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[111] Lederer, P. L. and Schöberl, J. Polynomial robust stability analysis for H(div)-

conforming finite elements for the Stokes equations. IMA Journal of Numerical

Analysis, 38(4):1832–1860, 2018.

[112] Lesaint, P. and Raviart, P.-A. On a finite element method for solving the neutron
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[124] Oden, J. T., Babuŝka, I., and Baumann, C. E. A discontinuous hp finite element

method for diffusion problems. Journal of computational physics, 146(2):491–

519, 1998.

[125] Oldroyd, J. Non-Newtonian flow of liquids and solids. In Rheology, pages 653–

682. Elsevier, 1956.

[126] Oskolkov, A. P. Uniqueness and global solvability for boundary-value problems

for the equations of motion of water solutions of polymers. Zapiski Nauchnykh

Seminarov POMI, 38:98–136, 1973.

[127] Oskolkov, A. P. Theory of nonstationary flows of Kelvin–Voigt fluids. Zapiski

Nauchnykh Seminarov LOMI, 115:191–202, 1982.

[128] Oskolkov, A. P. Initial-boundary value problems for equations of motion of

Kelvin–Voight fluids and Oldroyd fluids. Trudy Matematicheskogo Instituta

Imeni VA Steklova, 179:126–164, 1988.

[129] Oskolkov, A. P. Initial-boundary value problems for equations of motion of

Kelvin–Voight fluids and Oldroyd fluids. Trudy Matematicheskogo Instituta

Imeni VA Steklova, 179:126–164, 1988.

[130] Oskolkov, A. P. and Emel’yanova, D. V. Certain nonlocal problems for two-

dimensional equations of motion of Oldroyd fluids. Journal of Soviet Mathemat-

ics, 62:3004–3016, 1992.

[131] Oskolkov, A. P. and Shadiev, R. D. Nonlocal problems in the theory of the

motion equations of Kelvin-Voight fluids. Journal of Soviet Mathematics, 62:

2699–2723, 1992.

[132] Oskolkov, A. P. and Shadiev, R. D. Towards a theory of global solvability on

[0,∞) of initial-boundary value problems for the equations of motion of oldroyd

and KelvinVoight fluids. Journal of Mathematical Sciences, 68:240–253, 1994.

[133] Pani, A., Thomée, V., and Wahlbin, L. Numerical methods for hyperbolic and

parabolic integro-differential equations. The Journal of Integral Equations and

Applications, pages 533–584, 1992.

[134] Pani, A. K. and Yuan, J. Y. Semidiscrete finite element Galerkin approxima-

tions to the equations of motion arising in the Oldroyd model. IMA Journal of

Numerical Analysis, 25(4):750–782, 2005.



282

[135] Pani, A. K., Yuan, J. Y., and Damázio, P. D. On a linearized backward Euler

method for the equations of motion of Oldroyd fluids of order one. SIAM Journal

on Numerical Analysis, 44(2):804–825, 2006.

[136] Pany, A. K. Fully discrete second-order backward difference method for Kelvin-

Voigt fluid flow model. Numerical Algorithms, 78:1061–1086, 2018.

[137] Pany, A. K., Bajpai, S., and Pani, A. K. Optimal error estimates for semidiscrete

Galerkin approximations to equations of motion described by Kelvin–Voigt vis-

coelastic fluid flow model. Journal of Computational and Applied Mathematics,

302:234–257, 2016.

[138] Pany, A. K., Paikray, S. K., Padhy, S., and Pani, A. K. Backward Euler schemes

for the Kelvin-Voigt viscoelastic fluid flow model. International Journal of Nu-

merical Analysis and Modeling, 14(1):126–151, 2017.

[139] Pavlovskii, V. To the question of theoretical description of weak aqueous polymer

solutions. In Soviet physics-Doklady, volume 200, pages 809–812, 1971.
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