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2.1. Computational Chemistry: A General Introduction  

Computational chemistry is a branch of chemistry that uses methods of theoretical 

chemistry, incorporated into various computer programs and softwares, to calculate the 

structures and properties of small molecules, large biomolecules as well as group of 

molecules [1-2]. The phrase "computational chemistry" is mentioned long back in Sidney 

Fernbach & Abraham Haskell Taub's 1970 book "Computers and Their Role in the 

Physical Sciences," as in “It seems, therefore, that 'Computational Chemistry' can finally 

be more and more of a reality.” [3]. Over the years, advancements in computing 

processing capability eventually shrank the gap between theoretical and experimental 

results while resolving issues in a variety of scientific fields involving both macroscopic 

and microscopic phenomena.  

Results from computational simulations assist in solving the information obtained 

during chemical experiments, to complement the experimental results with the 

theoretical models, and in some cases predicts hitherto unobserved chemical phenomenas 

as well [2]. One can readily establish the mechanism of any chemical reaction with the 

aid of molecular modelling tools, which is one example of how computational chemistry 

can help one grasp the fundamentals of any type of chemical problem that is occasionally 

not directly supported by experimental evidence. Techniques in computational chemistry 

focuses mainly on investigating the electronic structures, vibrational frequencies, relative 

energies, chemical reactivities, electron and charge distributions, various physical and 

chemical properties, potential energy surfaces (PES), transition states and reaction 

pathways, host-substrate interactions, thermodynamic and kinetic studies and 

calculations of many other molecular and bulk physical and chemical properties. It is a 

tool widely used in the design of new drug molecules and materials. However, the idea of 

molecular modelling has little bearing on the objectives of chemistry. Therefore, it is 

important to realize that molecular modelling creates a representation of the real world, 

and that we study the model rather than the real world. A model is legitimate as long as it 

accurately depicts the real world. 

Computational chemistry also paves the door for research into complex 

biological problems and designing of drugs [4-5]. The traditional process of drug 

discovery and development is highly complicated, time-consuming, resource-intensive 

and expensive with only a handful of drug moieties getting the approval from the FDA 

making the process of discovering and developing new pharmaceuticals exceedingly 
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arduous. Although the structure-based drug-design method was developed in the 1980s, 

it wasn't until the last decade that a variety of computational tools and models emerged 

for a better understanding of the processes at a fundamental molecular level. In recent 

times, a more popular computer-aided drug design (CADD) has been the tool that has 

given the drug delivery processes a greater proficiency [6-7]. Such methods consist of 

numerical techniques of Ab-initio method, semi-empirical molecular mechanics (MM) 

methods as Monte Carlo (MC), Molecular Dynamics (MD) simulations as well as 

Quantum Mechanical (QM) methods as density functional theory (DFT) and hybrid 

QM/MM techniques to determine both qualitative and quantitative informations. These 

are the most important tools of computational chemistry, including the concept of a 

potential energy surface (PES) understanding of which is crucial to learn molecular 

modeling in chemistry [8]. Accordingly, in this chapter, we will provide a brief summary 

of the tools that have been used to carry out the computational calculations included in 

this thesis. 

2.2. Computational Chemistry Tools 

Using computers to uncover chemistry problems, computational chemistry opens 

the door to research into complex chemical and biological problems. In the peripheral 

area of computational chemistry, the primary emphasis is on methods for obtaining 

structural information, physical & chemical characteristics, energetics, thermochemistry, 

and kinetics through computer simulations. There are five main branches that make up 

the core of computational chemistry. These include Molecular Mechanics (MM), 

Molecular Dynamics (MD), Ab-initio methods, Semi-empirical methods and Density 

Functional Theory (DFT). The tools used to complete the work described in this thesis 

are briefly detailed in the following subsections, with a focus on MD and DFT. 

2.2.1. Concept of Potential Energy Surface (PES) 

A key idea in computational chemistry is the potential energy surface (PES), which is the 

mathematical or graphical link between energy and molecule geometry. The foundation 

of computational chemistry is the idea of a PES, which expresses the connection between 

a species’ energy and shape (Figure 2.1) [8]. For instance, in a di-atomic molecule A-B, 

the geometry of the molecule can only be changed by one parameter, the bond length, 

which results in a one-dimensional PES known as 1D-PES. Similarly, 2D-PES is 

produced if the energy of the molecule is dependent on the bond length and bond angle.  
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Figure 2.1: Example of points on potential energy surface (PES) of a random molecule. 

The stationary point is a location on the potential energy surface (PES) at which 

the surface is flat, i.e., parallel to the horizontal line (or plane) corresponding to the 

geometrical parameter(s), is another essential feature of the PES. In mathematical terms, 

the first derivative of energy with respect to each geometric parameter represents a 

stationary point, and it always equals zero. 

                             (1) 

 

The minima and the saddle point are the two different categories of stationary places on 

the potential energy surface. A saddle point is a maximum along the reaction coordinate 

and a minimum along all other directions, whereas a minimum is a minimum along all 

directions. On the PES, certain minima are referred to as local minima, while the lowest 

energy minimums are known as global minimums (Figure 2.1). The transition state, 

which connects two minimums in the reaction coordinate, is the first order saddle point. 

They can be differentiated mathematically by their second derivatives: 

For a minimum,    for all q.            

For a transition state,  for all q, except along the reaction coordinate, 

 for all q, along the reaction coordinate. 
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The fact that the second derivative of energy with respect to a single geometric 

coordinate is negative is a crucial feature of a first-order saddle point. Higher-order 

saddle points, often known as hilltops, are the sites on PES where the second derivative 

of energy is negative with respect to many coordinates.  

Several computational tools and models for a deeper understanding of the processes at a 

fundamental molecular level have only recently evolved, despite the fact that the first 

structure-based drug-design strategy was created in the 1980s. CADD based on the 

various computational tools is the present day go-to technique for improving the drug 

discovery and delivery process's competency. 

2.2.2. Molecular Mechanics (MM) 

The late seventeenth-century discovery of the laws of motion by Sir Isaac Newton set the 

groundwork for classical mechanics and opened the door to understanding the 

characteristics and behaviour of macroscopic objects [9]. The same theory of classical 

mechanics serves as the foundation theory of molecular mechanics (MM) [10]. MM is 

expressed in terms of a mathematical model of a molecule called the "ball and spring" 

model, which is set for optimization and views atoms and bonds as a collection of balls 

held together by springs. A molecule's potential energy can be expressed as the product 

of terms pertaining to bond stretching, angle bending, dihedral angles and nonbonded 

interactions. The mathematical expression and its parameters together form a force field, 

utilized to minimize energy. Creating a forcefield involves giving these terms precise 

mathematical representations, and parameterizing the field involves assigning numerical 

values to the forcefield's constants. The type of force field that is used determines the 

accuracy of this procedure.  

The potential energy of the molecule is calculated by the parametric function of 

coordinates and is expressed mathematically as 

                     (2) 

Here,  Estretch = energy term for bond stretching; Ebend = energy term for bond angle 

bonding; Etorsion = energy term for dihedral angle rotation; Evdw = energy term for van der 

Waals energy; EHB = energy term for hydrogen bonding and Eelectro = electrostatic 

interactions between atoms or groups which are nonbonded. 

electroHBvdwtorsionbendstretch EEEEEEE +++++=
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A common application of MM is to generate suitable geometries as input for 

other computations. As long as the forcefield has been meticulously specified for the 

different kinds of molecules being studied, these computations may be completed 

quickly and accurately. In addition to being quick and accurate, MM requires little 

processing resources and offers suitable initial geometries for quantum mechanical 

computations. Since it disregards electrons, it can only supply parameters via analogy, 

such as the dipole moment. Regarding the suitability of MM parameters care must be 

taken. Even in cases when they are relative minima, stationary points from MM might 

not be global minima. Therefore, calculating the energy and geometries of transition 

states is a limited advantage of using MM. For polar compounds, ignoring the effects of 

the solvent can lead to inaccurate conclusions. MM provides strain energies, which can 

be parameterized to provide enthalpies of formation. For structurally comparable 

isomers, the difference of these strain energies represents enthalpy differences. Relative 

isomer concentrations are, strictly speaking, dependent on free energy differences. Even 

when accurately recognized, the main conformation is not always the reactive one.  

One of the most significant uses of MM is in the pharmaceutical industry's drug 

design process. One such use of MM is in the analysis of potential drug candidates' fit 

into biomolecules active sites (molecular docking) and the associated QSAR models. 

MM is currently widely used in organic synthesis, allowing chemists to predict which 

products would be preferred and to map out more practical paths to a target molecule 

than were previously feasible. MM is used in Monte Carlo simulations to determine the 

energies of the several randomly produced states, and it is also used in molecular 

dynamics (MD) to generate the forces acting on molecules and hence to calculate their 

motions. 

2.2.3. Molecular Dynamics (MD) 

The flexible and dynamic state of the molecules in the biological environment is crucial 

in defining their functions [11]. Conventional experimental techniques, like X-ray 

crystallography, NMR can produce static images of proteins and nucleic acids at a 

particular moment in time, but they are unable to produce dynamic information about the 

motions that take place in real time [12]. Molecular Dynamics (MD) is a computational 

tool used to examine the physical movements of atoms and molecules through the 

elaboration of N-body simulation, and is averaged throughout time [13-14].  
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MD in theory is governed by the same classical Newton's second law of motion, 

which states F = ma, where 'F' stands for the force applied individually to each atom, 'm' 

for mass, and 'a' for acceleration [9]. For a predetermined amount of time, the atoms and 

molecules are permitted to interact, providing insight into the system's dynamic 

evolution. In essence, MD can ascertain the atoms' positions in relation to time and a 

trajectory is produced by the atomic coordinates and velocities moving through time. The 

equations of motion derived from Newton's laws of motion, are solved numerically to 

predict the trajectory of each particle in the system. The negative gradient of potential 

energy is used to calculate forces and is expressed as:  

      𝑚𝑖
𝑑2𝒓𝑖(𝑡)

𝑑𝑡2
=  𝐹𝑖                                             (3) 

Here, mi is the mass, ri(t) signifies the position vector for the ith particle and Fi denotes 

force acting on it [15].  

 By computing forces on each atom repeatedly and using the results to determine 

velocities and position coordinates, it is possible to determine the average motions of the 

system. This allows the simulation to capture the dynamic behavior of molecules as they 

move and interact. The structure, dynamics, thermodynamics, oscillations and structural 

changes of biological molecules as proteins, nucleic acids and their complexes can be 

thoroughly studied using MD simulations. It's particularly powerful for studying the 

dynamic aspects of molecular systems at the atomic level. The key concepts behind 

Molecular Dynamics include:  

2.2.3.1. Integration Algorithms to induce dynamic behaviour 

The availability of initial atomic coordinates and velocities is a prerequisite for starting 

MD simulations. After obtaining the atoms' position and velocity data, the trajectory's 

motion can be calculated by integrating the equations of motion. Among other well-

known techniques, numerical integration algorithms like Verlet [16] and Leap-frog [17] 

are used to obtain the positions and velocities of particles at each time step. In Verlet 

Algorithm positions are obtained in reference to a previously defined position using the 

numerical integration formula. Because there is less requirement for storage, the Verlet 

theorem is nevertheless widely used, despite its reduced precision. Determining position 

and speed simultaneously is not possible. The key feature of the leapfrog algorithm is 

that it separates the updates of position and velocity, which can be advantageous in 

certain simulations. Consequently, because the computations of potential energy and 



 

Chapter |2 

Page |2.7 

 

kinetic energy are done separately, it is impossible to determine the total energy. The 

choice of integration algorithm affects the accuracy and stability of the simulation. 

2.2.3.2. Ensemble Averages 

The calculations describing a macromolecular system's dynamics are performed at a 

fixed energy. The temperature and pressure are continuously kept at levels that closely 

mimic the biological environment in order to closely simulate it. A group of objects that 

are phase-space independent yet thermodynamically same is called an ensemble, or a 

macroscopic quantity. MD simulations are typically run for an ensemble of particles, 

representing a statistical sample of possible configurations [18]. Properties of interest, 

such as temperature, pressure, and energy, are often calculated as ensemble averages 

over time. There exist four categories of ensembles, contingent upon the variable that is 

fixed constant: 

 Micro canonical ensemble (NVE): The isolated system with constant atom 

number (N), volume (v) and equal energy (E) represents the NVE ensemble. 

 Canonical ensemble (NVT): This ensemble is characterised by a fixed number 

of atoms (N), same volume (V) and temperature (T). 

 Isobaric-Isothermal ensemble (NPT): This ensemble constitutes system with 

equal number of atoms (N), constant pressure (P) and temperature (T). 

 Grand Canonical ensemble (μVT): This ensemble is characterised by constant 

chemical potential (μ) along with constant volume (V) and temperature (T). 

Usually, the number of particles in the system selected for simulation is much lower than 

in the comparable real macroscopic system. The particles in MD simulations encounter 

boundary surfaces that are inconsistent with events seen in bulk environments since the 

simulations are carried out inside a solvation box. Furthermore, particles will evaporate 

from the system as atoms that are getting closer to the box's edge leave the system. 

2.2.3.3. Boundary Conditions 

MD simulations are conducted in a periodic box, meaning that when a particle exits one 

side of the simulation box, it re-enters from the opposite side. This avoids artifacts 

related to the simulation box's boundaries and allows for a more realistic representation 

of an infinite system. Periodic boundary conditions are the favoured boundary conditions 

among many researchers in the study of various simulation studies. 
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2.2.3.3.1 Periodic Boundary Conditions (PBC)  

 

2.2.3.4. Thermostats and Barostats 

To control the temperature and pressure of the simulated system, thermostats and 

barostats are often employed. These algorithms adjust the velocities and positions of 

particles to maintain desired thermodynamic conditions. MD simulations employ the 

Berendsen thermostat [20] to regulate temperature. V-rescale, also known as velocity 

rescale [21], is a more advanced version of the Berendsen thermostat. Every time the 

Berendsen thermostat steps, the velocity is updated continuously, and the rate of 

temperature change is proportionate to the difference between the system and bath 

temperatures. A barostat like the Parinello-Rahman barostat, which is also used to 

control temperature, is used to control pressure [22]. 

 

2.2.3.5. Time Step 

The time step is critical in MD simulations, representing the interval between successive 

updates of particle positions and velocities. Most significant biological changes occur in 

the nano-, micro-, and millisecond time frames. MD modeling today shows femtosecond 

motions, which guarantee numerical stability in the field of structural biology [23]. Most 

of the MD integrations were carried out using a 2.0 fs time step, employing the SHAKE 

algorithm on all the bonds involving hydrogen atoms. For non-bonding interactions, a 

cut-off distance of 10 Å has been used and the pair-list was updated at every 1000 steps. 

 

 

Figure 2.2: A representation of 

PBC. The arrows mark that as the 

blue-coloured particles in the 

primary box go out of the system, 

adjacent particles from image box 

replace them. 

An alternate method for carrying out bulk 

conditions in simulations is PBC (Figure 2.2) 

[19]. As seen in Figure 2.2, the main simulation 

box is encircled by translated copies of the boxes 

on both sides in such a way that, each time an 

atom exits the box, it is replaced by an atom from 

the twin box traveling at the same speed, keeping 

the initial particle count constant. The impression 

of a bulk solvent devoid of surface effects is 

created by the particles close to the edge 

constantly interacting with the particles in the 

remaining compartments. 



 

Chapter |2 

Page |2.9 

 

2.2.3.6. Force Fields and Development of Force Field Parameters 

Force fields are mathematical models that describe the interactions between particles in a 

molecular system. These interactions include bond forces, angle forces, dihedral forces, 

and non-bonded forces (van der Waals and electrostatic interactions) [24-25].  

As already discussed, the potential energy of the molecule is calculated by the parametric 

function of coordinates and is expressed mathematically as 

                   (1) 

Where,  Estretch = energy term for bond stretching; Ebend = energy term for bond angle 

bonding; Etorsion = energy term for dihedral angle rotation; Evdw = energy term for van der 

Waals energy; EHB = energy term for hydrogen bonding and Eel = electrostatic 

interactions between atoms or groups which are nonbonded. 

 The MM force field, a model that combines quantum computations with experimental 

data, is used to determine the forces involved in a simulation and are crucial for 

determining the forces acting on each particle at any given moment. Bonded interactions 

can be used to summarize a system's bond stretching, bond bending and torsional terms. 

On the other hand, weak van der Waals interactions and electrostatic interactions are 

determined using the Coulombic and van der Waals interactions (as Lennard-Jones 

potentials) [77].  

 Most simulations use a pair potential term to mimic V, which can be further 

classified into coulombic and non-coulombic terms as  

       𝑉(𝒓𝑖, 𝒓𝑗) =  
𝑞𝑖𝑞𝑗

𝑟𝑖𝑗
+ ф(𝒓𝑖𝑗).                                                          (4) 

The first term represents long-range electrostatic interactions between a pair of atoms 

with effective charges qi and qj while the latter term is a two-body short-range 

interaction. Long range interactions are given by Coulomb’s law as: 𝑉(𝒓) =  𝛴
𝑞𝑖𝑞𝑗

𝒓𝑖𝑗
. 

 Non-bonded interactions consist of either a Lennard-Jones 6-12 potential or a 

Buckingham potential, where the r-12 repulsion is replaced by an exponential term, and a 

Coulomb term. The Coulomb interaction has a fixed dielectric constant and can be 

modified by a reaction field, mimicking the effect of a homogeneous dielectric 

environment beyond the cut-off radius, including the effect of ionic strength. The non-

bonded functions can be modified by a shift function or a switch function that causes 

forces and their derivatives to be continuous at the cut-off radius. 

electroHBvdwtorsionbendstretch EEEEEEE +++++=



 

Chapter |2 

Page |2.10 

 

 In order to more closely resemble biological processes and produce more accurate 

results, the force fields have undergone substantial evolution over the past few years and 

are regularly modified. Force-fields for water are made to mimic the experimental values 

of vaporization enthalpy and water density [26]. Bonded term parameters are generally 

found using QM computations, using either ab initio or semiempirical techniques [27]. 

Existing force fields are empirically matched to liquid or solid-state systems in order to 

derive the van der Waals parameters [28]. In most models, partial charges were used to 

create electrostatic interactions with water that were well-adjusted. In AMBER [29], 

Cornell et al. used Ab-inito Hartree Fock computations. In most models, the torsional 

potential term of force fields is computed using QM computations in addition to 

empirical data [30]. Approaches like the Ewald technique that provide more accurate 

long-range interactions should be preferred when it comes to nucleic acids [31]. A few 

previously developed force-fields include AMBER [32], CHARMM [33], ENCAD [34], 

GROMOS96 [35] and OPLS-AA [36]. 

Every effort is being made in the current situation to get beyond the limitations 

placed on force fields. Through the integration of QM/MM, groups are attempting to 

address the current limitations in electronic information potential [37]. Calculating the 

MM component of the QM/MM technique remains challenging. To address chemical 

reactivity, reactive force fields are currently being actively developed. Simulations have 

become more computationally efficient as a result of the growing usage of polarization, 

even though it is still not fully developed to characterize non-bonded interactions. The 

use of GPUs and the development of high-performance computers (HPCs) 

supercomputers are examples of recent technological developments that have made it 

feasible to provide efficiency while lowering processing costs. 

Over the past few decades, MD techniques have improved to recognize the 

biological significance using pre-existing 3D structures [38-40]. This technique, in 

contrast to X-ray crystallography and NMR, enables us to simulate the motion of atoms 

inside a chemical system throughout time. Protein folding, ligand binding, 

conformational changes in proteins, and protein-protein binding are just a few of the 

biomolecular processes for which MD simulations have shown to be incredibly helpful 

in capturing key motions [41-43]. They provide valuable insights into the behavior of 

molecular systems, helping researchers understand complex phenomena such as protein 

folding, chemical reactions, and material properties at the atomic level. 



 

Chapter |2 

Page |2.11 

 

2.2.4. Ab-initio Methods 

Classical mechanics is however is unable to explain the behavior of microscopic entities 

like protons, neutrons, electrons and the elementary particles as quarks, leptons (such as 

the electron) and bosons (such as the photon). Theory of Quantum Mechanics (QM) 

governed by certain laws thus evolved as a solution to overcome the drawbacks of 

classical mechanics. These laws could accurately describe the structural and chemical 

characteristics of atomic and subatomic particles in the microscopic world. The laws of 

QM upon which the ab-initio approaches are founded, have shown to improve 

computation accuracy for microscopic systems [44-45]. Therefore, in computational 

chemistry, the ab initio method is an essential tool for examining the stability, 

physicochemical characteristics, and structure of various molecular systems at the 

microscopic level. Leading figures in the development of QM includes prominent 

scientist as Born, Pauli, Bohr, Schrödinger, Dirac and Heisenberg. Since QM covers the 

structural and physico-chemical characteristics of atoms, molecules, nanoparticles, and 

nanoclusters, it has attracted a lot of attention in the field of computational chemistry. 

2.2.4.1 Hartree-Fock Method 

Hartree-Fock theory is a fundamental approach in quantum mechanics, used to 

approximate the wave function of a many-body quantum system, typically atoms and 

molecules. Initially put forth by Hartree and Fock, popularly known as the HF theory, is 

the simplest method that interprets that every electronic motion may be described by a 

single electron wavefunction known as the orbital, and it is not directly dependent upon 

the other electrons instantaneous motions [46-47]. Hartree-Fock method approximates 

the total molecular wavefunction ψ as a Slater determinant made up of occupied spin 

orbitals, where each spin orbital is the result of multiplying a spin function by a 

conventional spatial orbital ψ. The goal of HF theory is to find a solution to the 

electronic Schrödinger equation such that the system's electronic energy can be excluded.  

The time-independent Schrödinger equation is expressed as: 

       (5) 

where,  stands for the Hamiltonian operator of a molecular system having of M nuclei 

and N electrons. E1 is the energy Eigen value.  

),....,,,,....,,(),....,,,,....,,(ˆ
212112121 MNiMNi RRRERRRH


 =

Ĥ
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One may compute the wave function for electrons moving in the potential field of 

positively charged fixed nuclei using the Born-Oppenheimer approximation. The Born-

Oppenheimer approximation is based on the notion that nuclear and electronic mobility 

in molecules can be distinguished from one another which results in a molecular wave in 

terms of nuclear locations and electron positions.  

Therefore, electronic Hamiltonian Ĥ is expressed as 

      Ĥelec = −
1

2
∑ ▽𝒊

𝟐𝑁
𝑖=1 − ∑ ∑

𝑍𝐴

𝒓𝑖𝐴
  + 𝑀

𝐴=1 ∑ ∑
1

𝒓𝑖𝑗

𝑀
𝑗>1

𝑁
𝑖=1

𝑁
𝑖=1                       (6) 

The electron's kinetic energy is represented by the first term in the equation, the 

attractive potential between electron I and nucleus A, which is separated by a distance r, 

is represented by the second term, and inter-electronic repulsion is represented by the last 

term. The nuclear factor is added independently to obtain the total energy of the system, 

and hence it is not included in this equation. The equation is in atomic units. 

By using the Schrodinger equation, the molecular energy can be written as the 

wavefunction's expectation value (E = <ψ|Ĥ|ψ>). One may obtain the HF equations by 

differentiating E with regard to the spin orbitals that make up the wavefunction. The 

spatial orbitals are represented as a linear combination of basis functions in order to be 

used in real-world computations. Though they can actually be any mathematical 

functions that produce a sensible wavefunction that is, a wavefunction that produces 

reasonable results when we perform the calculations-these are typically associated with 

atomic orbitals.  

The main idea of the HF theory is to replace the many electrons problem with a one-

electron problem in which election-electron repulsion is treated in an average way  

(∑
𝑍𝛼

𝒓1𝛼
𝛼 ) i.e.,  

 Ĥ𝑐𝑜𝑟𝑒(1) = −
1

2
▽1

2− ∑
𝑍𝛼

𝒓1𝛼
𝛼                                             (7) 

The primary flaw in the HF method is the improper treatment of electron 

correlation. Each electron is thought to move in an electrostatic field, which is 

represented by the average positions of the other electrons. However, in reality, electrons 

avoid one another more effectively than this model suggests because each electron 

actually perceives the other as a moving particle, and they both adjust (correlate) their 

motions to reduce the energy of their interactions.  
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Post-HF techniques including the Møller-Plesset (MP), configuration interaction 

(CI), and coupled cluster (CC) approaches handle electron correlation more well. By 

permitting the electrons to live in both formally vacant MOs (virtual MOs) and 

conventionally occupied MOs (the n lowest MOs for a 2n-electron species), these 

techniques reduce the energy of electron-electron interactions. 

The ab initio method is mostly used to calculate molecular energies, vibrational 

frequencies, spectra (IR, UV, and NMR), ionization energies, electron affinities, and 

features such as dipole moments that are directly related to electron distribution or 

distribution. These calculations have both theoretical and practical applications; for 

instance, spectroscopy is crucial in identifying and comprehending novel molecules, 

enzyme-substrate interactions rely on shapes and charge distributions, and reaction 

equilibria and rates depend on energy differences. When evaluating calculation results, it 

can be crucial to see estimated phenomena such as molecular vibrations, charge 

distributions, and molecular orbitals shown. However, the computational cost of using 

ab-initio computations to attain accuracy is high for comparatively large molecular 

systems. 

2.2.5. Semi-empirical Method 

Semi-empirical methods were created to offset the high computing expense of utilizing 

Ab-initio simulations to attain accuracy for somewhat large molecular systems. To make 

the simulations easier to understand, semi-empirical approaches use parameters obtained 

from experimental data and is referred to as a "semi-empirical" because it is developed 

using both theory and experimental (“empirical”) data [48-50]. The method is an 

intermediate between molecular mechanics and ab-initio approaches which refines the 

molecular energy and wave function by diagonalizing the Fock matrix. The methods 

correctness is dependent on the calculations parameters which yield rather reasonable 

results when used with suitable parameters when determining the energy and structure of 

the chemical system. However, results obtained from this method are not trustworthy 

until they are compared to either the high-level ab-initio calculations or the experimental 

collection of data. 

Semiempirical approaches make use of three approximations: (a) Removing core 

electrons from the computations; (b) Using the fewest possible basis sets; and (c) Using 

fewer two-electron integrals. CNDO, PPP, NDDO and INDO are only a few of the 
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processes that fall under the semiempirical method. The differential of overlap integral is 

set to zero in all four of these processes, which make use of the Zero Differential Overlap 

(ZDO) approximation. 

SCF semiempirical methods PPP, CNDO, INDO, and NDDO have been 

developed in an increasing order of sophistication. While CNDO, INDO, and NDDO 

employ all of the valence electrons, the PPP technique is restricted to p electrons. The 

differential of the overlap integral is set to zero in all four because they make use of the 

ZDO approximation, which significantly lowers the number of integrals that must be 

calculated. These techniques were previously mostly parameterized using experimental 

values (ionization energies, electron affinities), with the exception of PPP and CNDO, 

which also occasionally used the outcomes of minimal-basis-set, or low-level, ab initio 

computations. Of these early techniques, only INDO/S and its variation ZINDO/S, which 

are parameterized to replicate experimental UV spectra, are still widely used today. 

These days, NDDO-based AM1 and PM3 semiempirical SCF approaches are the 

most widely used. They are meticulously parameterized to replicate experimental 

variables. Similar in performance, AM1 and PM3 often produce quite acceptable 

geometries but less than ideal formation heats and relative energies. Relatively little-used 

SAM1 (semi-ab initio method 1) is a variant of AM1 that is thought to be superior to 

AM1. In the near future, extensions of AM1 (RM1) and PM3 (PM6) are probably going 

to become the norm for general-purpose semiempirical approaches since they appear to 

be significant advancements.  

2.2.6. Density Functional Theory (DFT) 

The solution to the 3N-dimensional Schrödinger equation for the wave function 

(ψ) typically evades the question of how to handle a system of N-interacting electrons in 

an external potential . This problem is recast using DFT in terms of a universal 

functional of the density  and the electronic-density distribution n(r). A system 

with N electrons would have a wave function with three coordinates for each electron 

and an additional coordinate for the spin, for a total of 4N coordinates. In contrast, 

electron density depends only on three coordinates, regardless of the number of electrons 

in the system. This illustrates the advantage of DFT over other approaches. Thus, 

compared to the ab-initio methods which are the focus of wave function-based theory, 

Density Functional Theory (DFT) locates electrons precisely because it works with 
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electron density rather than individual electrons. Because of this, regardless of system 

size, the electron density keeps the same number of variables constant while the wave 

function's complexity rises with the number of electrons. With the introduction of 

electron density in 1965, Kohn and Sham [51] laid the groundwork for the current use of 

DFT in computational chemistry. As a result of the method's full potential and wide 

range of applications being made apparent by advances in computing power, Walter 

Kohn was awarded the 1998 Nobel Prize in Chemistry for his contributions to the 

development of Density Functional Theory (Figure 2.3). Over the past few decades, DFT 

has emerged as the primary technique for simulating chemical systems using quantum 

mechanics. Quantum chemists have also embraced it in recent years, and it is now 

extensively utilized for the simulation of molecular energy surfaces.  

 

Figure 2.3: Walter Kohn and John A. Pople received Nobel Prize in chemistry in 1998. 

(Picture source: http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1998/) 

The problem of solving many electrons Schrödinger equation is replaced by the 

problem of finding sufficiently accurate approximations to  and then solving 

appropriate single electron equations. Finding adequate approximations to and then 

solving suitable single electron equations takes the role of the issue of solving the many 

electrons Schrödinger equation. 
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2.2.6.1 The Kohn-Sham Formalism  

The Hohenberg-Kohn theorems are foundational principles in the framework of Density 

Functional Theory (DFT), formulated by Pierre Hohenberg and Walter Kohn in 1964 and 

laid the groundwork for the development of DFT. The foundation of density functional 

theory thus lies in the two Hohenberg-Kohn theorems, which postulates that an atom's or 

molecule's ground-state properties are dictated by its electron density function and that a 

trial electron density must provide an energy that is either larger than or equal to the true 

energy. But theorem is true only if the exact functional is used. With the approximate 

functionals in use today, DFT can give an energy below the true energy. 

First Hohenberg-Kohn Theorem: This theorem states that the external potential (Vext) 

of a many-electron system uniquely determines its ground-state electron density (n(r)). 

In simpler terms, this theorem asserts that the ground-state electron density is a unique 

functional of the external potential. Mathematically, it can be expressed as: Vext(r) → 

n(r). This theorem implies that the ground-state properties of a system, such as energy, 

electron density, and other observables, can be determined solely from the electron 

density, without explicit knowledge of the wave function. 

Second Hohenberg-Kohn Theorem: This theorem establishes the existence of a 

universal functional of the electron density, known as the "universal functional" or 

"universal energy functional" (F[n]) which uniquely determines the ground-state energy 

of a system. Mathematically, it can be expressed as: F[n] → Egs where F[n] the universal 

functional and Egs is the ground-state energy. This theorem implies that although the 

exact form of the universal functional is unknown, it exists and uniquely determines the 

ground-state energy for any given electron density. 

These theorems provide a rigorous foundation for the development of DFT, 

which has become an essential tool for predicting the properties of molecules, solids, and 

other materials. By treating the electron density as the central quantity of interest, DFT 

offers a computationally efficient approach to solving the quantum many-body problem, 

enabling the study of complex systems that would be intractable using traditional 

quantum mechanical methods. 

The Kohn-Sham equations are named after Walter Kohn and Lu Sham, who introduced 

them in 1965, are a set of equations derived to map the many-body problem of 

interacting electrons onto a set of non-interacting electrons moving in an effective 
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potential. The KS equations are solved self-consistently to obtain the ground-state 

electronic structure of a system. Within the Kohn-Sham formalism, which states that the 

ground state energy of a non-degenerate electronic system and the corresponding 

electronic properties are uniquely defined by the electron density, for a set of interacting 

electrons, DFT calculations can be carried out very conveniently in terms of single 

particle orbitals. The central premise in the Kohn-Sham approach is that a system's 

energy functional may be divided into two parts: an exact part that treats electrons as 

non-interacting particles and a minor correction term that takes the electron-electron 

interaction into account. 

The electronic energy is given by  

        (8) 

where,  Kinetic energy of non-interacting electrons,  Nuclear-

electron interaction,  Electron-electron repulsion,  Correction to 

the kinetic energy derived from the electron-electron interaction,  Non-

classical correction to the electron-electron repulsion energy. 

The above equation can be expressed as: 

                 (9) 

where, n is the number of electrons and N is the number of nuclei.  ½ for the Vee term is 

required to prevent double counting each electron-electron term. The exchange-

correlation term,  is given as:  

                                                                                 (10) 

And, the ground state electron density can be written as a set of one electron orbitals 

given by:                        (11)

 In the Kohn-Sham approach the energy of a system is expressed as a divergence 

from the energy of an idealized system with noninteracting electrons. Since the idealized 

system's wavefunction can be precisely represented by a Slater determinant 

(wavefunctions and orbitals added as a mathematical convenience to get at the electron 
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density), the energy of the system can be computed exactly. The sole unknown term in 

the expression for the DFT energy is the exchange-correlation functional, which is found 

in the relatively small difference between the real and idealized system's energies. The 

primary challenge with DFT is estimating this functional. The Kohn-Sham equations can 

be obtained, in an analogy to the Hartree-Fock equations, from the energy equation by 

reducing the energy with respect to the Kohn-Sham orbitals. The KS orbitals are a 

collection of molecular orbitals that are qualitatively comparable to the orbitals of 

wavefunction theory. The molecular orbitals of the KS equations are enlarged using basis 

functions, and the energy is iteratively refined using matrix methods. 

The one-electron KS operator plays a crucial role in the KS equations. It is constructed to 

mimic the behavior of the true many-electron system while being mathematically 

tractable. The key point to note is that the one-electron KS operator is conceptually 

similar to the Fock operator used in Hartree-Fock theory, with a notable difference: the 

exchange operator in Hartree-Fock theory is replaced by an exchange-correlation 

potential, denoted as VXC in DFT. 

In Hartree-Fock theory, the exchange operator accounts for the antisymmetry of the wave 

function, ensuring that the total wave function of the system obeys the Pauli exclusion 

principle. Additionally, it captures a portion of the electron correlation effects. However, 

in DFT, the exchange-correlation potential (VXC) serves a dual purpose: 

Exchange Contribution: Like the exchange operator in Hartree-Fock theory, 

VXC ensures the correct antisymmetry of the electron density, thus handling the exchange 

effects. 

Correlation Contribution: VXC also incorporates the effects of electron correlation 

beyond what is captured by the exchange term alone. 

By including both exchange and correlation effects in the exchange-correlation potential, 

the one-electron KS operator effectively addresses both the Hartree and exchange terms 

in the total electronic energy expression, offering a computationally efficient approach to 

solve for the electronic structure of systems. This understanding sets the stage for 

discussing the approximations employed in DFT, such as LDA and GGA, which aim to 

approximate the exchange-correlation potential VXC to make calculations feasible for 

real-world systems. 
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2.2.6.1.1. Local Density Approximation (LDA) 

Local density approximation (LDA) is the simplest approximation that treats the electron 

density as roughly equivalent to that of a homogeneous electron gas and pairs two 

electrons with opposite spins in each KS orbital. This approximation assumes that 

exchange energy (Exc) at any point in space depends on the electron density at that point 

[15]. The exchange correlation function Exc[ρ(r⃗)] is expressed as:   

                         EXC
LDA[ρ] = ∫ ρ(r⃗)εXC [ρ(r⃗)]dr⃗                                  (12) 

where, εXC [ρ(r⃗)]  is the exchange-correlation energy per particle of a homogeneous 

electron gas of density ρ(r⃗). The exchange correlation energy εXC [ρ(r⃗)] is a combination 

of two parts: 

εXC[ρ〈r〉]= ϵX[ρ〈r〉]   +   ϵC[ρ〈r〉] 

εXC[ρ〈r〉]= − 3/4(3/pi)
1

3⁄ (ρ(𝐫))
1

3⁄
 +  εc

vwn[ρ(𝐫)]                

The first term represents the exchange energy which is attributed to the exchange of an 

electron in an electron gas and the second term gives the description of correlation 

energy that evolved from the instantaneous movement of electron as a result of which 

they come close to each other and are repulsed. The implementation of the exchange 

correlation energy in the equation brings accuracy in the energy, structure and other 

properties of the system than the HF approximation having higher computational cost. 

However, the assumption of a homogeneous electron gas in the system results a rather 

poor calculated energy in LDA functional. LDA has been largely replaced by methods 

which use gradient corrected (“nonlocal”) functionals.  

2.2.6.1.2. Generalized gradient approximation (GGA) and Meta-generalized 

gradient approximations (meta-GGA) 

The assumption of homogeneous electron gas in LDA is not found to be robust in 

calculating the ground state energy of a molecular system. Hence, GGA functional are 

developed to bring accuracy in the exchange-correlation energy which accounts not only 

the electro density but also the gradient of the electron density. GGA assign one set of 

spatial orbitals to a-spin electrons, and another set of orbitals to b-electrons; this latter 

“unrestricted” assignment of electrons constitutes the local-spin-density approximation 

(LSDA). In 1998, a GGA functional B88 was developed by Becke. The EXC
GGA is 
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comprised of two parts exchange and correlation . Further, 

many correlation functionals are developed; among them most popular is LYP functional 

developed by Lee, Yang and Parr. The other functionals are Perdew 1986 (P86), Perdew-

Wang correlation functional (PW91), combination of B88 with LYP (BLYP) and Perdew-

Becke-Ernzerhof exchange-correlation functional (PBE).  

A refinement in the GGA functionals was done by implementing additional semi-

local information ahead of the first order density gradient that have in GGA functional. 

These new set of functionals are termed as the meta-GGA functional and they explicitly 

depend on the Laplacian of the spin density or the local kinetic energy density. Examples 

of meta-GGA functional are TPSS, M06-L, B95, B98 etc. 

2.2.6.1.3. Hybrid Functionals 

To bring more accuracy in the exchange-correlation energy, further development of 

functional has been made in the approximation. In the hybrid functional, a percentage of 

Hartee-Fock exchange is introduced with the correlation functional and the energy is 

expressed as,                                                      (13) 

On the popular hybrid functional B3LYP energy is given by, 

 

where, the parameters a, b & c are the empirical parameters that control the contribution 

of each term in the functional, determined by fitting experimental data and calculated 

data for the atomization energies, ionization potentials and proton affinities of second 

and third period elements. These parameters are typically optimized to provide the best 

overall performance across a range of chemical systems and properties. VWN is the 

Vosko, Wilk and Nusair functional and LYP is Lee, Yang and Parr functional. Other 

popular hybrid functionals are B3P86, B3PW91, O3LYP (Becke Three-Parameter Hybrid 

Functionals), MN15, M11, MN12-SX, M06, M06-2X, TPSSh, PBE0 etc. Range-

separated hybrids are a type of exchange-correlation functional that aims to address the 

long-range and short-range electron-electron interactions differently. These functionals 

are particularly useful for systems with large band gaps, charge transfer excitations, and 

other properties where the standard hybrid functionals may fail. Examples of long range 

hybrids include LC-wHPBE, CAM-B3LYP and short range include wB97X, wB97X-D. 

  GGA GGA GGA

XC X CE E E= +

           HF DFT

xc x xcE E E= +

( )3 88 1    B LYP LDA HF B LYP
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2.2.6.2. Basis Set  

The atomic or molecular orbitals within an atom or molecule are represented 

mathematically by a basis set, limiting every electron to a specific area of space. The 

atomic orbitals are combined linearly to form the molecular orbitals in the Ab Initio 

approach. The basis sets are classified into two categories Slater type Orbitals (STOs) 

and Gaussian Type orbitals (GTOs) [52-53]. STOs are shown to be the exact solutions to 

the problem of hydrogen atoms and they offer a rather accurate description of atomic 

wave functions. Additionally, it is capable of approximating the proper behavior at the 

nucleus. Gaussian type orbitals (GTO), however, are developed as alternatives because 

of the computing challenges. GTOs are made by the linear combination of Primitive 

Gaussian Functions, described by a radial dependence and are frequently used basis 

functions. There are various types of basis function as the Minimal Basis Sets, Split 

Valence Basis Sets, Numerical basis sets, Polarization Functions, Diffuse Functions, 

Effective Core Potentials.  

DFT is quite versatile and finds applications in various scientific fields with 

prominent uses being in used to study the electronic structure of materials, solids, 

including semiconductors and insulators helping to predict and understand properties 

such as electronic band structures, crystal structures, and magnetic properties. In the 

realm of chemistry, DFT is employed to investigate molecular structures, bond energies, 

reaction mechanisms, and spectroscopic properties, particularly useful for understanding 

the behavior of large molecules and complex systems. DFT is valuable in the study of 

catalysis, providing insights into the mechanisms of chemical reactions occurring on 

catalyst surfaces. This is crucial for designing more efficient catalysts for industrial 

processes. DFT plays a role in computational drug design by providing insights into the 

electronic structure and properties of drug molecules. It helps in understanding 

interactions with target proteins and predicting molecular properties. It can be applied to 

study enzyme reactions, protein-ligand interactions, and other biological processes at the 

molecular level. DFT helps in predicting and interpreting the optical properties of 

materials, such as electronic excitations and optical spectra. This is crucial for designing 

materials for applications in optics and photonics. Overall, Density Functional Theory is 

a powerful tool that spans various scientific disciplines, contributing to a deeper 

understanding of the fundamental properties of matter and guiding the development of 

new materials and technologies. 
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2.3. Softwares Packages used to carry out the computational work 

2.3.1. The Gaussian Package 

Gaussian is a computing program, first made available as Gaussian 70 by John Pople and 

his research team in 1970 [51]. Based on the foundational principles of quantum 

mechanics, the Gaussian algorithm predicts molecular structures, vibrational frequencies, 

relative energies, structures and properties of molecules which are experimentally 

challenging to observe i.e., the short-lived intermediates and transition structures, 

thermo-chemical properties and kinetics of a molecular system or a chemical reaction. 

With progressing time and research, the software has been updated at regular intervals 

de-bugging the errors and making it feasible and viable with advancing computing 

facilities. The most popular version of Gaussian, is Gaussian 09; however, Gaussian 16 is 

the most recent version employed in the quantum chemical computations. As per 

availability we have used Gaussion09 for the various DFT related calculations [54]. 

2.3.2. The AMBER MD Package 

Molecular dynamics (MD) allows the study of biological and chemical systems at the 

atomistic level on timescales of femtoseconds to milliseconds. Not only does it provide a 

means of tracking processes that are challenging to identify using experimental methods, 

it also enhances experiment. Numerous software packages exist for performing MD 

simulations of which AMBER is one of the widest used for nucleic acid simulations [55]. 

AMBER is a collection of simulation programs for biomolecules. It was started in the 

latter part of the 1970s and is been maintained up by an active development community 

since then. Originally developed under the leadership of Peter Kollman, a large group of 

people actively collaborated in the development of Amber: Carlos Simmerling at Stony 

Brook; Adrian Roitberg at the University of Florida; Tom Cheatham at the University of 

Utah; Ray Luo at UC Irvine; Ken Merz at Michigan State University; Maria Nagan at 

Stony Brook; Dan Roe at NIH; Junmei Wang at the University of Pittsburgh; Darrin York 

at Rutgers University; and many more.  

The software refers to two different things. Firstly, it is a collection of molecular 

mechanical force fields for biomolecule simulation; these force fields are used in many 

different simulation programs and are available to the public. Secondly, it provides a 

collection of demonstrations and source codes for molecular simulation programs. As per 

availability we have used AMBER18 for the various MD related calculations [56]. 
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