Chapter 6

A Three-Step Two-Grid DG
Method for the Kelvin-Voigt Model

In this chapter, we propose and study a two-grid algorithm based on DG approximation
for the equations of motion arising in Kelvin-Voigt viscoelastic fluid flow model. Similar
to the previous chapter, the first step consists of discretizing the nonlinear system
utilizing DG method in the space direction and solving the system on a coarse grid
Ey with grid size H. Then, by employing the coarse grid solution, Newton’s iteration
type linearization is carried out and we find the approximate solutions for the resulting
system on a fine grid &, with size h in the second step. However, unlike the previous
chapter, a third step is introduced, which is a correction step for the solutions of the
second step. A modified final solution is produced in this third step, by solving a
different linear problem on the fine grid.

Optimal L? and energy-norm error estimates for velocity and L?-norm error estimates
for pressure are derived for an appropriate choice of coarse and fine grid parameters.
We further discretize the two-grid DG model in time, using the backward Euler method
and derive the fully discrete error estimates. Finally, numerical results are presented

to confirm the efficiency of the proposed scheme.

6.1 Introduction

We recall here the DG weak formulation of the Kelvin-Voigt viscoelastic fluid flow
(3.1)-(3.3) on the discontinuous spaces X and M from Chapter 3: Find (u(t), p(t)) €
X x M, t >0, such that

(1), v) + ka(u(t), v) + va(u(t), v) + *O(u(t), u(t),v)
201



202

+b(v, p(t)) = (f(t), v) VveX, (6.1)
b(u(t),q) =0 Vq €M, (6.2)
(u(0), v) = (ug, v) Vve X. (6.3)

For the Kelvin-Voigt model with forcing term f = 0, the two-grid technique has
been applied by Bajpai et al. [11, 16] with classical finite element approximation for
spatial discretization. A second order accurate backward difference scheme for time
discretization has been employed in [16]. Also, optimal velocity error estimates in
L>(L?) and L=(H")-norms with h = O(h?>?) and h = O(h*~?%), respectively, and
pressure error estimates in L*°(L?)-norm when h = O(h®~%’), have been derived, where
6 > 0 is arbitrarily small. The semi-discrete scheme of [16] has been discretized in
time by the Crank-Nicolson scheme in [11], and optimal fully discrete error estimates
are established.

However, to the best of our knowledge, the two-grid techniques in conjunction with
the DG methods for the Kelvin-voigt model have never been applied. Taking a leaf
out of Chapter 5, we aim to obtain optimal estimates in energy norm for velocity
and in L2-norm for pressure approximations, for similar relation between H and h.
Nevertheless, to attain optimal L?-norm estimates of velocity, further correction is
required as has been carried out in the CG case [16]. Thus, following the algorithm
employed in [16], we have implemented a similar type of algorithm, but in DG set up,
for the Kelvin-Voigt model in this chapter.

The two-grid DG algorithm proposed in this chapter involves the following three steps:

e Step 1: Solve the nonlinear system over a coarse mesh £y to obtain an approx-

imate solution, say ug.

e Step 2: Linearize the nonlinear system with one Newton iteration around the
coarse grid solution ugy and solve it over a fine mesh &, to obtain the solution,

say up.

e Step 3: Correct the solution uy obtained in Step 2 with the help of u, and uy

over the fine mesh to provide a modified final solution uj.

Applying the above algorithm, we now introduce the DG two-grid semi-discrete scheme
for (6.1)-(6.3), which is described as follows:
Step 1 (Nonlinear system on &y): Find (upy,py) € Xy x My such that for all
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(dp,qu) € Xy x My, for ug(0) =Pyug and ¢ > 0

(wrre(t), dpr) + wa(ume(t), dpr) +va(up(t), ¢p)+c O (un(t), un(t), dy)
+b(@w,pu(t)) = (£(1), dn), (6.4)
b(uH(t)7 QH) =0.

Step 2 (Update on &, with one Newton iteration): Find (up,pn) € X; X M, such
that for all (¢, qn) € X x M, for uy(0) = Prug and ¢ > 0

\

(we(), dp) + wa (Wne(t), ) + v a(unlt), @) + O (un(t), up (1), ¢4
+ 0 (ug (), un(t), @n) + b (B4, pa(t)) = (£(2), b,)
+ O (uy (), up(t), ¢y),
b(un(t),qn) = 0. )
Step 3 (Correct on &): Find (g, p;) € Xy x My such that for all (¢, gn) € Xy x My
for ug (0) = Pyug and ¢ > 0

(6.5)

(Whe (), 1)+ a (1), ) + v a(Wh(t), @) + O (1), un (), by)
O (10 (1), 10(8), 83) + b (. 520) = (E(0), 83) + <O (1), un (). )
e O (ay (1), up (t) — up(t), ¢y,),

b(uy(t), qn) = 0. )

(6.6)

(t), o,
(t), o,

Let us recall the subspace V) of Xj:
Vi ={vaeXy: b(va, ) =0, Vgr € My},

where A = H, h.

An equivalent DG two-grid semi-discrete algorithm corresponding to the scheme (6.4)—
(6.6) on the space V) is the following:

Step 1 (Nonlinear system on £y): Find ug € Vg such that for all ¢, € Vy for
uy(0) =Pgupand t >0

(um(t), @) + wa(um(t), ¢y) + va(uu(t), dy) + CuH(t)(UH(t)a uy(t), oy)
= (£(t), ¢y). (6.7)

Step 2 (Update on &, with one Newton iteration): Find u, € Vj, such that for all
¢, € Vy, for u,(0) = Prug and t > 0

(une(t), @n) + £ a (une(t), ) + v a(un(t), dy) + O (un(t), u(t), 1)
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‘I‘CuH(t) (uH(t)7 uh(t)7 ¢h) = (f(t)7 ¢h> + CUH(t) (uH(t)7 uH(t)7 ¢h) (68)

Step 3 (Correct on &,): Find uj, € V), such that for all ¢, € V,, for uj(0) = Pyuy
and t >0

(W5, (1), @) + K a (s, (1), @) + va(uy(t), @) + O (uh (1), up(t), ¢y,)
+c D (ay (1), uh(t), ) = (£(1), @p) + O (uy (1), un(t), ¢p)

+e O (up (), un (t) — ua(t), ¢p).  (6.9)

1
(

In this case, the estimates presented in Lemmas 2.7 (see Chapter 2) and 5.4 (see
Chapter 5) of the trilinear form c(-, -, -) and upwinding term [(-, -, -) are not sufficient
for optimal scaling between h and H, and demand some new improved estimates of
c(+,+,-)and [(+, -, ). For this reason, we have introduced some new interpolated Sobolev
and trace inequalities (see Lemma 6.4), which result in improved estimates of ¢(, -, -)
and [(-,-,-), and hence in improved scaling between h and H. We have used here a
fully discrete approximation considering a first-order backward Euler method in the
temporal direction.

The major findings of this chapter are summarised below:

e A priori bounds of the semi-discrete two-grid DG solutions along with optimal

error estimates for the semi-discrete two-grid DG velocity approximation in L*-
9 3r+2—260

norm when h = O(Hmin (r1-0,285 )), in energy norm for h = O(H

3r4+2-26
)

P 3r4+2-20 :
and pressure approximation in L?>-norm when h = O(H = ) are derived for

t > 0, where 6 > 0 is arbitrarily small. These convergence estimates have been
established by utilizing newly derived interpolated Sobolev and trace inequalities,

and modified Sobolev-Stokes’s projection S;° (for S;° see (3.28) of Chapter 3).

e Under the smallness assumption on the given data and for ¢ > 0, uniform in time
velocity and pressure error estimates in L?, energy and L?*-norms, respectively,

are established.

e A priori bounds of the fully discrete two-grid DG solutions and optimal order
convergence rates for the fully-discrete backward Euler velocity and pressure
approximations are achieved. Numerical experiments are carried out to show

the performance of the scheme.

The rest of the chapter contains the following sections: We discuss about a priori

estimates of semi-discrete solutions in Section 6.2. Some auxiliary inequalities and
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estimates are derived in Section 6.3. In Section 6.4, the semi-discrete error analysis
is carried out. Fully discrete scheme is presented in Section 6.5. We have employed
the backward Euler method, and optimal error estimates for the velocity and pressure
are derived. We carry out numerical experiments in Section 6.6, and the results are
analyzed. Finally, Section 6.7 concludes this chapter by summarizing the results briefly.
Throughout this chapter, we will use C, K (> 0) as generic constants that depend on
the given data, v, k, a, Ky, K5, Cy but do not depend on h and At. Note that, K and
C may grow algebraically with v~1. Further, the notations K (t) and Kp will be used

when they grow exponentially in time.

6.2 A priort and Regularity Bounds

In this section, we present a priori and regularity bounds to the discrete velocity for
all three steps, which will be used in our later analysis.
In Lemma 6.1, we recall Step 1 a priori estimates from Lemma 3.1 of Chapter 3,

which play crucial role in the derivation of Step 2 and Step 3 error estimates.

Lemma 6.1. Suppose 0 < a < 57 vk, Then, for the semi-discrete DG wvelocity

Co+kK2) "
ug(t), t > 0 of step 1, the following holds true:

t
[lwrr ([ + fill e (£) 12 + 6_2“/ e |lup(s)|2ds < C, (6.10)
0
. Cs
timsup up (1) < 2 fll ey, (6.11)
t—00 1V

where C'is a positive constant.
Next in Lemma 6.2, we derive a priori estimates of Step 2 solution uy,.

Lemma 6.2. Let 0 < a < Q(C;’T%

t >0 of step 2, there exists a constant K > 0, such that, the following holds true

Then, for the semi-discrete DG velocity up(t),

t
||uh(t)\|2+ff||uh(t)||§+€2“/ e |lun(s) ]2 ds <K(t), (6.12)
0

t
HUht(ﬂHz+%Huht(t)\|§+6_2“t/ e (luns()|I” + sl uns(5)|2) ds <K (1), (6.13)

0

t
IIUhtt(t)||2+/€|Iuhtt(t)||§+6_2at/ (| nss(5)|I” + £l unss(5)1[2) ds <K (t), (6.14)
0

where K (t) grows exponentially in time.
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Proof. Choose ¢, = u;, in (6.8), and apply estimate (1.14), coercivity property from
Lemma 1.6, positivity property (1.19), the Cauchy-Schwarz inequality and Young’s

inequality to obtain

1d

Kk d vK
ZdtH w,* + 5@@ (wp,up)) + v Ky flug2 < TlﬂuhH? + C[If]]> + | (up, ug, uy)]

+ [ (up, um, up)l. (6.15)

The estimates (2.55), (2.57) and Young’s inequality lead to the following bound:

1/2 ‘3/2

[ (up, g, wy)| + [ (up, ug, wy)| < C (a2 |unll2?Jug e + uglZllul.)

VKl
— M2+ C (a1 a2 + o).

Multiplying (6.15) by €2*, integrating from 0 to ¢, and applying (1.14), Lemmas 1.6

and 1.7, and the above inequality, we obtain
t
e ||y, (1) ||* + Kyxe ||, (8)])? + (VK — 220, — 204/£K2)/ e ||lup(s)||? ds
0
t
< O + Karljun0)]2 + C [ e[| ds
0

+C/O e (l[un(s) [P lum ()2 + [[um (s)]12) ds

Now, multiplying the above inequality by e~2%" and using (6.10), the fact

t
1
6—20415/ 62045 ds = _(1 _ 6—204t)7
0 200

Gronwall’s inequality and choosing 0 < o < m, we arrive at the estimate (6.12).
Substitute ¢, = up; in (6.8), and use (1.14), Lemmas 1.6 and 1.7, (2.55), the Cauchy-

Schwarz inequality and Young’s inequality to find
lane* + Kslfunel 2 < CClanllZ + TullZlazlI2 + 11 + o). (6.16)
An application of (6.10) and (6.12) leads to
Jup |2 + Kk llupel|2 < C. (6.17)

Multiplying (6.16) by e2**, integrating from 0 to ¢, and applying (6.10) and (6.12), we
find (6.13).
We now differentiate (6.8) with respect to ¢ to obtain

(Unee, dp,) + K a(Un, @) +va(Ung, @) + ™ (Wne, up, @)
+c' (uh, Ug¢, ¢h> + (th, up, ¢h) + CuH(UH7 Upg, ¢h)
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= (ft7 d)h) + (th7 Ug, ¢h) + (qu UH¢, d)h) (618)

Replace ¢, by upy in (6.18), and apply (1.14), Lemmas 1.6 and 1.7, (2.55), the Cauchy-

Schwarz inequality and Young’s inequality to arrive at

Faneell” + Kyrll a2 < COUEN + TaellZ + w2l w12 + a2 a2

+ [l |2 12). (6.19)
Now, using (6.10), (6.11) and (6.13), one can obtain
HuhttH2 + Kl“”“htt”z < C. (620)

Finally, multiply (6.19) by e?*, integrate from 0 to ¢, and employ (6.10), (6.11) and
(6.13) to arrive at (6.14) and this conclude the rest of the proof. O

In the following lemma, we state a prior: estimates of Step 3 semi-discrete solution
u;. These estimates can be obtained from (6.9) and as in Lemma 6.2. Hence the proof

is skipped.

Lemma 6.3. Let 0 < o < METK;KQ) Then, for the semi-discrete DG wvelocity uj(t),

t > 0 of step 3, the following holds true
i (17 + ll g (812 + = /Ot e ||luy(s)[|2 ds <K (t), (6.21)
[ (O + Kl ()12 + e /Ot ([l (s)II* + wllwis(s)[2) ds <K(t), (6.22)
i ()17 + |y ()12 + 7> /Ot ([l thos ()1 + Kl (5)[12) ds <K (1). (6.23)

Now from the coercivity result in Lemma 1.6, the positivity (1.19), the inf-sup condi-
tion in Lemma 1.8, Lemmas 6.2 and 6.3, and following [98, Lemma 3.4], the existence
and uniqueness of the discrete solutions of (6.5) (or (6.8)) and (6.6) (or (6.9)) in Step
2 and Step 3, respectively, will follow easily.

6.3 Some Useful Estimates

We begin this section by deriving some new interpolated Sobolev and trace inequalities.
Then, we focus on estimating the terms c(-,-,-) and I(-, -, ).
In the following lemma, we establish interpolated Sobolev and trace inequalities, which

will be useful for our future analysis.
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Lemma 6.4. Forp= 2, 0 <6 <1 and v € H'(&,), we have

[Vllze) <CIVIFlvIIE+ CR7)v],
_1 a=1 1
[Vlza@e) SCh™ ||V Lagm) + CHV”Lg(qu(E)HVVHE2(E)> Vg > 2,

_1 1-0 146
IVllzre) <Ch (VLo + ClIVILE G VY5

where

Hl(gh) = {V € LQ(Q) : V’E € Hl(E), VE € (c:h}

Proof. From [106, eq. (2.10)], we know for v € W12(E) satisfying

the following inequality holds

V]l e () SCHV”;(GE)HVVH??(E)-

(6.24)
(6.25)

(6.26)

(6.27)

(6.28)

For an arbitrary function v € WH2(E) that does not satisfy (6.27), we define a function

w(z) =v(r) =W,

E
Since w satisfies (6.27), we have

where W = LI/ v(z)dx.

Wl ze () SCHWH;(GE)”VWH%(E)-

The triangle inequality yields

IVllzoe) — VI < [[wll o),

1wz < [Vllz2ee) + IWI B2

Thus, the above two inequalities and (6.30) lead to

IVllzoe) < VIE? + CUIVI ) + IWIE) V] L2 -

We now apply Holder’s inequality to bound |W)| as

Wl < |B]7Vo v

Ls(E)» VS Z 2.
An application of (6.31) with s = 2 and note that |E|~%2 < Chz to find

IV llegm) < CIVIE( IV VIL2E) + CRE [VI|L2m)-

(6.29)

(6.30)

(6.31)
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Taking p-th power on both side of the above inequality, summing over £ € &, and
then 1/p-th power of the resulting inequality to find
[Vllzr@) < C Z HVH;(HE)HVVH%(E) +Ch° Z [vllz2(m)-
Eeé&y, E€é&y
A use of Jensen’s inequality leads to (6.24). The second estimate (6.25) is derived in
(96, eq. (7.3)]. To derive the third estimate, we again consider the construction (6.29).

Hence, one can write

1wl 218y < ClIWI () VW12 . (6.32)

20
and which implies v = 1o Consider (6.25) with ¢ and v

2
where 2(p — 1) = N N
replaced by p and w, respectively and substitute (6.32) in the resulting inequality, we

arrive at
_1 1-0 140
[Wlizre) Ch™#[[Wllzom) + Clwll 25 IV W L2 - (6.33)
To derive the above estimate for v, let us utilize (6.29) and the obvious relation
IVllogey — WIEN? < Wl < IVl + VIE]M?, (6.34)
IVllzoge) = IVIel? < Wil < IVllzoee) + IWIle] . (6.35)
The relations (6.33) and (6.35) yield
1/ 1 1-6 146
[Vllzeey < VIlel” + Chmv [ wllom) + Cliwll 2 IV W 2 -
Apply the right hand side part of (6.34) in the above inequality

_1
IVllzoeey < VIl + Ch™e (¥ o) + IWIIEJYP)

1—-6

146
+ OVl 2y + |WHE‘1/2)T ||VVHL§(E)'

Finally, we employ (6.31) with s = 2 and s = p, and observe that |e| < Ch to establish
(6.26). O

The next lemma derives some estimates of ¢(-, -, -) which will be useful for our future

error analysis.

Lemma 6.5. There exists a positive constant C, which is independent of h, such that

for all ®,v,w e X and ¢;, € X, the following estimates hold true:

_ _ 1-6 1-6 1+6
@ (v, w, ¢,)] <OV + R=lvl + Bz vl v ) lwllellgnlle, (6.36)

v _ . 10 10 e
¥ (v, w, @) < ClVII- (Tl NwllZ + A= wll + A= ||l = [[w]l* )|l
(6.37)
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Proof. With the help of Green’s formula, we can write
[ vwet = [ Viwav)g - [wvw-g,
E E E

— /E(V Vo) w+ /8E<th ‘ng)wm . it — /E(V VW) - @y,

The above allows us to arrive at the following reformulation:

Oww d) =5 3 [ (v Vw). th——Z/vvth

C
Ees Ee&;,
—Z/Hﬂml wert) - gint — Z/ W b,
Ee&y, eel"
+ = Z / mt znt . ';'Lnt
Eeé’
=N; + Ny + N3 + Ny + Ns. (6.38)

The terms N; and N are bounded using (6.24), (1.14) and Hélder’s inequality as

follows:
N < CO VI e VW 2 |l o)
Eet&y,
< ClvI*?IvIZIwllllpnll + Chl v [I[wllell bl (6.39)
[No| < C Y IVl oo IV byl 2 W] pacy
Ee&y
< CIvIFIvIgiwllclpnlle + CR[[vIllIwllellbnlle, (6.40)
where i + % = % and p = ﬁ. Applying Holder’s inequality, we can bound N3 as

N3] < D IHVE - nelloo Wl 2o 1l oo

ecl'y,

An application of trace inequalities (6.25) and (6.26), one can find
{v} - nellze@ W]l 22e) | @l Lage)
2
ﬁ
<) | 2) 1H[ W]llz2(e)

i,j=1 le|

% (1l L) + H¢hHL2<q D(E ||V¢h||L2 )

Using interpolation inequality (6.24), we obtain

[Ns| < IV IvIENwllllnlle + CRP VIl wll]l bl

+
+ ORI v l|® [[wllellb -
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Next, switch the sum of N5 from elements to the edges. Then we consider this sum’s
contribution to any interior edge e. Let E,. and E; be the two elements adjacent to e,

with exterior normal n, and n,. This implies

[l mwle, e, + (vl n )

By applying the above equality, one can obtain

Es '¢h

b= [l mow- 6]

Ni+ N5 = /{v} n.[w - @y.

EEFh
Noting that, [w- ¢,] = {w} - [¢,] + [W] - {¢,,}, and using trace inequalities (6.25) and
(6.26), and Holder’s inequality, we obtain

NitNs =5 30 [tvhoncdw) [l + 5 3 [(v)onelwl - (1)
eEFh eth
1 1 1
<C' 3 kel Vsl Wl o =7 Nl
ecl'y, ’€|2
1
+C S el Il zso— I el 8l
eGFh ‘ ’
16 1.9 146
<O S (Wl + g I E i 191
ethi,jzl
1 g—1
o (W) + 191 I 99 )~ e
el
2 1-6 19 140 1
#0303 (Ml + i 191 ¥y Il
ecTy, i,j=1

q—1

X (lpnll Lo, +h Hd’h”p(q 1 E)”V¢h\|L2 E))

<OV 2wl bl + Ch vl + B IS vl wil il

Combining the bounds of Ny, N, ---, N; in (6.38), we finally obtain the bound (6.36).
The last inequality (6.37) can be derived employing the form (1.18) and following the
steps involved in deriving (6.36). Hence the proof is skipped. This completes the proof

of this lemma. O
The next lemma is an auxiliary result for the upwinding term (-, -, -).

Lemma 6.6. There is a positive constant C' independent of h such that for all w, u,v €

X and ¢, € X}, the following estimates hold true
1 (u, v, @) = 1w, v, ¢,)| < Cllu— w]'||u— wl|Z]|v]|| ¢l
+Ch™%lu— wl [[v]l-[l b ll-

+ON' = w7 o~ w2 vl -



212

Proof. For any 6 € X and let e € ', \ 992 be an edge adjacent to F; and E, with

n, = ng,. The contribution of e to the term lo(u, v, ¢,,) reduces to
0
{u} - no)v]- &y,

where ¢0|, = ¢, |p, if {8} -1, <0, $|. = ¢, |, if {8} -n. > 0, and ¢P|. = 0 if
{0} -n, = 0. In a similar way, if e € 9Q N E, then we have n, = ngg. Then, the

contribution corresponding to e is
/(u ’ ne)V ’ ¢€7
e

where ¢?|. = ¢, | if 0 -n. < 0 and ¢¥|. = 0 otherwise. Set B = I™(w,v, $,) —

["(u,v,¢;,). Then, following the above notations, B can be rewritten as

B=Y" [({u} -n)v- (67 — 61,

ecl'y, €

The domain of integration can be partitioned as follows:

'y =G1 UGy UGs,

where

G ={e: {w} -n.#0and {u} n. #0 a.eon e},

Go={e: {w} -n.=0and {u} -n. #0 a.con e},

Gz =15\ (G1UG).
First we consider G;. For e € G, we decompose e into e; and e,. e is the part where
{w}-n, and {u}-n, have the same sign and ey part is for the opposite signs of {w}-n,

and {u} - n.. On e, we then have ¢} — ¢ = 0. On ey, @) — @) = [¢p;], up to the

sign. Using the fact of opposite signs, we can write
{u} - n| < [{u—wj} n.

Applying Holder’s and Jensen’s inequalities, and (1.14), (1.37), (6.24) and (6.26), we

can deduce

> [ ({u} 0] (o) — &)

e€Gy V¢

< 3w~ Wz IVl |l e

e€Gy

2 1-0 1-0 140
<C la—wl = +hg [lu—w|2, [Va-w)z;
LT=0 (E;) (E:) (Eq)

e€gi i,j=1
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o\ 12
(ﬂ) 1]l b llonces)

< Cllu—w|""flu—wl[v]. ||¢>h||a + Ch ™ la = wll[vl[| ]

+OR'E u— w'= = wE vl 8l

Next, we consider Go. From the definition of Gy, we have [{u} - n.| < [{u —w} - n.|.

Therefore, in a similar fashion as above we can show that

Z/{u} ne)[v] - ¢} <Cllu—wl|"?|lu—w(Z|[v]cllpplle + Ch 7 lu—wl[v]]¢ll-

e€Go

OB = w7 =l vl -

There is zero contribution of Gz to B. The combination of the above bounds completes

the proof of this lemma. n

6.4 Semi-discrete Error Estimates

This section deals with the derivation of Step 2 and Step 3 semi-discrete error esti-

mates of velocity and pressure.

6.4.1 Velocity Error Estimates

In this subsection, we derive the bounds of semi-discrete velocity error for two-grid

*

algorithm. Let us define ey = u —uy, e, = u—u;, and €; = u — u;. Below, we
describe the error equations for Step 2 and Step 3.
Error equation for Step 2: From equations (6.1) and (6.8), and for each ¢, € Vi,

(ens, @y,) + K alen, @) + valen, @p,) = —c"(en, un, ¢,) — " (un, en, ¢y,)
_CuH (eH> €n, ¢h> + (luH (uv €x, q,)h) - lu<u> €n, d)h))
_'_(lu(ua €H, ¢h> — ™ (u7 €q, ¢h)) - b(¢h>p) (641)

Error equation for Step 3: From equations (6.1) and (6.9), and for each ¢, € V,

(€hi, 1) + K aleh, &) +valer, dy,) = —ch(ef, up, @) — ¥ (up, €, ¢y,)

=M (em, en, @) — " (en, en, @) — ™ (en, en, @),)

(luh(u e, ) — 1"(u, eq, Q—"h)) + (lu(uaeHa bn) — lu’*’(uy €u, ¢h))
+(1M (u, en, @) — I*(u,en, ) + (I"(, €1, B)) — 1™ (0, €4, ) — b(By, p). (6.42)
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To derive optimal error estimates of e, and e in L? and energy-norms, we recall
the following modified Sobolev-Stokes’s projection S;’u : [0,00) — Jj (see (3.28) of
Chapter 3) satisfying

ra(u; — S;°wy, @) + va(u— S;’u, ¢,) + b(d,,p) =0 Ve, € Vy, (6.43)

where S;°u(0) = Ppug. Let us decompose e, and e with the help of S;’u as
en =(u— Si7u) + (Syu— ) = €+ p, (6.44)
) i—(u — Sj7u) + (Sj7u — w}) == € + O, (6.45)

where ( =u—S;’u, p=S;"u—u, and © = S;’u —u;.

A use of equations (6.41), (6.43) and (6.44), we find the equation in p as

(pt7 d)h) + ’ia(pta d)h) + Va(p7 ¢h) + ct (uH7 P, ¢h) = _(Ct7 d)h) — (pv Ug, ¢h>
—c (C7 Uy, d)h) — M (uH7 C7 d)h) — M (eH7 €, ¢h>
+ ([ (u, ey, @) — "(u,en, ) + (("(u,eq, @) — " (u, ey, ¢y,)). (6.46)

Furthermore, using (6.42), (6.43) and (6.45), we obtain the equation in © as

(O, dp) + 5.a(Or, ¢y) + v a(©, ¢y) + (U, ©,¢p) = —(Cp py) — (O, unr, @)

- C“Z(C, uy, @p,) — M (up, ¢, pp) — M (en, en, @) — (e, en, @)

— (e, en, dp) + (1" (u, e, dp) — 1% (w e, ¢y,)) + (1%(w, enr, dp) — 1% (w, e, ¢y,))

+ (1% (u, ep, dp) — 1"(, e, @) + (1" (0, en, @) — 1 (w1, €, B3)). (6.47)
From (6.45), one can see that to derive optimal bounds for e, we need to bound © in
an optimal way. The bounds of ® depend on the bounds of ¢, ey, e, that are present

on the right side of (6.47). The next lemma states the optimal estimates for {. The
estimates of ¢ have been already established in Lemmas 3.2 and 3.3 of Chapter 3.

Lemma 6.7. Suppose the assumption (A2) holds true and let 0 < a < 2(C§TK2K2)

Then, fort >0, ¢ satisfies the following estimates:

IS + RISz + 6‘2“/0 e () + S ()I” + A2[IC(5)]2) ds <Ch*r*2.

And the following theorem provides estimates for the Step 1 error ey. The estimates

of ey are already proved in Theorem 3.1 of Chapter 3.

Theorem 6.1. Suppose the assumption (A2) holds true and let 0 < a < MQVTK;KQ) In
addition, let the semi-discrete initial velocity ug(0) € Vi with uy(0) = Pyuy. Then,

there exists a constant K > 0, such that fort > 0,

t
len(®I + H2len(t)l. + H2e " [ llen(s) 2 ds < K01
0
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Initially, we concentrate on finding estimates of e;,. For that, we have to estimate p.

A combination of the estimate of p and ¢ will result in the estimates of ej,.

Lemma 6.8. Suppose the assumptions of Lemma 6.7 hold true. Then, fort > 0, the
following holds

t
oI + o+ ¢ [ o) ds < KO 4 1),

Proof. Replace ¢, by p in (6.46), and apply Lemma 1.6 and (1.19) to arrive at
1d I Kk d
2 dt

— 1wy, C,p) — ¥ (enen, p) + (I (w. e, p) — (.. )
+ (("(u,eq, p) — " (u, ey, p)). (6.48)

—(al(p, p)) + vEilpl? < = (¢, p) — ¢ (p,un, p) — (¢, un, p)

An application of estimate (2.57) and Young’s inequality to " (p, uy, p) yields

" (p,um, p)| < —||p||2 + Cllpl*[lug 2. (6.49)

Subtract and add u to the second argument of ¢ (¢, ugy, p), we find

CUh(C7uH7p) = _Cuh(C7eHap) +CUh(C7u>p)' (650)

Now, estimate (6.36), Lemma 6.7, Theorem 6.1, the fact h < H and 1 — 0 > 0, and
Young’s inequality imply

(¢ e, p)| < CIICIICIZ el |Ip||s+Ch*9HCHI|eHHsHpHs
+ O ¢ 117 len o]l

SChr+179H7~HpH€ < 6741”/’”? + ChQrH2r+2f29. (651)
From (2.59), Young’s inequality, Lemma 6.7 and assumption (A2), one can derive

u VKl r
(¢ u, p)| < Cllullo(I€] + RliCli)lle < = llpllz + Ch*r .
Combine the above two inequalities in (6.50) to arrive at
uy, VK 2 2742 2 1721 +2—26
[€*(¢, um, p)| < = llplls + CR7 4+ CRTH : (6.52)

Again, we rewrite the fourth term on the right hand side of (6.48) as follows

CUH (uHa Ca p) = _CUH (eH7 C7 p) + Cu(“v Ca p) - (lu(u> Ca p) - ZUH (ll, C? p)) . (653)
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Apply (6.36), Lemma 6.7, Theorem 6.1 and Young’s inequality, and observe that h < H
and 1 — 6 > 0 to obtain

[ (e, ¢, p)| < Cllen|'llenlIZl<]. ||p||e +CH||eg i€l pll-

+OR'% [len||'=" lenll* ¢ -

2'r+1 0 2r+1 0

<O H™p +Ch Il
K
< I lpl + Car . (654

Estimate (2.58), Young’s inequality and assumption (A2) yield

u I/K T
c"(u, ¢, p)| <Clhull2([I<]] + AliCll) ol < 6TIIIIPIIE +Ch*2, (6.55)

Using Lemmas 6.6 and 6.7, Theorem 6.1, and Young’s inequality, one can obtain

[*(u, ¢, p) = 1" (u, ¢, p)| <Cller '~ llex]ZlC]. ||p||a +CH|leg|[I¢]lllll-
+O1'3 [lea||'=" lenll* ¢ ll-

_41”,,”3 + CRPTH, (6.56)
Substituting (6.54)-(6.56) in (6.53), we arrive at
u vEy o 2r42 2 772r+2-20
e i, €. p)| < Sl + O ORT (6.57)

A use of (6.36), Theorem 6.1 and Young’s inequality, and observe that h < H and
1—6>0 to find

[ (e, e, p)| < Cllen | lenllzllpl- + CH llexllenll-llpl.

+ CL'Z Jlen]) 7" lenll:* o

4'r+1 0

< CH™ .+ CH'F 4 . < S IplE + CHH . (659

Employing Lemma 6.6, Theorem 6.1 and Young’s inequality, and similar to the above

estimate, one can derive

14 (u, en1, p) — 1"(w, ez, p)| <Cllen ' llex ¥ llplle + CH llenlllen|:llpll-
+Ch lenl = lexll* lol-

2 Ar+4+2— 20
— CH 6.59
<Z ol + (659

For the last term on the right hand side of (6.48), we will follow the proof of Lemma

6.6. Now, we can write

(e, p) ~ e p) = 3 [(fu} nleal (0"~ Y. (600)

ecl'y, €
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Here, we have to consider functions uy, ey and p in place of w, v and ¢,,, respectively,
of Lemma 6.6. Then, G, G, and G3 will change accordingly. For non-zero contribution

of the above integral on both G; and G,, we can write

{u} - n[ < {u—wj nf <[} nf+[{p} 0l (6.61)

With the help of the above relation, the fact that [u] = 0 and Hoélder’s inequality,

equation (6.60) becomes

1" (u, e, p) — I"(u, ep, p)| < Z I{CH e e w2 12" — ™| Lace)

e€G1UG2

+ Y Mo welualeele™ = p*lie:

e€G1UGa

Finally, similar to the bounds (6.49) and (6.51), we can estimate
vK _
1 (u, e, p) = "(u, e p)| < —lpl2 + Clipl*[un 2 + CR HP 720 (6.62)

We now substitute (6.49), (6.52), (6.57)-(6.59) and (6.62) in (6.48). Then multiply the
resulting inequality by e?** and integrate with respect to time, and utilize (1.14), Lem-

mas 1.7, 1.6 and 6.7, the fact p(0) = 0, the Cauchy-Schwarz and Young’s inequalities
to find

t
)" + sy e*[lp(t) 12 + (VK1 — 200, — 204%[(2)/ || p(s)]12
0

t t
S O/ €2as||p(8)||2||uH(8)”4€1 ds + O(h27‘+2 + hQTH2T+2—29 + H4r+2—29)/ 62(15 ds.
0 0

An application of Gronwall’s lemma, (6.10), and with the choice 0 < o < 5251

2(Co+rKa)’
and after a final multiplication by e=2% leads us to the desired estimate. o )D

Lemmas 6.7 and 6.8 will follow the following Step 2 velocity error estimates:
leall < K ()(h™" + H> 77, (6.63)
lenlle < K(t)(h" + H> 179, (6.64)

Remark 6.1. Under the smallness condition on the data, that is,
N=  sup C¢h(wh’vh’wh> and %Hfﬂ < 1. (6.65)
b, vianev,  NWnlEZ[Valls Kiv?

the bounds (6.63) and (6.64) are uniform in time, that is,

“ehH S O(hr-H + H2r+1—0>’
||eh||€ S C(hr +H2T+1_9>,

where the constant C' > 0 is independent of time t.
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Proof. First, modify the bounds (6.49) and (6.62) by using the first relation of (6.65)

as follows:

™ (p,um, p)| < Nllug|.|lpl:Z,
1% (u, epr, p) = I"(w,em, p)| < Nlugl.llplZ + CL"H™ || p|..

The other bounds in the proof of Lemma 6.8 will remain exactly the same. Thus, with

the help of the above two bounds, we rewrite (6.48) to obtain

d d r r 41—
el + 1= (alp, p)) + 2(EKr = 2Nun ) [|pll2 <C(™ + B0 pl-.

Following the steps of Remark 3.1, and applying (6.11) and (6.65), one can show that

limsup || p(t)]|. < C(h*! + H¥+1-0). (6.66)

t—o00

From (1.14), we now obtain

limsup [|p(t)|| < C(R™ + H*179), (6.67)

t—o0

A combination of (6.66), (6.67) and Lemma 6.7 will lead to the uniform in time esti-

mates. O

The following lemma establishes the bounds for ©.

Lemma 6.9. Let the assumptions of Lemma 6.7 be hold true. Then, there holds:
t

||9||2+'f||9||§++6_2at/ eQasH@(S)“z dS S K(t)(h%—m+h2TH2r+2_26+H6T+4_46).
0

Proof. Let us choose ¢;, = © in (6.47), and use Lemma 1.6 and (1.19) to find

101+ 5 4 (a(0,0)) + v O] < (¢, ©) ~ (O, uy, ©)

—c" (¢ up, ) — ¢ (uy, ¢, 0) — ey, ey, ©) — c(en, en, ©) — ™ (ey, ey, O)
+ (l“h(u, ey, ®) — ["(u, ey, @)) + (l“(u7 ey, 0) — l“z(u, e, @))
+ (l“H(u,eh, O) — [“(u, e, @)) + (l“(u,eh, O) — [""(u, ey, @))

=01+ Q2+ + Q. (6.68)

Following the proof steps as in Lemma 6.8, we obtain

K

Qi < =IOl + Cn, (6.69)
vk

Ql < =112 + ClIO P unl, (6.70)

- 64
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K

Q] < %HGHE 4 Ch2? 4 Ch2rH2 220, (6.71)
K

Qul < T2 + Ch2r+2 - 2 22, (6.72)

Utilize (6.36), (6.64), Theorem 6.1 and Young’s inequality to obtain

|Qs] < Cllenl"llenllZllenll. H9||e + CH[leg|lexll-©]

+O1'F [le |5 en]l* lex-1©-
<CHT+1 G(hr+H2r+1 0)”@”6_’_0]1 H

(7‘+1)(1 0) 7‘(1+9)

(hr+H2r+1 0)||®||s

< 641 ||®H?: + O(h27~H2r+2—20 + H6r+4—49)‘ (6.73)
With the help of (2.56), (6.64) and Young’s inequality, and observing r > 1, we obtain
vK _
Qs < Cllen]lc/len]l-1O]]e < (TAIIH@H? + C(R?2 4 {0, (6.74)
To handle )7, let us rewrite it in the following manner

Q7 =— " (ep, ey, ©) + (I (en, ey, ©) — 1" (ep, e, 0)) = Q71 + Qra.

Now, @71 is bounded employing (6.37), (6.64), Theorem 6.1 and Young’s inequality as

follows:

Qnil <Cllenll-llen|I'~llex 21O + CH‘ellehHsHeHll 18]

+On'% [leg|-lle || ' len]l-* [O].
VKl

< ||®||2+O(h2rH2r+2 20 H6T+4_49). (675)

We now handle Q75 and Qg together. Furthermore, recall the proof of Lemma 6.6 to

write Q72 and Qg as

Qr = Z/{eh} n.)leg| - (@ — "),

ecl'y,

Q=) /({u} ‘n.)fen] - (O —OY).

ecl'y, €

Let us partition I'y, for Q7o as follows:
Fh :H1UH2UH3,

where

Hi={e: {uy} -n.#0and {e,} -n. # 0 a.e on e},



220

Ho ={e: {up} -n.=0and {e,} - n. # 0 a.e on e},
Hs =Th \ (H1UHs).

And consider the partition of I'y, for Qs.

Ji={e: {up} n.#0and {u} -n, #0 a.e on e},
Jo={e: {up} n.=0and {u}-n, #0 a.e on e},
Ts=Tp \ (J1 UDJ).

The integrals of Q72 and ()g over Hs and J3, respectively are zero. Thus, the sum of

Q)72 and Qg become

Qn+Qs =) [ (e} nolen] - (O™ ~0")+ 3~ [({u}-n)ley] - (O — O

ecHy ¥ ¢ ecJ1 V¢
+ > [(fu}n)len]- € = > [({u}-no)fen] - O,
e€Ho V€ eeJ2 V€

Notice that, Hy and J> are equal. The reason behind this is that, on Hs, {€,} - n. =
{u}-n. a.e on e as {uy}-n. = 0. Therefore, the last two integrals of the above equality
cancel out each other. With an identical approach as the proof of Lemma 6.6, that is,
we only have to consider opposite signs of {u,} - n. and {e,} -n. on H; and {u,} - n,

and {u} - n. on Jj, one can obtain

|Qral +1Qs] < Y I{en}lzaco llen]ll oo 1O 2

e€Hy

+ > IHenHloolllen]llzre 1O 2.

eceJ1

Using (1.14), (6.24), (6.25), (6.26), (6.64), Theorem 6.1 and Young’s inequality, we
find

2
1 L 1
Q72| +|Qs| <C Z Z (lenllzace) + he Heh||LZ(q,1)(Ei)||VehH}iz(Ei))

e€H i,5=1

< (el 2, g, + 157 el Zo Vel ) ) (75) @M

2
S 1
+CY > (llenllamy + hellenll s gy IVerlfaey)

e€J1 4,j=1

e 10 o\ (o \?
X HeHHLﬁ(Ej)"‘th leall s, Verll 3, el 1[©]lz2(e)
<Cllen|lcllenl' " leal?II®]l: + CH’|lex|llex|[©]-

1-6 1-6 10
+Ch= |len|clleul = llexlle* (O]
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K
SV641 H@“§ + O(h2rH2r+2—20 + H67‘+4—49). (676)
()9 can be estimated similar to (6.62). In this case, we have to consider
{u} - n| < {u—w} nf <[} nf+[{OF n
in place of (6.61). Thus, one can show that
VK, 2 2 4 2r 772r+2-26
Q| < =IOz + Cli®|Fllunll: + Cr™H : (6.77)

In addition, (1.14), (2.61), (6.64), Lemma 6.6, Theorem 6.1 and Young’s inequality
yield
Quol < Clle|l""len|Zllenll-I©] + CH |enlllenll-l©]

1-0 1-0 110
+Ch= len|| = |leulle® llenlll|O]-

K
S y641 ||@||§ + C(h2rH27‘+2—26 + H6r+4—49) (678)
and
l/Kl r 4
|Qul < Cllenll-[lexll-©]] < == IBI2 + C(h**? - H¥H171), (6.79)

Substitute the bounds (6.69)-(6.79) in (6.68). Multiply the resulting inequality by
e?*t and integrate with respect to time, and utilize Lemmas 1.7 and 1.6 and the fact

©(0) = 0 to arrive at
t
ENOW))? + wEKy | O1)||2 4 (vKy — 20, — 2%K2)/ e[ ©(s)||2

0

t

<C [ 0 un(s) [ ds

0

+ C(h2r+2 4 h2rH27'+2720 + H6T+4749 =+ H8r+4740> /t 62043 dS.
0

Finally, using Gronwall’s lemma, (6.10), and with the choice 0 < o < 57 vK, and

Co+kK2)’

2at e arrive at the desired estimate. O

multiplying by e~

A combination of Lemmas 6.7 and 6.9 leads us to the following Step 3 error estimates

of the velocity.

Theorem 6.2. Suppose the assumption (A2) holds true and let 0 < o < M;TK;IQ) In
addition, let the semi-discrete initial velocity wy (0) € Vj, with u;,(0) = Ppug. Then,

there exists a constant K > 0, such that fort > 0,

lex ()] < K(t) (R + hTHTHO 4 girt220y,
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and
e ()]l < K(t)(h" + H 2720,

Remark 6.2. Under the condition (6.65) the estimates of Theorem 6.2 are uniform

in time. This can be derived similar to Remark 6.1.

6.4.2 Pressure Error Estimates

This subsection is devoted to the derivation of two-grid pressure error estimates. Before
establishing the main result, we obtain the bounds for e, and ej,, which will play a

significant role for achieving pressure error estimates.

Lemma 6.10. Under the assumptions of Lemma 6.7, the error e, = u — uy, in Step

2 for approzimating the velocity satisfies
len (0)I* + 5 llenc (D12 < K(£)(h* + HY272%), ¢ > 0.

Proof. Consider (6.41) with ¢, = Prep; = e — (0, — Pruy), and employ Lemma 1.6
and definition of L?-projection Py, to find

HPheht”2 + HK1HPhehtHz < —ka(u — Pruy, Prey) — va(Prep, Prepn)
—va(u—Pyu, Prey) — b(Prep, p) — ™ (en, up, Prep) — " (uy, ey, Prepy)
- CUH (eH7 €q, Pheht) + (ZUH (u7 €y, Pheht) - lu(u7 €q, Pheht))

+ (l“(u, ey, Prep) — 1" (u, ey, Pheht)). (6.80)

A use of (2.56) with (6.64) to the fifth and sixth terms on the right hand side of (6.80)

leads to

| (en, up, Pren)| + [ (um, en, Pren)| < Cllen|c||un|:||Prentl.

< O + B0 [ull- [ Pren]-- (6.81)
Using techniques which were used to derive (6.58) and Theorem 6.1, one can find
| (ex, eq, Pren)| < CH* 10| Pren.. (6.82)
Again, similar to (6.59) and using Theorem 6.1, we obtain

|I"7 (u, ey, Prep) — ["(u, ey, Prey)| < C’H2”+1_9||Pheht||5. (6.83)



223

An application of (1.14), (6.64), (2.61) and Theorem 6.1 to the last term on the right
hand side of (6.80) yields

[I"(u,en, Pren) — 1""(u, ey, Pren)| < Cllenlc|lenll:l|Prent-
<O + HE V0 [Prenl..  (6.84)

Using Lemmas 1.7 and 2.3, the first three terms on the right hand side of (6.80) are

bounded as follows
/<|a(ut — Phut, Pheht)| + V|a(Pheh, Pheht)\ + 1/|a(u — Phu, Pheht)|
< ON(K[wg|rs1 + vials)[[Prenlle + Cv||Prepl|-[|Prep.. (6.85)

To bound the pressure term, we apply the definition of V;, and Lemma 2.4 to find

b(Prent; p)| = [b(Prens, p — ra(p))] < Ch'|pl | Pren-- (6.86)
Collect the bounds (6.81)-(6.86) in (6.80), and use (6.10), Young’s inequality and
assumption (A2) to arrive at
IPren” + wK1[Prenl|2 < ClIPrenll2 + C(h* + H 272,
An application of
en = Prep + ( — Pruy), Pre, =€, — (u—Pju), (6.87)
triangle inequality, (6.64) and Lemma 2.2 leads to the completeness of the proof. [

Lemma 6.11. Under the assumptions of Lemma 6.7, the error € = u— u; in Step

3 for approrimating the velocity satisfies
s (0)I° + 5 llen (D12 < K(#)(h* + HO 74, ¢ > 0.

Proof. We choose ¢, = Ppe;, in (6.42) and use Lemma 1.6 and definition of L*-
projection Py, to find

[Prerl® + kK1 |Presll2 < —rau; — Pruy, Prey,) — va(Prey, Preyy,)
—va(u—Pyu,Pre;,) — b(Pre},, p) — (e}, uy, Pyel,) — ™ (ug, e}, Pre;,)
—c" ey, en, Prey,) — " (en, en, Prey,) — ¢ (en, ey, Prer,)

+ (" (u, ey, Prep,) — ("(u, ey, Prey,)) + (1"(u, ey, Prey,) — 1"t (u, eq, Prej, )

( )
—l—(l“” (u,en, Prey,) — "(u, e, Phe;‘lt)) + (l“(u, en, Prey,) — 1" (u, ey, Phe;‘n)).

The bounds for the terms on the right hand side of the above inequality are obtained
in the same lines as the proof of Lemmas 6.9 and 6.10. Then proceed similar to the

proof of Lemma 6.10 to complete the rest of the proof. O
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The following theorem establishes a bound for Step 2 semi-discrete pressure error.

Theorem 6.3. Under the assumptions of Lemma 6.7, there exists a constant K > 0,

such that, for all t > 0, the following error estimate holds true:
I(p = pr) @) < K(#)(A" + HH177).

Proof. For the Step 2 pressure error estimate, we subtract (6.5) from (6.1) to arrive

at

_b(’lphv rh(p> - ph) = (ehtv ’lph> + "ia(ehta ’l/)h) +v a(eh7 1/%) + ™ (eha Um, Qph)
+ct (uH7 €h, 1/)h) + (eH7 CH, ¢h> - (luH (u7 CH, 'lph) - lu(u7 CH, ¢h>)
—("(u,eq, ) — 1" (u,eq,y,)) + by, p — ra(p)), Vi, € X, (6.88)

Due to the discrete inf-sup condition presented in Lemma 1.8, there is 1), € X}, such

that

b(n (D) — 1) = [l (p) — prll® (6.89)
[l < %nw) ol (6.90)

Apply (6.89) and (6.90) in (6.88) to obtain

170(p) = pll* = (e, ) + K a(Pren, ) + K a(u, — Pyuy, 4py,) + v a(Prey, by,
+rva(u—Pyu,vp,) + ™ (en, up, ¥y,) + ' (up, en, y,) + " (en, en, ¥y,)
= (1w, en, ) = (W e, 4py)) — (1(0, en,9hy) — 1 (0, 001, ))
+0(¢. p — r1(p))- (6.91)

The terms on the right hand side of (6.91) can be bounded following the bounds
(6.81)-(6.86) and the Cauchy-Schwarz inequality as follows

171(p) — pull* <C(llent|| + [|Prenells + IPrenlle + " + H* 0 + b lug|.
+ H g + b gl + Bl + B |ple) 140,

Finally, a use of (6.90), the inequality ||p — pu|| < |lp — ra(P)|| + |72 (p) — pn||, approx-
imation result (1.31), (6.10), (6.64), (6.87), assumption (A2), and Lemmas 2.2 and
6.10 leads us to the desired estimate. O

Next, we present an estimate for Step 3 semi-discrete pressure error.
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Theorem 6.4. Under the assumptions of Lemma 6.7 and for all t > 0, the following

error estimate holds true:
I = pR)@O] < K (&) (A" + HF2720),
Proof. From the equations (6.1) and (6.6), we obtain

= b(@y, (D) — Pi) = (eny, d1) + £ a(Prey, @) + ka(u — Prug, ¢,) + v a(Prey, @)
+ra(u—Puu,éy) + (e, ung, dy) + M (up, e, @) + M (en, en, o)

+ " (en, en, @p,) + M (en, ey, @) — (l“h(u, e, ®,) — 1"(u, ey, (Z)h))

(1*(u, e, @) — 1" (u e, @y,)) — (1 (w, en, dy) — 1(w, e, B4))

(I"(u, en, dp) — 1" (0, en, pp,)) + b(¢by, p — 71 (p))- (6.92)
We follow the arguments used in the derivations of (6.73)-(6.79), (6.81), (6.85)-(6.86)

to bound the right hand side of (6.92). Then proceeding as in the proof of Theorem
6.3 with pj, replaced by p; in (6.89) and (6.90), we obtain

lrn(p) = pill < Clllensll + IPreqlle + [Prehll + A7+ HPF2720 4 r2720),

Use triangle inequality, (1.31), Lemmas 2.2 and 6.11, Theorem 6.2 and assumption
(A2) to complete the proof of this theorem. O

Remark 6.3. Under the condition (6.65) the estimate of Theorem 6.4 is uniform in

time.

6.5 Fully Discrete DG Two-Grid Method

For discretization in time variable, we employ the backward Euler scheme in this
section. We describe below the backward Euler scheme for the semi-discrete DG Two-
grid algorithm (6.4)-(6.6) as follows:

Step 1 (Nonlinear system on &,): Find (U}, Pj)n>1 € Xy X My such that for all
(b, qn) € Xy x My and for UY, = Pyug

(atU?Iv ¢H) tha (atU?h ¢H) +rva (U?-Iv ¢H) + CUnH(U?Ju U?]a ¢H>
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Step 2 (Update on &, with one Newton iteration): Find (U}, P;'),>1 € Xj X M}, such
that for all (¢, qn) € X x M, and for U2 =Pyug

(atU2L? ¢h) +TKRa (atUZ7 ¢H)+Va (U’;’LL7 ¢h) + CUZ (U27 U?[? ¢h)
+CU?I(U7[1{7 UZ? ¢h> + b(¢h7 P}?) = (fnv ¢h) + CU?I (U?h U?I? q,)h)? (694)
b(Uy, qn) =0.

Step 3 (Correct on &,): Find (U", P"),>1 € X, x M}, such that for all (¢,qn) €
X, x M, and for U° = P,u,

(0U", §;) + 5a (U, @) +va (U, ¢) + V" (U, Uy, ¢,) ]
+cVi(UY, U, ¢,) + by, P") = (", ¢,) + Vi (UY,, Uy, ¢,)
+cUR(UL, U - UL, @),
b(U", qn) = 0.

(6.95)

V

The two-grid DG backward Euler scheme applied to (6.7)-(6.9) is described below in
the form of the following algorithm:
Step 1 (Nonlinear system on &,): Find U}, € Vg such that for all ¢, € Vg and for

U(I)'—I = PH“O

(atU?h ¢H) + Ha(atU?-b d)H) + Va(U%v ¢H) + CUTILJ(U?D U?I? ¢H> = (fn’ d)H)
(6.96)

Step 2 (Update on &, with one Newton iteration): Find U} € Vj, such that for all
¢, € V};, and for U?L = Pjug

(0Uy, éy) + £a(0U5, dp)+va(Uy, ¢p) + Vi (Uy, Uy, ¢y,) + Vi (U, Uy, ¢)
- (fn7 ¢h) + CU}L] (UnHv U?I? ¢h) (697)

Step 3 (Correct on &,): Find U™ € V), such that for all ¢, € V;, and for U’ = P,u,
(atU”? ¢h) +thra (atUna ¢h) +rva (Una ¢h> + CU”<Un7 U?—Ia ¢h) + CU?{ (UnH? Un7 ¢h>

= (fna ¢h) + CU?I(UnHv Za ¢h) + CUZ( Za U?I - Z? ¢h> (698)

6.5.1 A priori Bounds

Below in Lemma 6.12, we state a priori bounds of the Step 1 fully discrete solution

UY,. For a proof, one may refer to Lemma 3.7 of Chapter 3.
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Lemma 6.12. Let 0 < a < 2(02’7% Further, let UY; = Pyuy. Then, there eists
a constant C' > 0, such that, the solution { U} }n>1 of (6.96) satisfies the following a

priori bounds:

M
[T + kU2 + e ALY || U2 < €, n=1,---, M.

n=1

Now, we provide a proof of a priori estimates of the solution U} of (6.97).

Lemma 6.13. Choose ko small so that 0 < At < kg and 0 < a < Q(CQVTK:KQ) Further,
let U) = Phugy. Then, there exists a constant Kr > 0, such that, the solution { Uy},

of (6.97) satisfies the following a priori bounds:

M
(TP + w TGP + e ALY 0 UR|2 < K, =1, M.

n=1

Proof. First of all, we choose ¢, = U}, in (6.97). Note that

@0} U = 5 (5 1ORI = 1012+ AR ) = JadURIE, (699

1/ 1 1
a(0,U}, Up) = 5 (A—ta(UZ, Up) — 57o(UR 7 U + Ata(9,Uf, 8tUZ)>
1
> 50:a(U;, Uy), (6.100)

and from (1.19) and Lemma 1.6, we obtain

O[URI + # 0a(Uy, Up) + 20K |[UR |12 < 21£7][[|UR[| + 2|V (U, Uy, Up)
+ 2|cYE (U, UL, U (6.101)

A use of (2.55) and (2.57) yields

2|c7H (U}, Uy, Up)| + 2|V (Uy, Uy, Uyl
< C(IUR IO 1O 122 + 11U 203 - (6.102)

Observe that

> At (9,[|UR| + 1 0,a(Uy, Uy))

n=1

=Y " ([UR° = TP + £ a(UR, UR) — ka(U; 1, URY)
n=1
-1
= B ([UR 2+ (U, UR) = 3 6% = 1) ([U3)P + wa(UR, U})
1

3

n

— (UL + ka(Uy, UY)). (6.103)
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Multiply (6.101) by Ate®**", sum over n = 1 to m, and using (1.14), (6.102), Lemmas
1.6 and 1.7, the above equality and Young’s inequality, we have

Co + kK)(e2At — 1 "
e [UF P 4 Koo U2 + (v — (2 D 37 e 2
n=1

m
< CANU P + Kor 2 UR|IZ + CAL Y (|URIP UL + [[URII2 + [1£17).
n=1
(6.104)
Choose « in such a way that

1+ VKlAt 2 620[At’
CQ + /QKQ

which implies

< l/Kl
« — -
- 2(02 + K,KQ)

Using discrete Gronwall’s inequality and Lemma 6.12, and multiplying the resulting

inequality through out by e=2%" we establish our desired estimate. O]

The next lemma present a priori bound for the solution U" of (6.98).

Lemma 6.14. Choose ko small so that 0 < At < kg and 0 < a < 2”—K1 Further,

(CQ-l—liKg)
let U° = Pyug. Then, the solution {U"},>1 of (6.98) satisfies the following bounds:
M
|| Un||2 + /{H Uan + €—2atM At Z 62atn|| Un“? S KT, n = 1, cee M.
n=1

The proof technique of the above estimates is quite similar to the proof of Lemma

6.13. Thus, we skip the proof.

6.5.2 Fully Discrete Error Estimates

Next, the error estimates of backward Euler method are discussed. Considering the
semi-discrete scheme (6.7)-(6.9) at t = t,, and subtracting from (6.96)-(6.98), we arrive
at the error equation for all three steps:

Error equation for Step 1: Set e}, = U}, —upg(t,) = U} —u}, for fixedn e N, 1 <
n < M. Then, for all ¢, € Vy,

(Oiely, b)) + a0y, dg) +valey, ¢y) = (Ul — Oy, o)
+ra(ufy, — Oy, ) — U (UY, Uy, ) + i (ufy, uly, ¢y). (6.105)

Error equation for Step 2: Set e} = U} —u,(t,) = U} —uy, for fixed n € N, 1 <
n < M. Then, for all ¢, € V,,

(ateza ¢h) + ’ia<8tez7 ¢h) + Va(ez7 ¢h) + CU}EI( ?{’ 627 ¢h) = (uZt - atuz» ¢h)
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+ Ra(uZt - atuz: d)h) - CUZ( 27 e?[u ¢h) - CUZ(eZ7 U?JI’ ¢h) - CU%(GZ7 UZ, ¢h>
+ CU}LI (e?D ¢h) + C (uH7 eH7 ¢h) (lU (uh7 uH7 d)h) luz (u;LL7 u?[a q,)h))
(lU (qu uh7 d)h) - lu (U.?{, uz; ¢h)) - (luH<uTIEI7 u?[? d)h) lUn (qu uH7 ¢h))
(6.106)

Error equation for Step 3: Set e* = U" — uj(t,) = U" —u}", for fixed n € N, 1 <
n < M. Then, for all ¢, € V;,

(0", ) + K a(Oe”, ¢y,) +vale”, ¢y) + Vi (U, e, éy,) = (ujf — oy, )
+ra(up — oy, @) — eV (e, Uy, @) — ¥ (uh L€ dp) — Vi (e, i, ¢y,)
+ ¢V (UYy, e, ¢y,) + <Vl (e, up, ) + VR (Uy, ey, ) — ¢V (UG e, ¢y,)
+cVh(ep, ufy —up, @) — (lUn(uZna ujy, @) — 1M (ui, ul, é1))

(ZU (uf, wy", @y,) — 1" (ufy, up, é1)) + (lUg(uquuZa @) — 1" (uy, uy, 39)
+ (1Vh (uy, ufy — up, ¢,) — 1M (uf, uf — i, @), (6.107)

The following lemma provides us bounds for the Step 1 error e%,.

Lemma 6.15. Suppose the assumptions of Lemma 6.12 hold true. Then, the following

estimates hold true:

M
lef I+ llef 12 + e 22 ALY - e |ep||2 < KrAd, (6.108)

n=1
Proof. The estimate of this lemma is similar to Lemma 3.8 of Chapter 3. The only
difference in the estimates of the nonlinear terms. For that, we set ¢p;; = €}, in (6.105)

and rewrite the nonlinear terms to find

(Orely, efy) + ka(Orely, efy) + valely, efy) + i (Ul efy, efy) = (ufy, — Oy, efy)
eV (e, u", efy)

+lu}fl(unH7unH7eTIfI) - lU (uHuqueH) (6109)

+ Ka(ufy, — dpujy, ef) + eV (efy, u" — ufy, efy) —

With a similar technique as in the proof of Lemma 3.8, we can obtain
|V (e, u" — ufy, ef)| + [V (e, u", efy)| < Olle|l[lef ..

Since u™ is continuous, apply (2.60), Theorem 6.1, inequalities (1.35), (1.38) and (1.14)

to arrive at

|lu%(u7;17u%ae%) - lU (uH7queH)|

= |lu7{(u?{’ u" — 11?{, e?{) - lUH(u?h u" — u?I?e?{”
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< Clleg s llu = ufllcller | < Cllegll-lla - ukllleflle < Clleklllles ..

Now, proceed similar to Lemma 3.8 will follow the desired estimate.

The next lemma establishes the bounds for the Step 2 error ej.

Lemma 6.16. Suppose the assumptions of Lemmas 6.8 and 6.13 hold true. Then, the
following estimates hold true:

M
lepll® + i llepll2 + e 72 ALYy e |2 < KrAt.

n=1
Proof. We put ¢, = e} in error equation (6.106). A use of (1.19), Lemma 1.6, and
(6.99) and (6.100) with e} in place of U}, yields

1 K
§3t|!e?tll2 +50aley, ep) + vEi|epll2 < (uf, — diuy, ef) + ra(uy, — duy, ef)

Vi (

- CUz(eZ’ urIL{’ eZ) —cr Ui (

ne €, en) — cVi (el up, ep) + Vi (e, Uy, ef)
+ CU%(“Z? e?{’ eh) (ZU (u}w uH7 eh) - ZUZ(uZ’ u7[z{7 GZ))
(ZU (uH’ uh: eh) - luH(uH7 uh7 eh)) - (lu?{(u}’b{’ 112[, eZ) - lU?I<u7;17 u?[? e;lz))

=H,+Hy+ Hs+---+ Hyp. (6.110)

From (1.14), Lemma 1.7, (2.138), the Cauchy-Schwarz and Young’s inequalities, we

have
tn 1/2
mcar® (7 juaolPas) el
tn—1
VK tn
P + oat [ (o) ds, 6.111)
tn—1

tn 1/2
|Hy| < C AP (/ ||uhss<s>||§ds> ez

tn—1

VK tn
e+ oat [ (o) ds. (6.112)
tn—1

An application of (2.57) and Young’s inequality leads to

VK1

[Hs| < Clleq]|"*[lu [l lleq 2 < —~llehllZ + C [l Zller . (6.113)

A use of (2.55) and Young’s inequality leads to the following bound:

|Hy| + |Hs| + |Hg| + | H7|
<C(Upl:llefll: + ek il + ek lUg N + gl llef]l-) ler]l-
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zh) ehllz + C>ITRIZNeRIZ + ek lZIupllz + ek IZIT% 112 + [k 12]lef12).

- 64
(6.114)
Use a result in (2.60), Lemma 2.6 and estimate (1.14), we find that

n n n Kly 2 4
[Hs| < Clleqlls@lluflllleqlle < —==leqllz + C lleg|*[lug 2 (6.115)

n n n Kly 2 2
|Hy| < Cllef[raellugllellerlle < —— || enllz + C ey |I2]uy 12 (6.116)
[Hio| < Clleg | o [ufllller ]l < 64 22 llenl2 + C e 2l u ]2 (6.117)

Substitute (6.111)-(6.117) in (6.110), multiply the resulting inequality by Ate?*™ sum
from n =1 to m (< M), and employ (6.103) with e} in place of U}, and Lemmas 1.6
and 1.7 to obtain

6204tm (

eI + ke 12 )+VK1NZ ot

n=1

eh||2

m—1
2B 1) 3 et (|let | + Korilef |2 )+0At262“t"\|eh|| [l 12
n=1

n=1

+ Cﬁtzem”(HUZ‘II?HGEIIE + [lef 12 IR 11z + ek 21T 112+l 1Z]le? )12)

n=1

m tn
083 [ () + e (9)]2) ds
n=1 n—1

We now apply (6.10), (6.12), (6.14), (6.108), Lemmas 6.12, 6.13, the fact e2*A! — 1 <

C(a)At and discrete Gronwall’s lemma to arrive at the desired result. ]
For Step 3 velocity error bound, we have the following lemma.

Lemma 6.17. Suppose the assumptions of Theorem 6.2 and Lemma 6.14 hold true.
Then, the following estimates hold true:

M
€] + K [[€]|2 + e 2 ALY " ein||e" |2 < KrAt®,

n=1

Proof. Substitute ¢, = €" in (6.107). Applying (1.19) and Lemma 1.6, we obtain

SO 1P + Soualef, ef) + vEef 2 < (wf — O, e) + wa(ujf — O, e)
— Y (e, U, e) — U (uf, el e) — Y (e, u™, e") 4 Vi (U, el e")

+ Vi (e, up, e") + Vi (Uf, ey, €") — Vi (U, e, ") + cVi (e, uly — ujy, e”)
— (V" (uj" ufy, @) = 19 (ug €)= (1Y (ufy, ug ) — 1M (uly, wp e™))

(lU (uf,up,e") — l“TI}I(u?{,uZ,en)) (ZU (up,ufy —up,e") — l“z(uz,uz — uZ,e”)).
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Following similar set of arguments as in Lemma 6.16, we can bound the right hand

side terms of the above inequality and arrive at
1 K b 1/2
sorleil + Soa(er.ef) + vl < € (807 ([ (o)1 as)
tn—1

tn 1/2
+ A2 (/ Hqus(S)H?dS) + lup”llllef e + 0%l llerlls + ekl [yl
tn—1

+ [ Usllelleq - + 1URINeklls + llexllluf — uZHs> ezl
+C eI ]ls + [lugll-) lle"]I272.

Using (6.10), (6.12), (6.21), (6.23), (6.108), Lemmas 6.12, 6.13 and 6.16, Young’s

inequality, and proceed similarly as Lemma 6.16, we conclude the proof. [

Below, we present one of our main results from this chapter, which is Step 3 fully
discrete velocity error estimates, and an immediate consequence of Theorem 6.2 and

Lemma 6.17.

Theorem 6.5. Suppose the assumptions of Theorem 6.2 and Lemma 6.17 are satisfied.

Then, the following estimates hold true:

Hun o Un” SKT<hT+1 + hrHrJrlfG +H3r+2729 + At),
”un . UnHE SKTULT +H3T+2_29—|—At).

The next lemma presents the error bound related to Step 3 pressure approximation.

Lemma 6.18. Under the hypotheses of Lemma 6.17, the following estimates hold true:
IP" —pi"|| < KpAt, 1 <n < M.

Proof. To find the pressure error estimates for Step 3, we subtract (6.6) with ¢ = ¢,

from (6.95) and arrive at

b(y, P" —pi") = — (0", @p,) — ka(Ore", @,) —va(e”, ¢,) + (wy; — Oy, @y,)

+ ra(ui} — oy, ¢y,) — Vi (Ugy, ", ¢y,) — V' (e", Uy, ¢y,) — <V (0", ey, )
— Y (e, wp", ) + V(U ef, @) + Vi (e, uy, dy) + VR (Uy, €y, )

— V(U e, @) + cVh(ef, ufy —up, @) — (ZU”(u}i”, uy, @) — 1" (w, ul, é1))
— (1Y (ufp, wy, @) — 1% (ufy, i, ) + (19 (uhy, uf, ) — 1% (uly, iy, )

+ (ZUZ (uZ7 uTIfI - uZ? ¢h) - luZ (UZ, uTIL{ - u27 ¢h>) (6118)
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Observe that, to estimate b(¢,,, P*—p;™), we need a bound for d;e™. To do so, consider

(6.107) with ¢, replaced by 0,e" and utilize Lemma 1.6 to find

0™ ||> + K15||0re”]|? < (ui — 0™, 0se™) + ra(ul} — dyu;", 0ye™) — va(e”, dre™)
—cVE(UY, e, 9e") — V' (e, U, 0e") — U (ui, ely, ™) — Vi (e, uj", 9,e™)
+ Vi (U, ef, 0e") + Vi (e, upy, de™) + U (U, ey, 0e™) — Vi (U], e, ie™)
+cYn (e, ulyy —up,o0e™) — (lUn (wp", u'fy, 0e") — " (up", uly, ﬁte"))

— (lU?f(u?I, u;”t, 0e") — [Wh (u'fy,ur”, ate”)) + (ZU% (ufy,up,0e") — l“g(u?[, uy, 8te”))

+ (ZUZ (up,ufyy —up,o0e") — luz(uz, uy —up, Bte”)).

With an application of (1.14), Lemma 1.7, (2.55), (2.60), (2.138) and the Cauchy-

Schwarz inequality yields

10w ||* + Kk]|0e” |2 < C (At sup [[up, ()] + At sup [Jug, (2)[- + [le”]
0<t<oo 0<t<oo
+ 0% lle" [l + lupllllef - + 1UF ekl + llefl-lluqll

+ [ ULllllerlle + [[URlleklle + llegllluf — il + Hu’}iszHe"Hs> 10" [

A use of (6.10), (6.12), (6.21), (6.23), (6.108), and Lemmas 6.12, 6.13, 6.16 and 6.17,

and Young’s inequality leads to
|0.€"||> + K1k]|0e™|?> < CAL. (6.119)

Apply Lemma 1.8 and bound the terms on the right hand side of (6.118) following the
arguments in deriving (6.119) to find

1P" =il < C([|0re"|| + [|0re" <) + CAL.

An application of (6.119) completes the proof of this lemma. O

The following theorem presents the Step 3 fully discrete pressure error estimate and

this can be derived using Theorem 6.4 and Lemma 6.18.

Theorem 6.6. Under the assumptions of Theorem 6.4 and Lemma 6.18, the following

error estimate holds true:

||pn _ PnH < KT<hr+H3r+2—26 —I—At).
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6.6 Numerical Experiments

In this section, a few numerical experiments are performed and the theoretical findings
are confirmed. For space discretization P, — P,._;, » = 1,2, DG finite elements are
employed and for time discretization, backward Euler method is applied. We choose
the domain Q = [0, 1]>. We have considered here three examples, where the first two
are computed on the time interval [0,.1], the time step At = O(h™*1), h = O(H?) for
r=1and h = O(H®?) for r = 2. And the third example is analyzed on the time
interval [0, 100].

Example 6.1. Consider the Kelvin-Voigt model with ezact solution (u,p) = ((ui(z, v,
t)a UQ(ZE’ Y, t)),p(l‘, Y, t)) as

u(z,y,t) =te™ sin(2my)(1 — cos(2rz)),
us(z,y,t) =te " sin(27rz)(cos(2my) — 1),

p(x,y,t) =27te "(cos(2my) — cos(2mx)).

In Tables 6.1 and 6.2, we represent the computational errors and orders of con-
vergence for the two-grid DG solution of (6.93)-(6.95) for » = 1 and 2 with viscositiy
v = 1, respectively. Further, Tables 6.3 and 6.4 represent numerical errors and orders
of convergence for r = 1 and 2, respectively, with v = 1/100. We set the penalty
parameter o, = 20 and 40 for r = 1 and 2, respectively, and x = 1072, We notice that
the numerical outcomes of Tables 6.1-6.4 confirm the theoretically derived convergence
orders, which is of O(h"*') and O(h") in L? and energy norms for velocity, and O(h")

in L2-norm for pressure, respectively.

Table 6.1: Errors for two-grid DG approximations and order of convergence for Ex-

ample 6.1 with r =1 and v = 1.

ho | Ju(ty) = UM|| | order | [Ju(ty) — UM|. | order | ||p(ta) — PM|| | order
1/4 | 2.8123 x 102 1.6005 x 10~ 1.2165 x 101
1/8 | 6.1009 x 1073 | 2.2046 | 1.3713 x 1071 | 0.2229 | 9.9415 x 1072 | 0.2912
1/16 | 1.3311 x 1073 | 2.1963 | 7.6041 x 1072 | 0.8507 | 6.8502 x 10~2 | 0.5373
1/32 | 3.0528 x 107% | 2.1244 | 3.9204 x 1072 | 0.9557 | 4.0196 x 10=2 | 0.7691
1/64 | 7.1213 x 107° | 2.0999 | 1.9691 x 1072 | 0.9934 | 2.1271 x 1072 | 0.9181
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Table 6.2: Errors for two-grid DG approximations and order of convergence for Ex-

ample 6.1 with »r =2 and v = 1.

ho | lu(ty) — UM|| | order | |Ju(ty) — UM|. | order | ||p(tar) — PM|| | order
1/4 | 41952 x 1073 9.7518 x 1072 1.1138 x 107!
1/8 | 5.5623 x 1074 | 2.9149 | 2.2689 x 1072 | 2.1036 | 3.2260 x 1072 | 1.7876
1/16 | 7.0121 x 107° | 2.9877 | 5.2048 x 1073 | 2.1241 | 8.1395 x 1073 | 1.9867
1/32 | 8.4578 x 107% | 3.0515 | 1.2441 x 1073 | 2.0646 | 2.0689 x 10~ | 1.9760

Table 6.3: Errors for two-grid DG approximations and order of convergence for Ex-

ample 6.1 with » =1 and v = 1/100.

ho | Ju(ty) = UM|| | order | [Ju(ty) — UM|. | order | ||p(ta) — PM|| | order
1/4 | 7.4361 x 1072 4.8762 x 107! 4.2109 x 102
1/8 | 24339 x 1072 | 1.6112 | 2.2497 x 101 | 1.1159 | 3.7276 x 1072 | 0.1758
1/16 | 5.9670 x 1073 | 2.0281 | 1.0212 x 10~* | 1.1394 | 1.4008 x 10~2 | 1.4119
1/32 | 1.4809 x 1073 | 2.0104 | 5.0580 x 1072 | 1.0137 | 6.0463 x 1073 | 1.2121
1/64 | 3.2607 x 107* | 2.1832 | 2.5133 x 1072 | 1.0089 | 3.0008 x 10~3 | 1.0107

Table 6.4: Errors for two-grid DG approximations and order of convergence for Ex-

ample 6.1 with » = 2 and v = 1/100.

ho | |Ju(ta) — UM|| | order | |lu(tas) — UM|. | order | ||p(tas) — PM|| | order
1/4 | 1.9732 x 1072 2.5482 x 1071 1.0070 x 107!
1/8 | 2.4634 x 1073 | 3.0018 | 4.6295 x 1072 | 2.4605 | 2.8521 x 1072 | 1.8200
1/16 | 3.3592 x 10™* | 2.8744 | 9.2606 x 1072 | 2.3216 | 7.1643 x 1073 | 1.9931
1/32 | 4.0441 x 107° | 3.0542 | 2.1708 x 1073 | 2.0928 | 1.8493 x 1073 | 1.9538

Example 6.2. In this example, the choice of right-hand side source function f is made
in such a manner that the exact solution (u, p) = ((ul(x,y,t), us(z,y,t)), p(x,y,t))
takes the following form:

w (z,y,t) =2(2” — 22° + 2*)(2y — 6y° + 4y®) cos(t),

ug(x,y,t) = — 2(y* — 2y° + y*) (20 — 62% + 42%) cos(t),

p(z,y,t) =10 cos(t)(3y* — 1).
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Tables 6.5 and 6.8 depict the error and convergence orders of the two-grid DG
scheme for r = 1 and 2, respectively, with v = 1/40 and x = 1073. The penalty
parameter o, is chosen same as in Example 6.1. These results verify the derived
theoretical results.

Additionally, we compute the approximate solutions by the standard DG scheme
to better assess the performance of our two-grid DG scheme with the same fine mesh,
oe, k and At. Tables 6.6 and 6.9 represent the numerical error and convergence
orders for r = 1 and 2, respectively, employed by the standard DG scheme. By
comparing Table 6.5 with Table 6.6 and Table 6.8 with Table 6.9, we observe that
the accuracy of the numerical solutions by the proposed two-grid DG method is quite
close to that of the standard DG method. In Tables 6.7 and 6.10, we compare the
computational times taken to compute the two-grid DG solution and the standard
DG solution corresponding to r = 1 and 2, respectively. The tables demonstrate that
the proposed two-grid DG method requires significantly less computational time than
the standard DG method. Additionally, as we refine the mesh more and more, the
computational time gap increases between both solutions, namely the two-grid DG

solution and the standard DG solution.

Table 6.5: Errors for two-grid DG approximations and order of convergence for Ex-

ample 6.2 with » =1 and v = 1/40.

ho | |Ju(ta) — UM|| | order | |lu(tas) — UM|. | order | ||p(tas) — PM|| | order
1/4 | 5.3827 x 107! 5.1546 x 10° 5.9317 x 10~
1/8 | 2.4591 x 101 | 1.1301 4.4511 x 10° 0.2117 | 3.1194 x 107* | 0.9271
1/16 | 5.7934 x 1072 | 2.0856 2.1725 x 10° 1.0347 | 9.7262 x 1072 | 1.6813
1/32 | 1.3499 x 1072 | 2.1015 1.0248 x 10° 1.0839 | 4.2954 x 1072 | 1.1790
1/64 | 3.1882 x 1073 | 2.0820 | 4.8998 x 10~ | 1.0646 | 2.0681 x 1072 | 1.0544
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Table 6.6: Errors for standard DG approximations and order of convergence for Ex-

ample 6.2 with » = 1 and v = 1/40.

h | |[u(tar) — Upgl| | order | fJu(tar) — Upglle | order | |Ip(tar) — P3Gl | order
1/4 | 5.2667 x 107! 4.8993 x 10° 5.8976 x 107!

1/8 | 23369 x 107" | 1.1722 |  4.3182x 10° | 0.1821 | 3.0574 x 107" | 0.9478
1/16 | 5.7869 x 1072 | 2.0137 |  2.1599 x 10° | 0.9994 | 9.6112 x 102 | 1.6695
1/32 | 1.3476 x 1072 | 2.1023 |  1.0220 x 10° | 1.0794 | 4.2762 x 102 | 1.1683
1/64 | 3.1863 x 1073 | 2.0805 | 4.8985 x 10™" | 1.0610 | 2.0636 x 1072 | 1.0511

Table 6.7: Comparison of computational time between “standard DG solution” and

the solution obtained by the "two-grid DG method” for Example 6.2 with r» = 1.

h | Two-grid DG solution (in Seconds) | Standard DG solution (in Seconds)
1/4 0.11 0.12
1/8 1.31 1.70
1/16 16.74 26.79
1/32 238.68 434.40
1/64 3477.48 7337.49

Table 6.8: Errors for two-grid DG approximations and order of convergence for Ex-

ample 6.2 with » = 2 and v = 1/40.

ho | lu(ty) = UM|| | order | [Ju(ty) — UM|. | order | ||p(ta) — PM|| | order
1/4 | 3.1700 x 1072 5.9339 x 1071 3.1545 x 1071

1/8 | 4.2622 x 1073 | 2.8947 | 1.6380 x 107! | 1.8569 | 7.8565 x 1072 | 2.0054
1/16 | 5.4807 x 10™* | 2.9591 | 4.0639 x 1072 | 2.0110 | 1.9606 x 1072 | 2.0025
1/32 | 6.7881 x 107° | 3.0132 | 1.0122 x 1072 | 2.0052 | 4.8975 x 1073 | 2.0012
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Table 6.9: Errors for standard DG approximations and order of convergence for Ex-

ample 6.2 with » = 2 and v = 1/40.

h | u(tar) = Upgll | order | [u(ta) = Upglle | order | [Ip(tar) — Phgll | order
1/4 | 29187 x 1072 5.8205 x 1071 3.1542 x 1071
1/8 | 4.1899 x 1073 | 2.8003 | 1.6117 x 107" | 1.8525 | 7.8567 x 1072 | 2.0052
1/16 | 53754 x 107* | 2.9624 | 4.0506 x 1072 | 1.9923 | 1.9606 x 10-2 | 2.0026
1/32 | 6.7753 x 107> | 2.9880 | 1.0093 x 1072 | 2.0046 | 4.8966 x 1072 | 2.0014

Table 6.10: Comparison of computational time between “standard DG solution” and

the solution obtained by the ”two-grid DG method” for Example 6.2 with r = 2.

h | Two-grid DG solution (in Seconds) | Standard DG solution (in Seconds)
1/4 2.68 3.22
1/8 39.69 53.98
1/16 766.87 1250.63
1/32 21374.86 38261.20

Example 6.3 (Benchmark Problem). In this case, the lid-driven cavity flow on the
computational domain [0,1]* is ezamined. The velocity at the top of the boundary
u = (1,0), is what majorly drives the flow of fluid. Other portions of the cavity
boundaries are subject to the no-slip boundary conditions. On the body, no forces are

acting i.e., f = (0,0).

We perform a comparison along (z,0.5) and (0.5, y) lines for velocity components
for both two-grid DG and standard DG schemes with » = 1 and 2. For the time
discretization backward Euler method is employed with At = 0.01 and final time
T = 100. For the sake of simplicity, numerical simulations of the standard DG and two-
grid DG methods are conducted with the uniform mesh sizes h =1/32 and H = 1/16
(only for two-grid DG) to present the stability and accuracy of our method. For this
test case, we choose different v = {1/100, 1/400, 1/1000}, ~ = 10v and the penalty
parameter is g, = 40.

The comparisons of the horizontal velocity component at x = 0.5 and the vertical
velocity component at y = 0.5 are shown in Figure 6.1 for r = 1 and in Figure 6.2
for r = 2 to indicate that the standard DG and two-grid DG methods produce similar

numerical solutions.
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(a) First velocity component along x = 0.5 (b) Second velocity component along y = 0.5

Figure 6.1: Velocity profiles through the geometric center for Example 6.3 with r = 1.
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(a) First velocity component along x = 0.5 (b) Second velocity component along y = 0.5

Figure 6.2: Velocity profiles through the geometric center for Example 6.3 with r = 2.

If K = 0, the Kelvin-Voigt model transforms into the well-known NSEs. In Figure
6.3, we depict for various v and k the streamline plots of the NSEs and our model
problem at final time 7" = 20 for » = 2. From these graphs, we observe that the the
swirls situated in the corners are almost the same with ¥ = 1 and present a huge
difference for v = 1/1000 with different x. This implies that the term —xAu; has a
small effect on the flow field with large v and show an effect to stabilize the velocity

field for small v.
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(c) Streamlines for v = 1/1000 and x = 0. (d) Streamlines for » = 1/1000 and x = 10.

Figure 6.3: Streamlines for NSEs (left column) and model problem (right column).

6.7 Conclusion

This chapter proposes and analyses a three-step two-grid technique for the DG approxi-

mation of the Kelvin-Voigt viscoelastic model. Optimal order convergence estimates of
. r+2—26
the semi-discrete velocity approximation in L%norm when h = O (H i (r+170,3 == ))

. 3r4+2-20 . . .
, in energy norm for h = O(H ) and pressure approximation in L?*-norm when

h=O(H"7) for t > 0 are proved. And with a smallness condition on data, these
estimates are shown uniform with time. A complete discretization of the semi-discrete
two-grid model is achieved by applying a backward Euler method in the time direction.
Fully discrete error estimates are derived with optimal order of convergence. Finally,

numerical results are depicted to show the effectiveness of the scheme.
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