Chapter 7

A Three-Step Two-Grid DG
Method for the Oldroyd Model of
Order One

In this chapter, we analyze a two-grid method combined with DG discretization for
the equations of motion arising in Oldroyd model of order one. As in the previous
chapter, that is, Chapter 6, we stick to the same algorithm. We discretize the time
variable using the backward Euler method. Fully discrete optimal L? and energy-norms
error estimates for velocity and L?-norm error estimates for pressure are derived for
an appropriate choice of h and H. Finally, some numerical results are provided to

validate the theoretical findings.

7.1 Introduction

At the very outset, let us revisit the variational problem for the Oldroyd model of order
one in the spaces X and M from Chapter 4: Find the pair (u(t),p(t)) € XxM, t >0,
such that

(ue(t), @) + pa(u(t), ) + *(u(t), u(t), ¢)
/ B(t - s)a(u(s), @) ds +b(¢, p(t)) = (£(t),¢) YoeX,  (T.1)
b(u(t),q) =0 Vg e M, (7.2)
(u(0), @) = (19, ¢p) Vep € X. (7.3)

Utilizing the backward Euler method for temporal discretization, we present a DG

two-grid algorithm for (7.1)-(7.3), which is stated as follows:
241
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Step 1 (Nonlinear system on &,): Find (UY, Pji),>1 € Xy X My such that for all
(b, qm) € Xy x My and for UY, = Pyuy
(0 U%, du) + pa(Uy, ¢y) +a(q(Un), ¢y) + Vi (U, Uy, ¢y)
+ b(¢y, Pr) =", ¢p), (7.4)
b(Uf, qu) = 0.
Step 2 (Update on &, with one Newton iteration): Find (U}, P;')n,>1 € Xj X M}, such
that for all (¢, qn) € X;, x Mj, and for UY) = P,u,
(0.U}, ¢3) + pa (U, @) + a (g (Un), ¢) + Vi (Uy, Uy, ¢y,)
+cUi (U, Up, @) + (g, Py) = (£, ¢y,) + ¢V (U, Uy, ¢y), (7.5)
B}, 1) = 0
Step 3 (Correct on &,): Find (U}", P/"),>1 € Xp, x M}, such that for all (¢, qs) €
X, x M}, and for UZO = Pyug
(@U, §) +1a (Ui ) +a(@(U}), ¢)) + UV (U, Uy, )
+cUi (U, U, éy) + by, B = (£7, @) + Vi (U, Uy, ¢y,)
+cVi(Uy, Uy — Uy, ),
b(UL", qn) = 0.

(7.6)

We project the equations (7.4)-(7.6) in appropriate weakly divergence free spaces and
the equations become:

Step 1 Seek U, € V such that for all ¢, € Vi and for UY, = Pyuy
(atU?;ﬁ ¢H) + wa (Urlila d)H) +a (QZ}(UH% ¢H) + CU}ZI(UnH7 UZ) ¢H)
= (f", on). (7.7)
Step 2 Seek Uy € V, such that for all ¢, € V), and for Ug =Py
(atUZ7 ¢h) +pa (UZ7 ¢h)+a (Q?(Uh)a ¢h) + CUZ( 27 nH> ¢h) + CUTIEI (U?h Z’ ¢h)
= (fn7 ¢h) + CU?I (UZ7 U?I? ¢h) (78)
Step 3 Seek U™ € V,, such that for all ¢, € V), and for U}’ = Pug
(at ;;717 ¢h) + na (U;kzna ¢h) +a (Q?(UZ), ¢h) + CUZ” (U;kzna U?{v ¢h) (79)
+ CUTI}I( Z? Ultnv d)h) = (fna ¢h) + CUZ( Zv Z: ¢h) + CUZ( Z? UnH - Za ¢h)

For the Oldroyd model of order one, as per our knowledge, only two works [23, 76]
available in the literature which employed two-grid technique with CG approxima-

tions. In [76], a two-step fully discrete two-grid CG finite element approximation has
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been analyzed and optimal L>(H")-norm error estimate for velocity and L (L?)-norm
error estimate for the pressure with h = O(H?t~/?) has been obtained. Nonetheless,
L>(L?) error estimate was sub-optimal there. A three-step two-grid fully discrete CG
scheme has been applied in [23], and optimal error estimates for velocity in L°°(L2)-
norm when h? = O(H*%1/2) in L°(H")-norm when h = O(H*%1/2) and for
pressure in L>°(L?) norm with h = O(H37%~1/2), for arbitrary small § > 0, are proved.
Both of these works employ the backward Euler method for temporal discretization
and non-smooth initial data, that is, uy € H*(Q).

We would like to point out here that there is hardly any literature that studies
a combination of DG method and two-grid technique for this model problem. If we
proceed similar to Chapter 6 to derive the error estimates for velocity, we can reach

up to the Step 2 error
HEZ”Z Sc(h2r+2 _|_H4r+2—29 + At2),

e_gathtZe%cthEZ”z Sc(h% + H4r+2—29 + Atz),

n=1
where E} = u” — U} and U} = Step 2 velocity approximation. If we proceed further
to derive an optimal bound for ||E}|., we found difficulty in handling the nonlinear
term due to the presence of upwinding and can only achieve sub-optimal estimates.

For this reason, we have implemented the relation

CI/ 9
Kl < sup  A¥m®) gy ox

thgxh\{o} Hd)hHs

which is an immediate consequence of Lemma 1.6, and inf-sup condition from Lemma
1.8 to arrive at the combined optimal estimate for |E}||. and fully discrete pressure
error. Then, the estimates of Step 2 will lead to the error estimates for Step 3. In

this chapter, we have derived optimal fully discrete error estimates for velocity in L3-
3r+2-—26 3r+2-—26
) and

norm provided h = (9(Hmin (TH_G’ [l )), in energy norm for h = O(H ™+
for pressure in L2-norm provided h = O(H™ + ). When r = 1, the largest between

3r+2—26

scaling between h and H for velocity in L? and energy norms are h = O(H 2*9) and
h = O(H??%), respectively, and for pressure in L?-norm is h = O(H®~%). Therefore,
the results presented in this chapter is an improvement in scaling over the results
presented in [23, 76] for energy norm velocity and L?-norm pressure error estimates.

The following is a summary of the primary outcomes of this chapter:

e A priori bounds of the fully discrete two-grid DG solutions for each step.
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e Optimal error bounds for the fully discrete two-grid DG velocity and pressure

approximation for all three steps.
e Numerical experiments are carried out to show the performance of the scheme.

The rest of the part of this chapter comprises of the following sections: Section
7.2 deals with some new a priori results for the discrete solutions. In Section 7.3, the
fully discrete Step 2 error analysis is carried out and in Section 7.4, error estimates
for Step 3 solutions are derived. A few numerical experiments are given in Section
7.5 that are consistent with our theoretical findings. The chapter is concluded with a
brief summary of the findings in Section 7.6.

Throughout this chapter, we will use C, K(> 0) as generic constants that depend on
the given data, u, «a, v, d, Ky, Ko, Cy but do not depend on h and At. Note that, K
and C' may grow algebraically with p~!. Further, the notations K (¢) and Kr will be

used when they grow exponentially in time.

7.2 A priori Bounds

In this section, we present a priori bounds for the discrete solutions of all three steps.
First, we state a priori bound for Step 1 discrete velocity approximation. Then, we
move on to Step 1 velocity error estimates, which play a crucial role in the derivation
of Step 2 and Step 3 a priori estimates. Next, we will derive a priori bounds for
Step 2 and Step 3 velocity approximations.

In Lemma 7.1 and Theorem 7.1, we present Step 1 a prior: estimates and error

estimates, respectively.

Lemma 7.1. Let 0 < a < min ((5, ‘;—g;) and UY = Pguy. Then, the solution

{U} }ns1 of (7.7) satisfies the following estimate:

M
[ U317 + e A Y e | U2 < € n=0,1,.., M,

n=1

where C'is a positive constant.

Since the proof of the above lemma is similar to Lemma 4.6, it is skipped. And the
following theorem provides estimates for the Step 1 error E}; = u” — U’ which can

be established following the proof techniques of Theorem 4.4 and Lemma 4.7.



245

Theorem 7.1. Suppose the assumption (A4) holds true and let 0 < o < min <(5, %),

and choose ko small so that 0 < At < ko. In addition, let the discrete initial velocity
U?{ € Vg with U?q = Ppyuy. Then, there exists a constant Ky > 0, such that

IE% || < Kr(H™ + At), Byl < Kr(H" + At).

Proof. For the estimate of ||E%|l., we only have to modify the nonlinear terms of
Lemma 4.7. In this case, we define ¢,, = U}, — (Ilg(u))” and n,, = u™ — (Ilx(u))".

Thus, rewriting the nonlinear terms of (4.50) in the following manner

Vi (U, Uy, 8C,) — ¢ (u",u", 8,C,) = —cVi (0", By, 0,C,) — V¥ (B, u”, 0,¢,,)

+CUnH (nm ETI7:I7 atCn) - CU?I (Cn) nnu atCn> + CUnH (Cn? Cnu atCn>

and estimating them similar to Lemma 4.7, and proceeding in an identical way as in
Lemma 4.7, we establish the estimate for ||E%||..

To prove the estimate for ||E}||, we follow Lemma 4.11 and break the error as
E}, = (0" —v}) + (v —UY) == &" +n". The nonlinear terms of (4.98) are rewritten

as
CU}; (U;fla U?—I? nn) . Cu" (un7 un’ nn) — _CU}?I (U?b ,r’n7 nn) . CU?I (En’ un’ nn)
—l—CU?I <£n7 £n7 nn) + CUZ’ (,nn7 €n7 nn) . CU}LI (,,,In7 un’ nn) - Cun (un’ gn’ ,’,’n)
+lu" (un’ €n7 nn) . lU}’I (un’ £n, ,r’n)
Therefore, proceed similar to Lemma 4.11 and Theorem 4.4, we arrive at the estimate

for ||E%||. O

Note that, utilizing triangle inequality, Theorem 7.1 and assumption (A4), we have

0%l < [Eflle + 0"y <C, n=0,1,..., M. (7.10)

In the next lemma, we state a priori bounds of Step 2 solution Uj.

Lemma 7.2. Let 0 < o < min (5, gg;) Choose ko small so that 0 < At < kg and

U) = Pyuy. Then, the solution {U}'},>1 of (7.8) satisfies the following estimate:

| ORI + e 20 ALY 2 | UR|2 < K, m=1,.. M.

n=1
Proof. Substitute ¢, = Uy in (7.8), and employ (1.14), (1.19), Lemma 1.6, the
Cauchy-Schwarz inequality and Young’s inequality to obtain

pky

1 n n n n n
SO + G [ URIE + a (a7(0W), Up) < 22 U2
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O[> + |VH (U, Uy, Up)| + Vi (U, Uy, Uyl (7.11)
Now, (2.55), (2.57) and Young’s inequality yield

| (U, Uy, Up)| + |7 (U, Uy, U

< C(IIT IO IO |l + 0% 2U3 1)
MKl

1012 + CIULIPITR N2 + 1U%12)-

Substitute the above bound in (7.11), then multiply by Ate?* sum over n = 1 to m,

and using (1.14) and Lemma 4.5, we have

2 2 02(€2aAt 2 2 20A 2
2ot U7 +(MK1 )Atzeatn 22 < s

+CAtZeM" (I£11* + 1O P11 + 0% ]2)-

n=1
Choose « in such a way that

,LLKlAt

2

1 + > QCMAt

Finally, employ discrete Gronwall’s inequality and (7.10), and multiply the resulting

inequality through out by e=2%%" to arrive at our desired estimate. O]

In the following lemma, we state a priori estimates of Step 3 fully discrete solution
U;". These estimates can be obtained from (7.9) and similar to Lemma 7.2. Hence

the proof is skipped.

Lemma 7.3. Let 0 < o < min (5, géﬁ) Choose ky small so that 0 < At < ko and

U’ = Pyug. Then, the solution { U;"},>1 of (7.9) satisfies the following estimate:
|| U;klmHQ + G—QathtZ eQath U;klan < KTa m = 17 - M.
n=1

The existence and uniqueness of the fully discrete solutions to the discrete problems
(7.5)(or (7.8)) and (7.6) (or 7.9) of Step 2 and Step 3, respectively, can be achieved
using (1.19), Lemmas 1.6, 1.8, 4.5, 4.6, and following similar steps as in [72].

Next, we have a stability property for the L2- projection Py, (see (2.11)) in L>°(Q)-
norm which can be derived following the proof technique of [116, Lemma 6.1] and will

be useful for future analysis:

IPavllm@) <C(VI+ [Vize). Vv e T nL=(Q). (7.12)
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7.3 Optimal Error Estimates in Step 2

This section deals with the derivation of the bounds of fully discrete velocity and
pressure error in Step 2. Let us define E} = u” — U}, and E;" = u" — U;". Below,
we describe the error equations for Step 2 and Step 3.

Error equation for Step 2: Consider equation (7.1) at ¢ = ¢, and subtract it from
(7.8), and for each ¢, € Vy,

(OEL, @) + pa(Ey, ¢,) + algy (En), @),) = —(0f — 9u”, ¢,) + alq; (u), ¢y,)
/ 5 t - 8 (8)7 ¢h) ds — CUZ(EZ7 U?{a ¢h) - CU?{ (U?b EZ? ¢h)
H(E?{J E?{a ¢h) + (lUTIfI (unﬂ E?I? d)h) - lun (unﬂ E?I? d)h))

+ (1 (0" By, ¢y) — 1V (u", By, ) — by, 1"). (7.13)

Error equation for Step 3: Consider equation (7.1) at ¢ = ¢, and subtract it from
(7.9), and for each ¢, € Vy,

(atE;an ¢h) + CL(EZ”, ¢h) + a(q’?(E:L>7 d)h) = —(11? - 8tun7 ¢h) + a(qf(u% d)h)
tn
= [ Bt = S)atuls). @) ds - U (B} Uy gy) - V(UG B )
0

- CU?I (ETIED EZ? ¢h) + CUZ (EZ7 EZ’ d)h) - CUZ <E27 E?I: ¢h) + (lUZ (un’ ETIEH (ph)

- lun (unv ETIED ¢h>) + (lun (un7 EnH? d)h) - lU;;n (un> E?[? ¢h)) + (ZUZ (un> Ezv ¢h)

- lu” (un’ EZ? d)h)) + (lu” (un7 EZ? ¢h) - ZUZ (un, EZ? ¢h>) - b(¢h7pn) (714)
To derive optimal error estimates of Ef and E;" in L? and energy-norms, we employ
the modified Stokes-Volterra projection Sy”u defined in (4.63). Let us split E and
E;" as

Bf =(u" — S{u") + (S~ Uf) = ¢ 4 " (7.15)
E;" :=(u" — S{°u") + (Sy%u" — U;") .= ¢" + O, (7.16)

where ¢" = u” — S?%u”, p" = Su" — U and ©" = S'°lu” — U;".
From the equations (4.63), (7.13) and (7.15), we arrive at the equation in p" as

(00" 1) + ma(p™, &) + alg) (), dy) + 7 (Ul p", 1) = —(u}' = Ou”, @)

tn
— (0", b1) + alar (S ), ) — / Bty — s)a(Sp"u(s), ¢,) ds
0
— Vi (p", Uy, ¢y,) — V(¢ Uy, @) — Vi (U, ¢, )
H(E?Ia E?I) ¢h) + (lUH (un7 E7Il{7 ¢h) - lun (un7 ETIZJ7 ¢h))
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+ (I (0" By, ) — 7R (0", By, ). (7.17)
Furthermore, using (4.63), (7.14) and (7.16), we obtain the equation in ®" as

(2:©", ¢y,) + pa(O", @) + a(q(©), p,) + CU?’(Unm 0", ¢,) = —(ui — gu", @,,)

tn

— (0" ) + ol (8 0) [ Bt~ sJalSiuls). ) ds

0

- CUZn (G)nv U?I? d)h) - CUth (Cn7 UTIED ¢h) - CU?I (U?-Ia an ¢h)

- CU;LI (ETIED E;LL? ¢h) + CUZ (EZ7 EZ? ()bh) - CUZ (E;LL7 E?I? d)h)

+ (ZUE (un’ EnHv d)h) - lun (unu Ezv d)h)) + (lun (un7 E?I? ¢h) - lUZn (un’ E%? ¢h))

+ (ZUTIEI (un7 E27 ¢h) - lu" (un, EZ? ¢h>) + (lu” (un7 EZ7 ¢h) - lU}z(un7 EZ? ¢h)) . (718)
From (7.16), one can see that to derive optimal bounds for E;™, we need to bound
®" in an optimal way. The bounds of ®" depend on the bounds of ¢", E},, E} that
are present on the right side of (7.18). The estimates of ¢" and E%, are known from

Lemma 4.8 and Theorem 7.1, respectively.

The next lemma states an estimate for p™.

Lemma 7.4. Suppose the assumption (A4) holds true. Let 0 < a < min (5, gé{l)
U) = Pyuy and At = O(h™*Y). Then, the following holds true

1o |? + 6—2atht262athan§ < Kp(h*2 + HAT+2-20 AP,

n=1

Proof. Set ¢, = p™ in (7.17), and utilize Lemma 1.6 and (1.19) to arrive at
1 n n 7 n n V23 n V23
§<9tHP"H2+/~LK1HP 2+ alg (p), p") < —(uf — u™, p") — (3C", p")
T a(q (S ) / Blta — $)a(Sy™u(s), ") ds — Vi (p", U, p")
_CUh(C 7UH7p ) - cC H(U?I’C P ) —C H<ET;17E7£I7PH>
+ (1Y (u", E}y, p") — 1" (0", E};, p™))
+ (l“n(u", E%, p") — Yk (u™, EY, p")). (7.19)

The first, third and fourth terms on the right hand side of (7.19) can be estimated
similar to Hy of (4.41) and (4.97).

Applying (1.14), (4.65), the Cauchy-Schwarz inequality and assumption (A4), we ar-

rive at

1 tn
(¢, p")] < At/ 1||Ct( e (ldt < ChH|p"|. (7.20)
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We now employ (2.57) to ¢Yx(p", U, p") to find

[7E(p", Ul )| < Cllp" ||V p" 122107 .- (7.21)
Use the fact Uy = —E% + u™ in the second argument of ¢Ur(¢", U, p") to arrive at

An application of (6.36), (4.64), Theorem 7.1, assumption (A4), and the fact h < H
and 1 — 60 > 0 imply

[T (¢ By, p™)] < CIC IO IS 12 Il Hp I + Ch I B |-l "l

ORI B "
<CHI(H + At p].. (7.23)

From (2.59), (4.64) and assumption (A4), one can derive
VR, )] < Clla (17 + BIC 1) o™ < O+ 7).
Substitute the above two inequalities in (7.22), we arrive at
VR, U, o) < O+ 4+ WHOHT 4 HIA o (7.24)
Again, we rewrite the seventh term on the right hand side of (7.19) as follows

Vi (U, ¢, p") = — V(B ¢, p") + ¢ (u", ¢, p")
. (lun(unycn7pn> . ZU?I(U”,C”, pn)) (725)

Employ (6.36), (4.64), Theorem 7.1, assumption (A4), and observe that h < H and
1 — 6 > 0 to obtain

[P (B, €™, )| <CIER | I B 1216”1 Hp I- + CH BRIl Nl o™ -

+ O By Bl HC ellp™[]<
< Ch" (HT‘+1—9 + H(r+1)(1—9)At9 HT’HAtl 0 +H- GAt + h H T+1)(1 9) At%g
+ R HE AR + AL o7 (7.26)

With the help of (2.58), (4.64) and assumption (A4), we find

[ (u", ¢, p") <Ol (2 (167 + RIS ) le™ |- < CR™ " .. (7.27)

Using (4.64), Lemma 6.6, Theorem 7.1 and assumption (A4), one can obtain

1" (u", ¢, p") = 1Y (u, ¢, p")] < CIER I IELNZIC™ 10"l
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= CH OB 10" e + ChE B 1= B 1 (1710 -
<Chr(Hr+170 + H(r+1)(179)At9 HTGAtlfO _'_HfﬁAt
R A AT+ A7) (7.28)

Substituting (7.26)-(7.28) in (7.25), we arrive at

Vi (U, ¢ p™)| < CHT(HTH 0 4 HOPDOOAL + IO+ H At

C+)01-0) 110 r(146)

FhTH T AT R T H T AT + AD |0+ O " (7.29)

A use of (6.36), Theorem 7.1 and assumption (A4), and notice that h < H and
1 —6>0 to find

| (B, By, ") <CIELI™IE ] p" ||a‘|’CH “NEL NES [l .

T+ On'T By B 117
<C(H2r+1—0 +H(r+1)(1—9)At1+9+Hr(1+9)At1—0 —i—HT“_GAt

(+1)(-0) | 340
At 2

L H AL+ H A2 + b2

(3+9)

FhTH AT —i—Atz)Hang. (7.30)

Employing Lemma 6.6 and Theorem 7.1, and similar to the above estimate, one can

derive

17 (u", By, p") — I (0", By, p")| < ClIER[|" 6!\E 11l p" I

+ CH BN EL ™ + Ch 2B I IELIEE (107
<C(H2r+1—0+H(r+1 I—G)At1+9 Hr(l—l—@)Atl—G+Hr+1—9At+Hr—9At+H—9At2
+ A 4 T A ) (7.31)

Following the bounding technique of (6.62), and similar to the bounds (7.21) and

(7.23), we can estimate
1" (0", Efy, p") — 1V (0", By, p")|
< OIS I lIC IZIER . HP”HerCh NS Il
O ¢ C 1 IR + Cll 2 12U
<SCHTH + A plle + Cllp" 172 [lp™ 122 U .- (7.32)
Replace (7.20), (7.21), (7.24), (7.29)-(7.32) in (7.19). Again, multiply the resulting
inequality by Ate?**» sum over 1 < n < m < M, and utilize (1.14), Lemma 4.5, the

fact p® = 0, and Young’s inequality to find

m—1

e*bm [ p™ | + uKlAtZezo‘t"Hp I < Cat Z > |p™ | + CAtzem”HU 210"
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+0At32 / 2(6-0)(09) 205 (|80t (s) |2 + 83y (5)]2) d

+ CAt Z eQatn h2r+2 h2r+2720H27‘ + h2r+2729At2 + h2rH2r+2729

n=1
+ h2rH(2r+2)(179)At20 + hQT'HQT'@At2729 + h2rH720At2
+ h2r+179H(r+1)(179)At1+9 + h2r+179Hr(1+9)At170 + h2rAt2 + H4r+2720

1 R0 Ag2420 | pp2r(140) Ay2-20 | pp2rt2-20 042 | pr2r—20 042 | =20 A4

+ hl—QH(T+1)(1—0)At3+9 + hl—GHT(3+9)At1—9 + At4)

An application of discrete Gronwall’s lemma, the fact At = O(h™'), (7.10), and after

a final multiplication by e~2%' leads us to the desired estimate. O]

Now, (4.64), (7.15) and Lemma 7.4 will follow the following Step 2 velocity error

estimates:
HE HZ <C(h2r+2 H4r+2720 + AtQ), (733)

,QathtZe%zthE Ha <C(h2r H4r+2729 + AtQ). (734)

n=1

The following lemma provides us Step 2 pressure error estimate.

Lemma 7.5. Suppose the assumptions of Lemma 7.4 hold true and let At = O(h").
Then, the following holds

Rl + llp" — Pl < Kp(h" + H 70 + At).
Proof. Subtract (7.5) from the equation (7.1) with ¢ = ¢,, and for each ¢, € X:

(OPLEL, &) + pa(PhEL, éy,) + alq (PrEw), ¢y,) + b(y, rr(p") — By)
= —(uf — 9", ¢,) — (at(un —Ppu”), ¢h) — pa(u” —Pru”, ¢y)

—al? (a o). ,) + alaf (), &) — | " B(t — s)a(u(s), ¢,) ds

- b(¢h>pn - Th(pn)) - CUh(P U ¢h> ?I(UTIQ» p", ¢h) (C U ¢h)

— U (UL, ¢ ¢y) — V(B E, ¢y) + (1Y (0 El, ¢,) — 1V (0", EY, ¢))

+ (I (0", B, ¢y) — 1V (", Efy, ). (7.35)

The first seven terms on the right hand side of the above equality are bounded similar

to Lemmas 4.8 and 4.12:

(0 — 0", @),)| <CAt sup [Juglll[dy]le, (7.36)
1<n<M
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(B(u" — Pyu), 8,) <CR™ sup [, ul. (7.37)
1<n<M
Ha(u” — Pou®, ¢y)] < O[] 41 by (7.38)
la(q;' (u — Pyu), ¢ < ChTAtZBOSn —t) [ |1l e,
=1
(7.39)
tn
<CAt / (lu(s)]s + blu(s)];
0

+[us(s)1 + hlus(s)l2) ds |yl

alq (w), p) / " Bt — s)a(uls), by) ds

(7.40)
[6(epp, 0" — (")) SCH"|p" |1 ]| - (7.41)

To bound cYr (p", U, ¢,,), we rewrite
cUi(p", Uy, ¢y) = =" (p", Efy, ) + cVi(p", 0", ). (7.42)

Thus, ¢V (p™, EY, ¢,,) is estimated using the form of ¢(-, -, ) presented in (6.38), and
(1.14), (1.37), (1.39), (6.25), Theorem 7.1, Lemma 7.4 and Holder’s inequality :

i (o B Z/p VEj) ——Z/p V1) B

EGS Eegy,

-3 / o} mel (B~ B) - 0+ 5 3 [0} n{ER - [0
EES oL eGFh
w33 [ty nlEy) - 6)
eth
<C 10"l IVER |25 1dn | oy + C D 0™ o 1B o)V bl 22
Ee&y, Ee&y
1/2 1/q
re( S HLP(E)) (S ZuElG) (X 19
Ee&y, eely, Eecéy
1/p a—1 q 1/q
RO I O (PR AT
Ee&), Ecé&y
o 1/2
< (3 Tl
ecl’y,
<SCH (R H™ 4+ A AL+ H 0 4 0N+ HYAL + APyl (7.43)

where ]% + % = 4 and p = 12;. The estimate (2.54), Lemmas 1.3 and 7.4 yield

cVi(p",u", @) < Cllp" [[u"2llpyll- < C(W + H* 70 At)||py [l (7.44)
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Substitute (7.43)-(7.44) in (7.42), we obtain

Vi (p", Uy, @)
< CH(W T H" + B PAt + Y70+ g2 T0AE + H7 At + A ¢ -
£ O+ BP0 4 A . (7.45)

Note that, (1.39), (7.12), Lemmas 1.3 and 2.2, Theorem 7.1, triangle inequality, and
the fact At = O(H™) imply

0%~ <|lu" = Pyu®| e + [|[Pru™ — Uyl|Le@) + [[0"| =@
<CH '|Pgu" — Uyl + C|[u"||,
<CH Yu" — Pyu"|| + CHY|EY| + C|lu™||: < C. (7.46)

Following (1.18) and utilizing the fact u™ € Hy(2) and V -u” = 0, the nonlinear term

cVu (U, p*, ¢;,) can be rewritten as

Vi (U, p", b)) = Z/Unv¢h Pt Z/VE”p X

Eegy, EGS

52 [Eilnde = 3 [ Um0 - 07

ecl’y, Ee€&y,

+/ U - ulp” - ¢
Iy

With the above reformulation and similar to (7.43), and applying (7.46), Theorem 7.1

and Lemma 7.4, we arrive at

Vi (U, p", )| <CIUR L=l [ Dnlle + CH | p" | 1E% ||l
S CH—H(hr-‘rlHr + hr-l—lAt + H3r+1—0 + H2r+1—9At + HTAt+ AtQ)Hd)hHS
+C(A™ + H* 0L Ay |- (7.47)

The fourteenth term is bounded following the bounding approach of (7.32) but with a

little modification:

1 (0", Ely, @) — 195 (0" By, )] < OlIC10ICT|2/ER, || [l
+ OB [l dnlle + CRZ 112 1C™ 122 1B - I bull-
+CH | p" |1 [l-l| pnll-
< CH T H 4+ Aoy lle + CH (R H” + A AL + H 0
+ H* TN+ H' AL+ AP by (7.48)
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The remaining terms on the right hand side of (7.35) can be bounded with an identical
approach as Lemma 7.4.

Now, combine (7.36)-(7.41), (7.45), (7.47), (7.48) in (7.35) and use the fact At = O(h")
to find

(0P E}, @) + pa(PLE}, @) + a(q) (PLER), @y,) + by, ma(0") — P)
< C(W™ + H 0+ Aty

Now, Lemmas 1.6 and 1.8 lead to

WKL PAEL. + Killg (PrBo)l + Bl — PRl < sup  UEMEL P)
$exng 19l

"(PLE b n) _ pn
+ sup a(q} (PrEn), ¢y) 4+ sup (pp,, rr(p™) h)‘
@, €x,\{0} Ipnle @, cX,\{0} |4l

Finally, the above inequality, triangle inequality, (1.31) and Lemma 2.2 imply the

desired estimate. O

7.4 Optimal Error Estimates in Step 3

This section presents optimal fully discrete error estimates for velocity and pressure in
Step 3. The next lemma is an auxiliary result for the derivation of Step 3 velocity

error.

Lemma 7.6. Suppose the assumptions of Lemma 7.3 hold true and let At = O(h"1).
Then, there holds:

||®n||2 —|—6_2athtZ€2ath@an < KT(h2r+2 + h2rH2r+2—26’ + H67’+4—49 —|—At2).

n=1

Proof. First of all, we choose ¢, = ®" in (7.18), and employ Lemma 1.6 and (1.19)

to obtain
1
§0t|!®”|!2 + pKi1[|©"[2 + a(q}(©),0") < —(uf — du",0") — (9", 0")
tn
n (a<q:f<szolu>, )= [ 5t~ alsiu(s), ") ds) _ U (e, Uy, 07)
0
— U (¢, U, e — Vi (U, ¢, en) — VE(EY EN OM)
+ CUZ (E27 EZ? @n) - CU;LL (EZ7 E?{a (_)n)
+ (19 (u", E}, ©") — " (u",E}y, ©") + (1" (0", E}, ©") — (V¥ (u", E};, ©™))
+ (Y (", By, @") — I (0", E}, ©") + (I (0", E},©") — Vi (u", E,0"))
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=M, + My + -+ + M. (7.49)

Following the proof steps as in Lemma 7.4, we obtain

tn 1/2
M| < CAL? ( / Hutt@)n?dt) 19"l (7.50)
tn—1
M| <ChY O, (7.51)
tn 1/2
0| som( [ e s + 831 ds) el (752
0
M| <ClOM 2 [ UL, (7.53)
|M5’ Sc(hr+1 +hrJrlfGHr_'_hrJrlfOAt)H@nHE’ (754)

|M6’ <Ch" (HT‘+1*9 + H(TJrl)(lfG)AtO HTGAtlfO + H79At
A7+ A0 + CH YO (7.55)

'r+1)(1 ) r(1+9>

‘R H T AtY +hTH

Apply (6.36), Lemma 7.5 and Theorem 7.1 to find

| M| <C|[EH 1" 1B 121 Bl H@”H€+CH “IEL Bl 1©m I
- ORE B B B 0.
SO(hTHr—H—O +H37"+2—29 +HT+1—9At+hrHr—r9+l—9At0 +H3r—r9+2—29At9
+ Hr—r6+1—6At1+9 + hrHTGAtl—G + H2T+1+r9—9At1—9 + HTQAtQ—G + T At
+ H PNt + A2+ W H AL+ H> P2 At + HOAL?

2r41—6 (r4+1)(1-0) 146 2r4+1—0 r(146) 1-6 2r4+1—0
2

+h 2 H 2 Atz +h 2 H 2 Atz +h

At

+h%HwAti29+h%9HwA 12 —|—h H2r+1 OAt
n h H(r+1)(1 9)A 346 h ]_Ir(1+9)A %
+ BT AR)67.. (7.56)

Using (2.56) and Lemma 7.5, and noting that r > 1, one can find

| Ms| <ClER|NEL(©"]]c < C (A + h"HP 170 4 H #2720 4 pr Ay
+ H At + A?)]|©7)... (7.57)

To handle My, let us rewrite it in the following manner
My = — " (E} E}y, ©") + (1% (B}, E};, ©") — [VA(E}, E};, ©")) = Mgy + My,
Now, My; is bounded employing (6.37), Lemma 7.5 and Theorem 7.1 as follows:

| Mo1| <C|[E; ||| B 1B 12107l + CH " | BR[| E [0
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- Cn BBy By 0.

<C(hrHr+179 + H3r+2729 + H?"JrlfQAt + hrHr7r9+179At0 + H3r7r9+2729At9
+ HTfr9+179At1+9 + hrHTGAtlfO + H2r+1+r‘979At179 + HTHAthG + WAt
+ H7POAE + A + W H At + H* 720Nt + HOA?

2r4+1-6 (r+1)(1-9) 146 2r4+1-6 r(14-6) 1-6 2r4+1-6

+h 2 H 2 Atz +h 2 H 2 Atz +h 2 At

5r+3—r6—30) 146 5r+2410—20)

+ R HiAtT%—h T H T AT 4+ b HEHIOA

(r+1)(1-0) r(1+9)

FRTH AT R T H 2 AT +h%At2)||@”||a. (7.58)

To estimate Myy and Mg, we follow the technique involved in estimating Q7o and Qg

(see Lemma 6.9). Thus, a use of Lemma 7.5 and Theorem 7.1 leads to

| Maz| + | M| <C||Ep ||| E: (|| ER |2 ||@"|Ia+CH BRI NEE O™
+Cn'= || By By 2 B ||s ||@”||a
SC(hTHH-l—Q + H3r+2—20 + Hr—i—l—GAt + hrHr—rﬂ—l—l—BAtG
4 H3r—r€+2—20At0 4 Hr—r9+1—0At1+0 4 hrHrﬁAtl—Q
+ HP OO0 L [ OAE 0 BT AL+ HT PN + A

2r+1 [2) (r+1)(1—-0) 1+6

+hTH AL + H¥ 29At +H™ eAtQ +h H 72 At>

+ h2r+2179H'r(1;-9)A + 5r4+3— 7‘9 36) AtiQG
FRTHTTT AT BT HT T A A R H T AL
r(14+0) - -
+REHTET AL £ BT AL) |7 (7.59)

M, can be estimated similar to (7.32):
|Myy| < CR™0(H + A)(|©". + Cll@"||/2(|e™||22][U].. (7.60)
Furthermore, (2.61), Lemmas 6.6, 7.5 and Theorem 7.1 yield

| Muo| < ClEL[I* I EL[IZ]ER]|. ||®"||s+CH YIELIE: 10"
+Ch'E By B HaQ IEL (|0
Sc(hrHrJrlfO + H3r+2729 T HrJrlfGAt_'_ hrHr7r9+179At0 + H3r7r9+2729At0
+ Hr—r9+179At1+9 4 hrHraAtl—e + H2r+1+r9—6At1—9 + HreAt%e
+RTAt + HTUOAL 4+ A2+ WPH A + H P2 A

+HOAR 4 T g At%“’ + R T AL
+ h2r+1 0 At + h H5r+3 r0—30) A h 2 H5r+2+27“0729) Atl%g

(r+1)(1-90) 3460

RS HTPION L B H e AL
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r(146)
2

YR H T AET b7 AR ©.. (7.61)

and

|Mis| < ClER|ER | 1©"]|. <C (R + BT H> 170 4 H #2720 4 hrAt
+ H* TN+ AP || ©7|.. (7.62)

Substitute the bounds (7.50)-(7.62) in (7.49). Further, multiply the resulting inequality
by Ate*** sum over 1 < n < m < M, and utilize Lemma 4.5, the fact ®° = 0,
At = O(h"™1) and Young’s inequality to arrive at

m m—1 m
| @™ |P + pE ALY M |@72 < CAL Y *(|@"7 + CALY UYL e7)?
n=1 n=1 n=1

m tn
+0At32/ 6_2(6_a)(tn_8)62as(||SZOlu(S)||§ + ||SZOZ115(S)H§) ds
n=170

m
+0Atze2atn (h2r+2 + h2rH2r+2729 + H6r+4749 + AtQ).

n=1
Finally, apply discrete Gronwall’s lemma, (7.10), and after a final multiplication by

e~2etm completes the rest of the proof. O

An application of (4.64), (7.16) and Lemma 7.6 yield the following Step 3 L>(L?)-

norm error estimate of the velocity which is stated in the next theorem.

Theorem 7.2. Suppose the assumption (A4) holds true and let 0 < o < min <(5, ‘;—g;)
In addition, let the fully discrete Step 3 initial velocity U € Vi, with U = Pjuy.

Then, there exists a constant Kr > 0, such that
HEZTLH < KT(hrJrl _'_hrHr%lfH —|—H3T+2729—|—At),
where Kr depends on T'.

For Step 3 error estimates of velocity and pressure in energy and L2-norms, we have

the following theorem.

Theorem 7.3. Suppose the assumption (A4) holds true and let 0 < o < min <5, ’;—g;)
In addition, let the fully discrete Step 3 initial velocity U € Vi, with U = Pjuy.

Then, there exists a constant Kr > 0, such that

1Bl + " — Bi*|| < C(h" + H 72720 4 At).
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Proof. Subtract (7.6) from the equation (7.1) with ¢ = ¢,, and for each ¢, € X:

(OPLEL", @) + pa(PrEL, @) + a(q; (PrEL), @) + b(dy. ra(p™) — B)

— (u - 0", ) — (0" — Pyut), ¢,) — pafu” — Pru”, )

gt = Py ) +alg? (), 6) — [ Bt~ Salu(s), ) ds

- b(¢h7pn - rh(pn)) - CUZ"(®n’ TIL{a d)h) - CUTI}I( 1;17 @n) ¢h) - CUZH (Cna UnHv ¢h)
- CU?I (U?h Cna d)h) - CU?I (E?Ia EZ? q,)h) + CUZ (E27 EZa ¢h) - CUQ (EZ7 E?{? ¢h>

+ (ZUZ (un’ E?{? ¢h) - lun (un’ E?{? ¢h)) + (lun(un’ E?I? ¢h) - lUZn (un7 E?{, ¢h))

+ (ZU}EI (unv EZ? ¢h) - lun (unv EZu ¢h)) + (lun (un7 EZ? ¢h) - ZUZ (unv EZ? ¢h))

The bounds for the terms on the right hand side of the above inequality are obtained
following the same lines as the proof of Lemmas 7.5 and 7.6. Then proceed similar to

the proof of Lemma 7.5, we complete the rest of the proof. O

7.5 Numerical experiments

A few numerical experiments are carried out and the theoretical results are validated in
this section. To discretize the space, we utilize P, —P._;, r = 1,2, DG finite elements
and for time discretization, backward Euler method is used. In this case, Q = [0, 1]?
is chosen as the domain. To evaluate the performance of our two-grid DG scheme, we
compute the approximate solutions using both the two-grid and standard DG schemes
with the same fine mesh. Here, we have computed the solutions on the time interval

0, .5] with the final time 7' = .5, and the time step At = O(h"*1).

Example 7.1. Consider the Oldroyd model of order one with exact solution (u,p) =
((ul(xa Y, t)? u2<£IZ', Y, t)),p(l', Y, t)) as

uy (,y,t) =2(2? — 22° + %) (2y — 6y° + 4y°) te

uy(, y,t) = — 2(% — 20° + ) (20 — 62 + 4a®) te ™",

p(x,y,t) =2(x — y) te .

In Figures 7.1 and 7.2, we depict the errors of the two-grid DG scheme and the
standard DG scheme for » = 1 and 2, respectively, with g = {0.1,0.01}. In Figure
7.1, the parameters are v = 0.01, § = 0.1, 0, = 10, h = O(H?) (only for two-grid
DG). For the Figure 7.2, we choose v = 0.001, § = 0.1, o, = 20, h = O(H®?) (only
for two-grid DG). Figures 7.1 and 7.2 indicate that the accuracy of the numerical
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solutions produced with the proposed two-grid DG method is comparable to that of

the standard DG method, and also validate the theoretical results that were derived.

Velocity errors in L2-norm

—#— Two-grid DG, #=0.1

—#— Standard DG, 4=0.1
Two-grid DG, :=0.01

—&— Standard DG, 4=0.01

—~ Two-grid DG, =001

= i}

Velocity errors in energy norm

—¥— Two-grid DG, u=0.1
= ~—#— Standard DG, =01

—&— Standard DG, u=0.01

Figure 7.1: Velocity and pressure errors using P; — PP,

Velocity errors in L2-norm

Pressure errors in L%-norm

—#— Two-grid DG, 4=0.1
- —+— Standard DG, 4=0.1
_— Two-grid DG, =001
—~ —&— Standard DG, 4=0.01
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Velocity errors in energy norm

—#+— Two-grid DG, #=0.1

—#— Standard DG, #=0.1

102 Two-grid DG, 4=0.01
—e&— Standard DG, #=0.01

s 4 V64 32

—F— Two-grid DG, 4=0.1

——#— Standard DG, 4=0.1
Two-grid DG, =001

—&— Standard DG, 4=0.01
2

Figure 7.2: Velocity and pressure errors using Py — [Py

Pressure errors in L?-norm
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element for example 7.1.

—#— Two-grid DG, #=0.1

—¥— Standard DG, =0.1
Two-grid DG, 41=0.01

- —e&— Standard DG, =0.01

~ ?

va 132 116
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element for example 7.1.
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In Tables 7.1 and 7.2, we compare the computational times taken to compute the

two-grid DG solution and the standard DG solution corresponding to » = 1 and 2,

respectively, and for 4 = 0.1. The tables show that, compared to the standard DG

method, the proposed two-grid DG method takes a significant reduction in computa-

tional time. Besides, the computational time difference between the two solutions (the

direct DG solution and the two-grid DG solution) grows as we refine the mesh further.

Table 7.1: Comparison of computational time (in Seconds) between “standard DG

solution” and the solution obtained by the ”two-grid DG method” for Example 7.1

with r = 1.

h | Two-grid DG solution | Standard DG solution
1/4 0.40 0.47
1/8 3.05 4.03
1/16 34.70 61.78
1/32 338.05 665.96
1/64 4644.87 10869.23
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Table 7.2: Comparison of computational time (in Seconds) between “standard DG
solution” and the solution obtained by the ”two-grid DG method” for Example 7.1
with r = 2.

h | Two-grid DG solution | Standard DG solution
1/4 9.66 11.411
1/8 65.13 99.74
1/16 880.23 1514.16
1/32 13792.43 25516.93

7.6 Conclusion

In this chapter, a three-step two-grid algorithm for the DG approximation of the
Oldroyd model of order one is presented and examined. The resulting scheme is a
fully discrete scheme with the time discretization performed utilizing the backward
Euler method. We have proved that the largest scaling between the fine mesh size

3r4+2-20 3r4+2—260

h and coarse mesh size H are h = O(Hmin (’"H_G’ r+1 )) and h = O(H + ) for

velocity in L?-norm and in energy norm, respectively. It is h = O(H SHi_w) for the

pressure approximation in L?-norm, for arbitrary small # > 0. The accuracy of the

method is demonstrated by the final presentation of numerical results.
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