yfyαβ
m2

ϕ

(ν̄α(p3)νβ(p2))(f̄(p1)f(p4)) , (2.9)

where,

• α, β refer to the neutrino flavours e, µ, τ ,

• f = e, u, d indicate the matter fermions, (e: electron, u: up-quark, d: down-

quark),

• f̄ is for corresponding anti fermions,

• yαβ is the Yukawa couplings of the neutrinos with the scalar mediator ϕ,

• yf is the Yukawa coupling of ϕ with f , and,
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• mϕ is the mass of the scalar mediator ϕ.

Analyzing equation 2.9, it becomes evident that the effective Lagrangian is con-

stituted of Yukawa terms, rendering it incapable of transforming into vector currents.

Consequently, the presence of scalar NSI does not translate into a contribution to the

matter potential term within the neutrino Hamiltonian. Instead, it could manifest as a

perturbation to the neutrino mass term contingent on the medium[7]. Throughout this

paper, we will employ the subscript “SNSI” to denote quantities that encompass the

influence of scalar NSI.

The corresponding Dirac equation, when accommodating these novel scalar interac-

tions, can be simplified [7] as,

ν̄β

[
i∂µγ

µ +

(
Mβα +

∑
f nfyfyαβ

m2
ϕ

)]
να = 0 , (2.10)

where, nf is the number density of the environmental fermions.

It’s apparent that the influence of scalar NSI is observed in the Dirac equation

through its association with the mass term. The effective Hamiltonian [11, 14, 15],

which accounts for the impact of scalar NSI, will present a modified version of Eq. 2.8,

as demonstrated below,

HSNSI ≈ Eν +
MeffM

†
eff

2Eν

± VSI . (2.11)

In this equation, Meff represents the comprehensive mass matrix encompassing both

the conventional mass matrix M and the influence arising from scalar NSI, denoted as

MSNSI ≡
∑

f nfyfyαβ/m
2
ϕ. It can be expressed as the sum of these components:

Meff = M +MSNSI (2.12)

The neutrino mass matrix (denoted as ≡ U ′DνU ′†) can be diagonalized through the

action of a mixing matrix U
′ ≡ PUQ†. In this context, Q represents a Majorana rephas-

ing matrix, which can be absorbed as QDνQ
† = Dν . The matrix P is an unphysical

diagonal rephasing matrix that cannot be eliminated through rotation. We carry out a

rotation on matrix P by incorporating the contribution arising from the scalar NSI. As

a result, Meff can be expressed as follows:

Meff ≡ UDνU
† + P †MSNSIP ≡ M + δM (2.13)

We introduce the term δM to encompass the perturbative contribution of scalar

NSI, incorporating the unphysical rephasing matrix P as well. Our aim is to establish
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an effective and comprehensive form for δM that simplifies the study of individual

matrix elements in conjunction with the neutrino mass matrix. To achieve this, we

parameterize δM as follows,

δM ≡
√
|∆m2

31|


ηee ηeµ ηeτ

ηµe ηµµ ηµτ

ητe ητµ ηττ

 . (2.14)

We adopt the scaling factor
√

|∆m2
31| as a characteristic measure. The elements

ηαβ, devoid of dimensions, serve to quantify the impacts of scalar NSI.

The requirement for the neutrino Hamiltonian to be Hermitian necessitates real

diagonal elements and complex off-diagonal elements. These can be parameterized as

follows:

ηαβ = |ηαβ|eiϕαβ ; α ̸= β. (2.15)

For the scope of this study, we have employed a diagonal form for δM , thus preserv-

ing the Hermitian nature of the Hamiltonian. This approach facilitates the examination

of scalar NSI elements across diverse probability channels. The elements ηαβ serve as

quantifiers for interaction strength, and their investigation can be extended to a range of

neutrino experiments. As of now, conclusive bounds for these elements remain elusive,

prompting the anticipation that constraints will emerge from the outcomes of various

neutrino experiments.

We have explored three distinct scenarios, each featuring a single nonzero diagonal

element at a time. The expressions for Meff that we utilize to compute the modified

Hamiltonian for these three scenarios are provided below,

Case I : Meff = Udiag (m1,m2,m3)U
† +
√

|∆m2
31| diag (ηee, 0, 0) (2.16)

Case II : Meff = Udiag (m1,m2,m3)U
† +
√
|∆m2

31| diag (0, ηµµ, 0) (2.17)

Case III : Meff = Udiag (m1,m2,m3)U
† +
√

|∆m2
31| diag (0, 0, ηττ ) (2.18)

Notably, HSNSI exhibits a reliance on the absolute masses. Throughout this study,

we have consistently assumed a value of m1 equal to 10−5 eV. The corresponding values

of m2 and m3 are then derived from the known quantities ∆m2
21 and ∆m2

31. The sub-

sequent section features a presentation of probability plots along with a comprehensive

description of the simulation methodology.
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2.2 Details of statistical χ2 framework

Calculating χ2 helps us determine how well a theoretical idea matches actual exper-

imental results. In simpler terms, χ2 tells us how much the real experimental data

(the true data) differs from the data we’d expect based on the theory being tested (the

test or fit data). In our study, we have developed the statistical framework using the

long baseline simulator GLoBES. A detailed description of the GLoBES package and

its modules has been added in the appendix B.

In our pursuit of constraining the absolute neutrino masses, we introduce a statistical

measure, denoted by χ2, which serves as an indicator of sensitivity. This measure

quantifies our ability to narrow down the possible neutrino mass values, taking into

account the interplay between NSI effects and neutrino oscillations.

χ2
pull = min

ζj

(
min
η

∑
i

∑
j

[
N i,j

true −N i,j
test

]2
N i,j

true

+
k∑

i=1

ζ2i
σ2
ζi

)
, (2.19)

where, N i,j
true and N i,j

test represents the number of true and test events in the {i, j}-th
bin respectively. Using the pull method described in [138, 139], we incorporate the

systematic errors as additional parameters known as nuisance parameters (ζk) with

the systematical errors (σ2
ζk
). A detailed schematic for the event generation and χ2

calculation algorithm is shown in figure 2.1.

Figure 2.1: The methodology for studying detector sensitivity. (a) The methodology
for event generation at the detector. (b) The framework for χ2 calculation.
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2.3 Details of some upcoming neutrino experiments

We have presented a detailed examination of the technical specifications inherent to

DUNE, T2HK, and T2HKK, offering an in-depth understanding of their individual

characteristics. Furthermore, we have undertaken a comprehensive analysis, juxtapos-

ing their respective baselines, L/E (distance-to-energy ratio), and fiducial volumes, all

of which are conveniently tabulated for easy reference in table 2.2. This comparison

provides a holistic view of the distinguishing attributes and operational contexts of these

experimental setups.

2.3.1 Deep Underground Neutrino Experiment

The Deep Underground Neutrino Experiment (DUNE), an innovative endeavor [140–

144], represents a forthcoming long-baseline neutrino experiment set to be situated

in the United States. Positioned within the Long-Baseline Neutrino Facility (LBNF),

the Near Detector for this experiment will be situated approximately 574 meters un-

derground, at a distance of 60 meters from the neutrino beam source at Fermilab.

Following their emission, neutrinos will traverse a distance of 1300 km to reach the

Far Detector (FD), nestled within the Homestake Mine in South Dakota. The Far

Detector is comprised of four modules, each featuring a liquid argon time projection

chamber (LArTPC), collectively offering a substantial fiducial mass of 10kt. Employing

the LArTPC technology, the detection process involves capturing the charge ionization

stemming from neutrino interactions. This method ensures exceptional spatial reso-

lution, energy precision, three-dimensional trajectory reconstruction, and the ability

to discern particle tracks through analysis of energy loss patterns along these tracks.

The neutrino beam necessary for DUNE’s investigations will be generated at Fermilab,

boasting a power of 1.2 MW-120 GeV, and will facilitate the delivery of an impressive

1021 proton-on-target (POT) annually. Anticipated to commence its operations in 2026,

DUNE is poised to open new avenues for neutrino research, harnessing cutting-edge

technologies and methodologies to expand our understanding of these elusive particles.

2.3.2 Hyper Kamiokande

Hyper Kamiokande (HK) [17] is a proposed next-generation undergroundWater Cherenkov

(WC) detector which will be located near the town Kamioka in Japan’s Gifu Prefec-

ture. It is designed to address different unknowns of various fields of physics and

astrophysics. It consists of a cylindrical detector having PMTs as active detectors on
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Figure 2.2: Schematic of the Deep Underground Neutrino Experiment (DUNE) [20].

its walls. The various parameters of the detector setup and its comparison with its pre-

decessors (Kamiokande & Super-Kamiokande) are listed in Table 2.1. The HK detector

is both a “microscope” used to observe elementary particles, and also a “telescope” for

observing the Sun and supernovas, using neutrinos. The detector will also serve as a far

detector for a long baseline neutrino experiment, referred as T2HK [83]. The neutrino

beam for this experiment will be produced at the J-PARC (Japan Proton Accelerator

Research Complex) facility and the baseline will be 295km. The Hyper-Kamiokande

experiment employs a ring-imaging WC detector technique to detect rare interactions

of neutrinos and the possible spontaneous decay of protons and bound neutrons. The

construction of the HK detector is ongoing and is expected to start taking data from

2027.

2.3.3 Tokai to Hyper-Kamiokande

Tokai to Hyper-Kamiokande (T2HK), an ambitious endeavor [82], stands out as a signif-

icant long baseline experiment that holds great promise for advancing neutrino research.

This experiment is meticulously designed to operate over a substantial baseline of 295

km. The operational framework entails the generation of a potent neutrino beam at the

J-PARC facility, with detection taking place at the Hyper-Kamiokande (HK) detector.

The neutrino beam from J-PARC endowed with a power of 1.3 MW, propels the gener-

ation of an impressive 27 × 1021 proton-on-target (POT) annually. The HK detector,

situated in Japan, represents a remarkable advancement from its predecessor, the Super-

Kamiokande (SK) detector, boasting a fiducial mass roughly twenty times greater than

that of Super-Kamiokande. Characterized by two cylindrical water Cherenkov modules,

each boasting a fiducial mass of 187 kt, the HK detector is strategically placed at an

angle of 2.5◦ off-axis from the J-PARC neutrino beam. In the context of our simulation

studies, we have adopted a baseline of 295 km, and the fiducial volume is set at 374 kt,
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Kamiokande Super-Kamiokande
Hyper-

Kamiokande
Depth 1000m 1000m 650m
Height 16m 42m 60m
Diameter 15.6m 39m 74m
Volume
total 4.5kt 50kt 258kt
inner 3kt 32.5kt 216kt
fiducial 0.68kt 22.5kt 187kt

ID Photocover-
age

20% 40% 40%

ID PMTs 948 (50cm ) 11129 (50cm ) 40000 (50cm )
OD PMTs 123 (50cm ) 1885 (20cm ) 6700 (20cm )
Single-photon
detection effi-
ciency

unknown 12% 24%

Single-photon
timing resolu-
tion

4ns 23ns 1ns

Table 2.1: Comparison of Kamiokande, Super-Kamiokande and Hyper-Kamiokande
specifications.

achieved through the deployment of two cylindrical detectors, each featuring a fiducial

volume of 187 kt. The entire operational span spans a decade, distributed as 2.5 years

in neutrino mode and 7.5 years in antineutrino mode, thereby maintaining a 1:3 ratio.

This configuration ensures a balanced representation of both neutrino and antineutrino

signal events within the experiment’s data collection.

2.3.4 Tokai to Hyper-Kamiokande to Korea

Tokai to Hyper-Kamiokande to Korea (T2HKK) [83] emerges as another innovative con-

figuration that branches from the T2HK initiative. Within this proposal, a distinctive

plan materializes, involving the placement of the second cylindrical detector module

from HK in Korea. Positioned at a considerable distance of 1100 km from the J-PARC

proton synchrotron facility, this supplementary detector establishes the framework for

the T2HKK experiment. Under the T2HKK configuration, two far detector set-ups are

envisioned. The first, stationed at a distance of 295 km within the HK site, retains

fidelity to the T2HK configuration. Meanwhile, the second detector, situated in Korea

at the 1100 km mark, introduces an innovative dimension. Both of these detector mod-

ules encompass fiducial volumes of 187 kt, underpinned by the principles of the water
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Cherenkov technique for neutrino detection. At an angular deviation of 2.5◦ from the

neutrino beam axis, the detectors are meticulously positioned, thereby ensuring optimal

data collection. It is noteworthy that the peak of the second oscillation maximum is

projected to occur at an energy of 0.66 GeV.

In this study, it is imperative to note that we have adopted an approach where the

background and systematic uncertainties inherent to the T2HKK setup mirror those

attributed to the T2HK configuration. This strategy allows for a coherent and consistent

analysis of both setups within our study framework.

Experiment details Channels
Normalization error

Signal Background

DUNE

Baseline = 1300 km νe(ν̄e) appearance 2 % (2%) 5 % (5 %)

L/E = 1543 km/GeV

Fiducial mass = 40 kt (LArTPC) νµ(ν̄µ) disappearance 5 % (5 %) 5 % (5 %)

Runtime = 3.5 yr ν + 3.5 yr ν̄

T2HK

Baseline = 295 km νe(ν̄e) appearance 3.2 % (3.9 %) 10 % (10 %)

L/E = 527 km/GeV

Fiducial mass = 187× 2 kt (WC) νµ(ν̄µ) disappearance 3.6 % (3.6 %) 10 % (10 %)

Runtime = 2.5 yr ν + 7.5 yr ν̄

T2HKK

Baseline = 295,1100km νe(ν̄e) appearance 3.2 % (3.9 %) 10 % (10 %)

L/E = 527,1964 km/GeV

Fiducial mass = 187; 187 kt(WC) νµ(ν̄µ) disappearance 3.6 % (3.6 %) 10 % (10 %)

Runtime = 2.5 yr ν + 7.5 yr ν̄

Table 2.2: Detector details and systematic uncertainties for different experiments.
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Figure 2.3: Schematics of T2HK (left) and T2HKK (right) experiments [21, 22].

2.4 Chapter Summary

In this chapter, we commence by providing an in-depth examination of the compre-

hensive framework encompassing various potential non-standard interactions (NSIs) of

neutrinos. These NSIs serve as a compelling avenue for delving into novel physics within

the leptonic sector. Subsequently, we delve into the formalism of scalar NSI, a realm

that has garnered recent attention in the scientific literature. The impact of scalar NSIs

manifests as a correction dependent on the nature of matter in relation to the neutrino

mass term, rendering the exploration of its effects on diverse neutrino experiments par-

ticularly intriguing. Furthermore, we scrutinize the statistical framework adopted to

assess the influence of NSIs on these neutrino experiments. To conclude, we provide an

in-depth exploration of the specifics pertaining to various neutrino experiments incor-

porated into our simulation study.
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