Chapter 3

DG Method for the Kelvin-Voigt
Model

A DG finite element approximation for the Kelvin-Voigt viscoelastic fluid flow equa-
tions, is proposed and analysed in this chapter. Based on the new a prior: and reg-
ularity results for the semi-discrete solutions, well-posedness and consistency of the
DG scheme are discussed. A priori error estimates of the semi-discrete DG approxi-
mations of the velocity and pressure, in L>(L*) and L>(L?)-norms, respectively, are
then derived. Our proof relies on the standard elliptic duality argument and a modified
Sobolev-Stokes operator defined on appropriate broken Sobolev spaces. For sufficiently
small data, uniform in time error estimates are proved. Furthermore, backward Euler
scheme is considered for a full discretization and optimal fully discrete error estimates
are derived. Finally we work out numerical experiments to substantiate our theoretical
findings. It is worth mentioning that the analysis here is the first of its kind for the
Kelvin-Voigt model. This work has been published in [17] for r = 1.

3.1 Introduction

Let us recall, the Kelvin-Voigt viscoelastic fluid flow is modelled by the following

momentum and continuity equations:

%—1;+u-Vu—ﬁAut—1/Au+Vp = f(z,1), 7€Q,t>0, (3.1)

Viu = 0, z€Q, t>0, (3.2)
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where, K > 0 is the retardation time. The velocity u further satisfies the initial and

homogeneous Dirichlet boundary conditions
u(z,0) =up inQ, and u=0, ond, t>0, (3.3)

where 0f2 represents the boundary of €.

As can be seen from Section 1.5.1, the literature for the problem (3.1)-(3.3) is confined
to the finite element analysis for the CG methods. And, to the best of our knowledge,
there is hardly any literature dedicated to the finite element analysis of DG methods
applied to the Kelvin-Voigt equations of motion. This chapter can be considered as
the first attempt in this direction. We mainly focus on deriving semi-discrete and
fully discrete optimal error estimates for the SIPG method applied to the problem
(3.1)-(3.3) as the NIPG and IIPG methods is known to provide sub-optimal error
estimates which has been already discussed in Chapter 2. In the earlier chapters, we
have mentioned that the Kelvin-Voigt model is a perturbation of the NSEs. Thus, in
this chapter, we have followed the DG variational formulation for NSEs from Chapter
2 and defined a DG formulation for (3.1)-(3.3) on the discontinuous spaces X and M
as: Find the pair (u(t),p(t)) € X x M, t > 0, such that

(w(t), @) + ka(u(t), @) + va(u(t), P)
+cO(u(t), u(t), @) +b(¢,p(t) = (f(t), ) Ve € X, (3.4)
b(u(t),q) =0 Vqe M, (3.5)
(u(0), ) = (w, ) V¢ € X. (3.6)

The consistency proof of (3.4)-(3.6) can be done following the similar analysis as
adopted in [98, Lemma 3.2] for the DG formulation of NSE.
Next, we define the semi-discrete DG variational formulation for the system of equa-

tions (3.1)-(3.3): For t > 0, find (un(t),pn(t)) € X; x M), such that

(Une(t), dp) + K a(un(t), @) +va(uy(t), @y,)
+ Oy (1), un(t), @) + by, pa(1) = (1), @1), Vb, € Xi (3.7)
b(un(t),qn) =0, Van € My, (3.8)

(un(0), @),) = (w0, @) Vo, € X5 (3.9)
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The equivalent DG formulation corresponding to the scheme (3.7)-(3.9) on the space
V), is the following: For ¢ > 0, find u,(t) € V}, such that

(uht<t>7 ¢h) + K a(uht(t)ad)h) +v a<uh(t)7 q’)h)
+ Cuh(t)(uh(t)> uy(t), @p,) = (£(1), @4), Vo, € Vi (3.10)

In order to establish optimal semi-discrete error estimates related to the DG meth-
od, we have introduced a modified Sobolev-Stokes projection S;° (see Section 3.3) for
broken Sobolev spaces. Optimal order estimates for S;° have been established then,
based on the approximation properties of Pj (see Chapter 2). Although we have
applied the ideas of [15], there are analytical differences and difficulties due to the DG
formulation and difference in finite element spaces. For example, the analysis of the
nonlinear term in the DG formulation needs a special kind of attention. Finally, the
backward Euler method have been applied to discretize the time variable and optimal
fully discrete error estimates are achieved.

The main ingredients in achieving the goals of the chapter are as follows:

1. We have defined a modified Sobolev-Stokes projection S;° in DG set up, which
plays an essential role in deriving the semi-discrete error estimates. The optimal

estimates for S;° are derived.

2. By means of the modified Sobolev-Stokes projection S;° and duality arguments,
we have achieved optimal a prior: error bounds for the semi-discrete DG approx-
imations to the velocity in L*(L?)-norm and pressure in L>(L?)-norm. These

estimates are uniform in time for sufficiently small data.

3. Then the backward Euler scheme have been applied to the semi-discrete discon-
tinuous Kelvin-Voigt model. Optimal error estimates have been derived for the

fully discrete velocity and pressure.

4. Finally, we have provided numerical examples and analyze the outcomes to verify

the theoretical results.

This chapter is divided into the following sections: The derivation of a priori and
regularity bounds of the discrete solution are dealt with in Section 3.2. The modified

Sobolev-Stokes operator and its properties, and optimal a priori error estimates for
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the velocity are represented in Section 3.3. The optimal a priori error estimates for the
pressure are derived in Section 3.4. The backward Euler method for the discretization
in the time direction is employed, and the fully discrete error estimates are obtained
in Section 3.5. A few numerical examples are discussed, and the results are analyzed
to verify the theoretical findings in Section 3.6. Finally, the main contributions of this
chapter are summarized in Section 3.7.

Throughout this chapter, we will use C, K (> 0) as generic constants that depend on
the given data, v, k, a, Ky, K5, C but do not depend on h and At. Note that, K and
C may grow algebraically with v~1. Further, the notations K (t) and Kp will be used

when they grow exponentially in time.

3.2 A priori and Regularity Estimates

We start this section by presenting a priori and regularity bounds for u; which will
be used in deriving the existence and uniqueness of the semi-discrete solution and fully

discrete error estimates.

vKy

Lemma 3.1. Let 0 < o < N nEa) "

Then, there exists a positive constant C', such

that, for each t > 0, the semi-discrete DG solution uy(t), satisfies the following bounds:

sup ([lan (&) + llun(®)lle + llane(8)]le)

0<t<oco
t
e / 2 (lun(s)[2 + lune(s)|2) ds < C., (3.11)
0
sup (e (®)]] + s (£)])
0<t<oo
t
e / 2 (|unas($)I + nes(s)]12) ds < C. (3.12)
0

Moreover,

C2||f||Loo(L2(Q))
li . < .
imsup (1) < —— =

(3.13)

Proof. Choose ¢, = uy, in (3.10) and apply the coercivity result from Lemma 1.6, pos-
itivity of ¢(-,-,+) (1.19), estimate (1.14), the Cauchy-Schwarz inequality and Young’s

inequality to obtain

1d

1a ( I/K1
2dt

2

CQ
[l + & a(up, wp)) + vE a2 < £l sl < ——llualZ + Tf(ll\f!\? (3.14)
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A multiplication of (3.14) by €?**, an integration from 0 to ¢, and an application of

estimate (1.14), Lemmas 1.6 and 1.7, lead to
t
! ([[upn ()]1° + Kaiwllun(t)[I2) + (VK1 — 2a(Cy + %Kz))/ e |lun(s)|Z ds
0
t
< (0)|1? + Karflun (0)[|2 + C/ ***||f(s)]|* ds.  (3.15)
0

Again, multiply (3.15) by e~2%* use the fact that

t
1
€—2at/ eZas ds = _(1 - 6—2at)
0 2a

and choose 0 < a < Q(CQVTK:;KQ) to obtain
t
s ()17 + [lun(t)]|2 +6_2at/ e |lup(s)2ds < C. (3.16)
0

Again, multiply (3.14) by e?**, integrate from 0 to ¢, and a use of Lemma 1.7 implies

e (lun ()] + £ a(un(t), un(t))) +VK1/O e**|lun(s)]2 ds

< (lan(O)* + £ K [un (0)] ) +2a/0 e ([[un(s)l* + K a(un(s), un(s))) ds
CHIEN e r20

()
20v K, ’

+ (62at - 1)

Multiply the above inequality by e=2%, take limit supremum as ¢ — oo and noting
that,
t
K
v timsupe 2 [ ey (s) 2 ds = 50 tim sup (0]
0 a

t—o00 t—o00

we arrive at

I/Kl li || (t)||2 2” H2oo L2(Q)) (3 17)
—— limsup ||ju .
2x t_mop h 200v K
Next, differentiating (3.10) with respect to t, we obtain
(nie, @p) + K a(Upi, @) + v a(un, @)
+ (uhb Up, ¢h) + (Uh, Uhpt, ¢h) = (ft7 d)h)? vd)h S Vh' (318)

Substitute ¢, = uy; in (3.18), apply Lemma 1.6, the Cauchy-Schwarz and Young’s

inequalities, and the fact that ¢"»(uy, ups, up) > 0 from (1.19), we obtain

d
T (”uhtH2 + /fa(uht,uht)) + 20K |up||Z < 2" (upy, up, upy)
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vK
+Ol|ft||2+71”uht||z- (3.19)

Using (2.57) and Young’s inequality, we can bound 2¢" (uy, up, uy,) as follows:

vK
126 (e, W, )| < Clapg] |2 [uge |22 [ a || < TIHUhtH? + CJun|*[u 2.

Applying the above bound in (3.19), we arrive at

d
= (el + % a(ane, wie)) + v K[ |2 < Cllag|*llus] |2 + ClIE]. (3.20)

Multiply (3.20) by €2*, integrate from 0 to ¢, and finally use Lemmas 1.6 and 1.7 to

obtain

t
e (Jlune(W)]* + s K [[une (1)[12) + (VK = 20(Co + KE)) / e**||up(s)|2 ds
0

t

t
< I\uht(0)|!2+Kz/‘él!uht(o)l\?JrC/ BQQSHUM(S)Hzl\uh(S)HﬁdS+C/ e*||£.(s)|* ds.
0 0

Choosing 0 < a < 57 and applying (3.16), Gronwall’s lemma and after a final

vKq
Co+kK2)’
2at we obtain the estimate as

multiplication by e~
t

[[ne (817 + [lune ()12 + 6_2“/ e |Jups(s)|[2ds < C. (3.21)
0

Now, we substitute ¢, = up in (3.18), use Lemma 1.6 and obtain

HuhttH2 + Ki1k HuhttHz < - Va(“ht; uhtt) —ct (uht, Uy, uhtt) — (uh7 Upt, uhtt)

— (£, upy). (3.22)
Apply (2.55), Lemma 1.7 and Young’s inequality to obtain
Faneel|* + Ko [ wpeel |2 < C(1nel|Z + el 2] sl + [1£]]%). (3.23)
A use of (3.16), (3.21) in (3.23) yield
el + [[unee 12 < C. (3.24)

Finally, multiply (3.24) by ¢*** and integrate with respect to time from 0 to ¢. Then

multiply the resulting inequality by e=2** to arrive at

t
e [ a9+ () [)ds < € (32
0

A combination of (3.16), (3.17), (3.21), (3.24) and (3.25) completes the proof of Lemma
3.1. O]



89

Now, the existence and uniqueness of the semi-discrete discontinuous Galerkin Kelvin-
Voigt model (3.7)-(3.9) (or (3.10)) can be proved following the analysis in [98, Lemma
3.4], and using the results in (1.19), (3.11), Lemmas 1.6 and 1.8.

For deriving the optimal error estimates for semi-discrete discontinuous velocity and
pressure approximations, we work on the weakly divergence free spaces. Below, we
provide one of our main contributions, stating the optimal semi-discrete error esti-

martes.

Theorem 3.1. Let the assumption (A2) be satisfied and let 0 < o < 2(02”7%

Furthermore, let the discrete initial velocity up(0) € Vi, with u,(0) = Prug. Then,

there exists a positive constant K, independent of h, such that
1w = w) @) + 2l (w = un) (O)]|- + All(p = pr) ()] < K ()R,
where K (t) grows exponentially in time.

The sections 3.3 and 3.4 are devoted to the proof of Theorem 3.1.

3.3 DG Error Estimates for Velocity

This section deals with the optimal estimates of the velocity error e = u — uy, in L?
and energy-norms for ¢ > 0. We start by analysing the linearized error and therefore
introduce the solution v, € V,, of a DG approximation of a linearized Kelvin-Voigt

problem, that is, vy, is the solution of

(Vht7 ¢h) + "{a(vhtv ¢h) + VCL(Vh, ¢h) = (f7 ¢h) - Cu(uv u, ¢h) v¢h € Vp. (326)

With the help of v, we split e into two parts as e = (u —vp,) + (v, —u) = € + O.
Observe that, & is the error committed by approximating a linearized Kelvin-Voigt
problem and O represents the error due to the presence of the non-linearity in problem

(3.1). From the equations (3.26) and (3.4), we have the following equation in & as

(&, D) + wal&s, dp) +val§, @n) = —b(@y,p), Py € Vi (3.27)

For deriving the optimal error estimates of & in L? and energy-norms for ¢t > 0,
we introduce, as in [15], the following modified Sobolev-Stokes’s projection S;’u :

[0,00) — V), satisfying

’{CL(ut - Szouta d)h) + l/a(ll - Siou7 ¢h) = _b(¢h7p) Vq&h € Vp, (328)
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where S;°u(0) = Ppuy. In other words, given (u, p), find S;°u : [0, 00) — V), satisfying
(3.28). With S;u defined as above, we now split £ as

E=u—Su+S’u—v,=¢+p.
Using (3.28), we find the equation in ¢ to be

ka(Cy, @) +rva(C, @y) = —b(@y,p) Yo, € V. (3.29)

Firstly, we will focus on deriving the estimates of {. Next, we will establish the

estimates of p. A combination of these estimates will result in the estimates of &.

Lemma 3.2. Under the assumptions of Theorem 3.1, and for t > 0, { satisfies the

following estimates:

IS + 6_2‘”/0 e (IC()NZ + 11C.(5)12) ds < Ch?".

Proof. Set ¢, = Pp¢ = ¢ — (u— Pju) in (3.29), use the definition of space V}, and

obtain

ka(Ppé,, Prl) + va(Pr¢, Pr¢) = — ka(u, — Pruy, Pr¢) — va(u — Pru, Pr()

— b(Pr¢,p — ra(p)). (3.30)

By a virtue of Lemma 2.3 and Young’s inequality, we arrive at

Kll/

£ la(w = Pyug, PaQ)| < Okl [wilrsa [Puglle < - IPaCllE + CR wly,  (3.31)

via(u —Pyu, PyC)| < Cvh'|ulr i [PuC]le < —IIPhCII2 +Ch*uffy,. (3.32)

Owing to Lemma 2.4 and Young’s inequality, the term involving the pressure in (3.30)

is reduced to

Kiv
1b(PK¢,p — 11p)| < CR|pl,||[Prlle < _1||PhC||2 + Ch™ |pl2. (3.33)

Apply (3.31)-(3.33) and the bound of Lemma 1.6 in (3.30). Then, multiply the result-
ing equation by e?**, integrate from 0 to ¢, use Lemmas 1.7 and 1.6, and observe that

P,¢(0) = 0, we obtain

t
R e [PiCf2 + (Kyv — 20k KQ)/ e |[Pr¢(s)|2ds
0
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t
<cnr / & (Juy ()24 + [u(s) 21 + [p(s)]2) ds. (3.34)

Multiply (3.34) by e=2** and use assumption (A2) to complete the energy norm esti-

mates of P, as

t
IPrg ()2 + €2at/ ™ |[Pr¢(s)l[2ds < Ch™". (3.35)
0
Since ¢ = u—Ppu+P,(, using the triangle inequality and the bounds in Lemma 2.2,
(3.35), we arrive at
t
ICOIIZ + 6_2“/ ***||¢(s)[2ds < Ch*. (3.36)
0
To derive the estimates of ¢, in energy norm, we substitute ¢, = P,¢, in (3.29). Then,
apply Young’s inequality, (3.36), and Lemmas 1.6, 1.7, 2.2, 2.3, 2.4 and assumption

(A2) to the resulting equation and arrive at
IPC(t)I2 < Ch*. (3.37)

A multiplication of (3.37) by €2**, an integration from 0 to ¢ with respect to time, and

then again a multiplication by e~2* lead to

e~ 20t /t > ||Pr¢,(s)| ds < Ch*. (3.38)
0
Use triangle inequality and bounds of (3.37), (3.38), Lemma 2.2 yielding
IO + e [ g, ) ds < on (3.3
0
Combining the estimates (3.36) and (3.39), we arrive at the desired result. O

Lemma 3.3. Under the assumptions of Theorem 3.1, and for t > 0, ¢ satisfies the

following estimates:
t
SO+ e [ (o) ds <ch (3.40)
0
t
6_2“/ || ¢, (s)|? ds <Ch*+2, (3.41)
0

Proof. For the estimate of |||, we apply the duality argument due to Aubin-Nitsche.
Let (v,q) € J; x L*(Q)/R be the pair of unique solution of the steady state Stokes

system stated as

—vAv+Vqg=¢ in (), (3.42)
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V:v=0inQ, v =0on 09,
satisfying the following regularity:
[vll2 + llalls < ClICI- (3.43)

Forming L? inner product between (3.42) and ¢, and applying the regularity of v and

¢, we obtain

¢l =VZ[EVV:VC—VZ/8E<ME>-¢

Ec&;, Ee&,
—Eezgh/EqV'C—l-E;h/aEan'C
_ V¢ Vv — {Vvin. - [¢]+0b(¢C.q).
VE;}L/E A% Veezrh/e vin q

Using (3.29) with P, v in place of ¢,,, and observing [v] - n. = 0 on each interior edge

and b(v,p — rp(p)) = 0, we find

IO =va(¢, v = Prv) + Kk a(C, v — Pyv) + (¢, q)
—b(Ppv—v,p—ru(p)) — rka(l,,v). (3.44)

For the last term of the above equality, we again form an L? inner product between
(3.42) and (,, use integration by parts and the fact that [v] - n. = 0 on each interior

edge to derive the following:

1) =v a(¢, v = Pav) + ka(¢,, v = Pav) +b(C, ) = b(Pwv = v,p = 72(p))
+20(Cha) ~ (6.€). (3.45)

First and second terms on the right hand side of (3.45) can be estimated similar to

Lemma 2.3. Then, we apply Lemma 2.2 and (3.43) to arrive at

va(C,v—Puv)+ra(,v—Ppv)|
< Chl|v|l2ll¢lle + Ch™ ulpsa [vIl2 + CRIV2IE I + CR™ a1 || V]2

1
< SICIP + CRICHE +1CA2) + CR* 2 (s + fuel4)- (3.406)
We can handle the third term on the right-hand side of (3.45) as

b(¢,q) = b(¢ — Pru+S;j’u,q) +b(Pr¢, q) = b(u — Pypu,q) +b(Pr¢,q — r1(q))
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=-> /Eqv'(u_Phu)+Z/{Q}[U—Phu]'ne-l—b(PhC,q—Th(q)). (3.47)

Ecé&;, ecly, ¥ ¢
In addition, applying Green’s theorem to the first term on the right hand side of (3.47)
and using the fact that ¢ is continuous, we obtain
M) = > [ V- (a Pou) + 0P~ (o)
Eeg, ' P
From the Cauchy-Schwarz and Young’s inequalities, (1.31), (3.43), and Lemmas 1.5
and 2.2, we obtain

(¢ q)] < 'chr+1|q|1|u|r+l - [Pl

Eeé&y,

+Z {g — (@) }HPr] - ne

CGFh €

< Ch"Hulra[I€IF+ Chlgh | Pag]e

1 r
< SICIP + CR* (¥ Tl + IPAC]2)- (3.48)
Similar to (3.48), and using (1.31), (3.43), Lemmas 1.5 and 2.2, the 5th term on the
right hand side of (3.45) can be bounded as follows:

(¢ 0)] < \Ch”wqmllm -3 [ Py na)

Ee&y

£y / {0 ra(@)}[Pac,] 1.

ecl'y, €

I + CR* (R w7y + [PRgII2)- (3.49)

<

ool

Apply the Cauchy-Schwarz inequality, Young’s inequality, (1.31), (3.43) and Lemma

2.2 to arrive at
1
D(Prv — v, p —r(p))| < CH™ ™ pl.]Iv]l2 < gHCH2 + Ch¥*2|pl2. (3.50)

A use of (3.46) and (3.48)—(3.50) in (3.45) leads to

ﬁd

— SN <CRA(ICIZ + 1612 + PrglZ + [PrC,12)

1
- HII2
SO+ oo

+ CR 2 (Jully + el + [pl)- (3.51)

A multiplication of (3.51) by ¢?*** and an integration of the resulting equation with

respect to time from 0 to ¢ yield

t
oo+ (2252 [ e < ok,
0

vV — 2KQ
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+ O8 [[ (ICOIE + G )2 + PG E + PG5 ds
018 [ () + (s + ) . 352
0

Multiply (3.52) by e 2% and use (3.35), (3.36), (3.38), (3.39) with assumption (A2)

to arrive at

t
12 + e / 27 1¢(s)|Pds < Ch2. (3.53)

This completes the proof of (3.40) in Lemma 3.3.

Following the similar steps as involved in proving the L? estimate of ¢ in (3.40), we
arrive at the L? estimate in (3.41) involving ¢,. Only difference is in the dual problem,
where the right hand side is changed to ¢,. With the resulting L? estimate of ¢,, we

conclude the proof of Lemma 3.3.

Below, in Lemma 3.4, we derive the bounds of p.

Lemma 3.4. Under the assumptions of Theorem 3.1, and for t > 0, the following

estimates hold true:

t
o)1 + R*[[p(®)]IZ + 6‘2‘“/0 e ([p(s)II* + *[lp(s)|2) ds <CH*"*2.

Proof. Subtract (3.29) from (3.27) and write the equation in p as

(py, &) + Kalpy, @) +valp, @) = —(Cp, br), Yoy, € Vi

Substitute ¢; = p in the above equation and use Lemma 1.6 to obtain

| =

S el + walp. p)) + vE Il < ~(Co ) (3.54)

QU

t

Multiply (3.54) by €2**, integrate the resulting inequality with respect to time from 0
to t, and use Lemmas 1.6, 1.7, the Cauchy-Schwarz inequality, Young’s inequality and

p(0) = 0 to arrive at
t
o ([lpl? + v K loll2) + (WK — 20(Co + 1E5)) / 27| p(s) |2ds
0

<c| e (s)[2ds. (3.55)
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A multiplication of (3.55) by e~2** and a use of (3.41) in the resulting inequality yield
lp)I* + & K| p(t)]IZ + e /Ot ™| |p(s)Zds < Ch**2. (3.56)
An application of (1.37), (1.38) and (3.56) leads to
Poo2 + [ e ote)ds < o (3.57)
0
A combination of (3.56) and (3.57) concludes the proof of Lemma 3.4. O

Since & = ¢ + (S;°u —v,) = ¢ + p, we now apply Lemmas 3.2, 3.3 and 3.4 along with

the triangle inequality to obtain the following estimates of &.

t
IE@I* + h*IE®)IZ + 6_2“/ e***||&(s)|[*ds < CR*2, > 0. (3.58)
0

The following lemma provides the estimates for ® = v, — uy,.

Lemma 3.5. Under the assumptions of Theorem 3.1, and for t > 0, the following

estimates hold true:
IO + 1©)]IZ + e~ /Ot e*|O(s)[Zds < K(t)h™ .
Proof. From (3.10) and (3.26), we observe that
(©1,9;,) + Ka(O, ¢,) +va(®, ¢,) = —(c(u,u, @) — " (wp, up, @) Ve, € Vi,

Substitute ¢, = © and use Lemma 1.6 to arrive at

DO | —

% (||G)||2 + Kk a(O, @)) + VK ||®|? < —(c“(u, u, ©) — " (uy, up, @)) (3.59)
Since u is continuous, we have the following equality:

" (u,u, @) = *(u,u, O).
Now, the nonlinear terms can be rewritten in the following way:

(w1, ©) — " (up, up, ®) = M (uy, ©,0) + (O, u,0) — " (£,€,0)
—c"(0,£,0) + " (€, u,0) + *(u,£,0) +1"(u,&,0) — 1" (u,&,0).

Note that, the first term is non-negative due to (1.19) and is therefore dropped. We
find that

' (u,u,®) — " (up, uy, ) > (O, u,0) — " (£,€,0) — (O£ 0)
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+c" (€, u,0) + c(w, &,0) + " (1, &,0) — "(u,&,0).  (3.60)

Following an identical approach applied in Lemma 2.11 to bound the nonlinear terms,
one can find the following bound for the terms on the right hand side of (3.60) as

follows

¢*(©,u, ©)] + |c™ (&, €, ©)| + [c"(©,£,0)[ + [ (£, u, ©)|

+|c"(u, &, 0)| + [[*(u, &,0) — [*(u, &, 0)|
Kiv _
< Tl\l@ll?rc(l!ul!% + 1€l + Cllull3(IEN* + r2IEN?) + CliEllz. (3.61)

Substitute (3.61) in (3.60), and thereby in (3.59), and multiply the resulting inequality

by 2% to obtain

1d
5% (62at(H@H2 + /ia(@, @))) + (T — 04(02 + RK2)) eQatH@Hg <

C(llull +r72€12D)e* (IO1* + K1 |O]2) + Ce* [[ull3(IEI1* + R2I€]12) + Ce*[€]2.

VKl

Integrate the above equation with respect to time from 0 to ¢ and use the fact that
©(0) = 0. Then Lemmas 1.6 and 1.7, Gronwall’s inequality, (3.58) and assumption
(A2) lead to the following estimates of ©

t
(O + i[O + vy [ @] ds < Cechir e
0
Dividing throughout by e?* completes the proof. O]

Proof of velocity error estimate in Theorem 3.1. A use of e = £ + O, triangle’s

inequality, the estimates in (3.58) and Lemma 3.5 yields the desired result. O

Remark 3.1. Under the following smallness assumption on the data

h 2NC:
N = sup ¢ (wh ;Vh’ wh) and TQQ
Vh,Wh,2h € Vi HwhHs”Vh“E KIV

If]| < 1, (3.62)

the bounds of Theorem 3.1 are uniform in time, that is,
(= w) (@) + Rl (w = ) (B)]|l- < CH™,
where the constant C' > 0 is independent of h and time t.

To achieve this, we rewrite the nonlinear terms similar to (2.102) of Remark 2.4 as

follows:

" (ap, up, ©) — M (u,u,®) = —c" (1, 0,0) + " (£,£,0) — c(u,&,0)
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—c"(&,1,0) — "(O, v, 0) +1"(u,€,0) — " (u,&,0).

In this case, we have to find a bound for ||vy(t)||. when ¢ — oo, and have to consider
(3.26) instead of (2.81). Therefore, proceeding in a similar manner as in Remark 2.4,
and employing (1.14), (3.58), (3.13), (3.62), Lemmas 1.6 and 1.7, L’Hépital’s rule and
assumption (A2), we find

lim sup | ©() . < O,
t—o0
limsup [|©(t)]] < Ch™t.
t—o00
Combining the above estimates and (3.58), we find that

fimsup ([[u(t) = wi(8)]| + Alja(t) = ua(B).) < CH.

O

We would like to point out here that, the smallness condition (3.62) for the Kelvin-
Voigt model can be compared to similar smallness assumption for Navier-Stokes equa-
tions (see [86, Remark 3.2]) and for Oldroyd model (see [83, Remark 1.1 and Theorem
1.1]). This is a restriction amounting to small solutions, needed to establish uniform
in time error estimates. That is, under the smallness condition on data, the derived

error estimates hold for all time.

3.4 DG Error Estimates for Pressure
This section presents the derivation of semi-discrete pressure error estimates. We begin
by proving a lemma which is crucial for establishing these error estimates.

Lemma 3.6. Let the assumption (A2) be satisfied and let 0 < o < W% Then,

the error e = uw — wy, in approximating the velocity satisfies for t > 0
le()]l + = [le(t)]le < K(E)h".
Proof. Subtract (3.10) from (3.4) to write the equation in error e = u — u, as

(e, @) + raler, @) +vale, @) + b(dy, p) =" (uy, un, @) — c*(u,u, @y,), (3.63)

for all ¢, € V;,. Choose ¢, = Pre; = e, — (uy — Ppuy) in (3.63) and use Lemma 1.6

to observe that

||et||2 + /{K1|]Phet||g < (e, uy — Pywy) + ka(Pruy — uy, Prey) —vale,Prey)
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+c" (up, up, Prey) — c*(u,u, Pre;) — b(Pres,p). (3.64)
Since u has no jumps, we rewrite the nonlinear terms of (3.64) as

' (u,u, Prey) — ' (up, up, Prey) = — ¢ (e, e, Pre;) + ¢ (e, u, Prey)

+c"(u,e, Prey). (3.65)

The nonlinear terms on the right hand side of (3.65) can be bounded by applying
(2.56), Theorem 3.1, Young’s inequality and assumption (A2) as

kK
e (e, e, Prer)| < Cllel.lle]l-[Pre:lle < = [Prerl? + Clle]2, (3.66)

kK
e (e, u, Pre)| < Cllellfuly|[Prerll: < =% [Precl? + Clle]2, (3.67)

kK
e (u, e, Pye;)| < Clulyfle]lc|Prerll- < =27 [Prer]2 + Clle]2. (3.68)

Using (3.66)-(3.68) in (3.65), we arrive at
kK

™ (up, up, Prey) — ™ (u,u, Prey)| < T1||Phet||§ + Clle*. (3.69)

Applying the Cauchy-Schwarz and Young’s inequalities, definition of space Vj, (1.31)
and Lemmas 2.2, 2.3 and 2.4, we bound the second, third and sixth terms on the right
hand side of (3.64) as

Kk
K la(Pruy — g, Prey)| < %thetﬂg + R w7y, (3.70)

Kik
vla(e,Pre;)| < 1—12!\PhetH? +Clle|Z + Ch™ulZ,,,  (3.71)

Kll‘ﬁ

?thetﬂg + Ch*" |pl?. (3.72)

b(Pres, p))| = [b(Prer, p — 7a(p)))] <
An application of the bounds from (3.69)-(3.72) in (3.64) leads to

1
5 (ledll” + Ky [Preg]|2) < Clluy — Pruy||”

+CR* (Juefy + [uflyy + [pI7) + Cllell2. (3.73)

Finally, a use of triangle inequality, (3.73), Lemma 2.2, Theorem 3.1, and assumption

(A2) yield
lecd]|” + K1k |Jed]|2 < Ch* e

This completes the rest of the proof.
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Proof of pressure error estimate in Theorem 3.1: A use of (3.4), (3.5), (3.7)

and (3.8) leads to the following error equation for all v, € X, as

_b(vhaph - Th(p)) = (uht — Uy, Vh) + /ia(uht — Uy, Vh) + I/a(uh —u, Vh)

+c" (up, up, vi) — c(u,u, v) — b(vip,p —ri(p)).  (3.74)
Using the inf-sup condition stated in Lemma 1.8, there is v, € X} such that

b(vi,ph = 10(P) = —llpw = ra(@)I*,  [Ivall- < %th — (D)l (3.75)

A combination of (3.74) and (3.75) leads to

Ipn — (@) |I? =(un — we, vi) + K a(up — wy, vi) + va(u, —u,vy)

+ " (up, up, vy) — c*(u,u, vy) — b(vy, p — (D). (3.76)

Now, following the analysis used in Lemmas 3.5 and 3.6, we bound terms on the right

hand side of (3.76) as

I = rr()I* < C(hane — el + fune — wil|? + lun — w2 + [[u, — uf®

A (a2 + [pIE A+ ).
Using the triangle inequality and (1.31), we arrive at

lp = pall* < C(hane = wel® + [fune — w2 + [ — lf? + o, — |

+ 7 ([ufyy + [l A+ felyy)- (3.77)

An application of Lemma 3.6, Theorem 3.1 and assumption (A2) in (3.77) leads to

the desired pressure error estimate. This completes the proof. Il

3.5 Fully Discrete Scheme and Error Estimates

For discretization in time variable of the semi-discrete DG Kelvin-Voigt system repre-
sented by (3.7)-(3.9), we employ the backward Euler scheme in this section. Now, the
backward Euler approximations for (3.7)-(3.9) is defined as follows: Given U°, seek
(U™, P"),>1 € Xp, X My, such that

(0,U",vp) + ka(0,U",vy,) + va(U", vy)
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+ VUL U ) 4 b(va, P = (F7, ), Vv € X, (3.78)
b(Unv qh) = 07 th < Mh’ (379)
where UY = u,,(0) = Ppu,.

An equivalent formulation of (3.78)-(3.79) is defined as follows: For each v, € V,, we
find {U"},,>1 € Vy, such that,

(8, U, v1) + ka(0,U", vy) + va(U, vy) + U (U, U™, vi) = (£, v),  (3.80)

where U? = u,(0) = Pyuy.
Next in Lemma 3.7, we present a priori estimates of backward Euler solution U" of

(3.80).

Lemma 3.7. Let the assumption (A2) be satisfied and let 0 < o < 2(02”7% Further,

let U° = Pyug. Then, there exists a positive constant C, such that the discrete solution
{U"},>1 of (3.80) satisfies

M
[T P+ U2 + e ALY e |UM2<C, n=0,1,.., M,

n=1

Proof. Substitute v, = U" in (3.80). Using

1 B 1.,
(U™, U") = —(U"-U"u") > —(IIU”||2 IO"HP) = oo™, (3.81)

At 2At
n n _l i n ny __ i n—1 n—1 n n
a(0,U",U") = 5 (Ata(U un) A7 a(U"H, U + Ata(0,U", 0,U ))
%a a(U, U, (3.82)

(1.19) and Lemma 1.6 in the resulting equation and then the Cauchy-Schwarz inequal-

ity, we arrive at
O[T I* + 5.0y (a(U™, UM)) + 20 F[[UM 2 < 2[[£7[][[T™ . (3.83)
Note that,
S0 Attt g UM =t — 3 et 2ot — 1)
n=1 —
— 28U, (3.84)

Multiply (3.83) by Ate?*» sum over n =1 to M, and use (1.14), (3.84), Lemmas 1.6
and 1.7 to obtain

el [ UM 2 4 s 2ot UM 2
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(e2aAt - 1) - 2at 2
K — (C Ky)——= | At A U™
(v i) g ) S
202 X
2t 0112 20t 0112 2 2aty, 2
< 28| U2 + K Kye?@2| U2 +—VK1At;e II£]]. (3.85)
WithozasO<a<2(Cé’TKéK2)wehave

14—
C2+HK2 -

On multiplying (3.85) by e 2* and applying assumption (A2), we establish our

desired estimates. O

Using (1.19), and Lemmas 1.6, 1.8 and 3.7, the existence and uniqueness of the discrete
solutions to the discrete problem (3.78)-(3.79) (or (3.80)) can be achieved following
similar steps as in [72]. Below, we focus on the derivation of error estimates for the
backward Euler method.

We denote e, = U" —u(t,) = U —u}, n € N, 1 <n < M. Now, consider the

semidiscrete formulation (3.10) at t = t,, and subtract it from (3.80) to arrive at

(atem ¢h) + "ia(atena ¢h> + Va(env ¢h> = (uZtv ¢h) - (atuza (»bh)
+ K’a’(uzw ¢h) — K a(atuZ> ¢h) + Ah(¢h>7 (386)

where Ay () = AL(¢,) + A3(¢,) with

AZ( — lu;:( N 14N o lU”_l( N 14N (387)
h d)h) uhuuhad)h) uhau}wd)h)'

Lemma 3.8. Under the hypotheses of Lemma 3.7 and Theorem 3.1, there exists a

zwmzﬁwﬁﬁm%w“WﬂUW“}

positive constant Kr > 0, independent of h and At, such that, the following estimates
hold true:

M 1/2
(el + [leall-) + (e?a“/fAtZem||en|r§> < Kr At

n=1

where Kr depends on T'.

Proof. Choose ¢;, = e, in (3.86), and use (3.81), (3.82) and Lemma 1.6 to arrive at

Or(lleall” + r alen, en)) + 2Kyv[le,[|2 < 2(uhy, en) — 2(0pu, )

+2r a(uy,, e,) — 2k a(0puy, e,) + 2A,(en), (3.88)
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where Ay(e,) = A} (e,) + AZ(e,). Utilizing an identical technique applied in Lemma

2.17 to bound the terms A} (e,) and A?(e,), one can obtain

Kiv tn
Aben)| < * 2 e+ CllewslP + 0t [ un(o)2ds, (359
tp—1
Kyv Kyv
A3 )] < T lleal? + 8 w2+ Cla 2 eacal
ln
OO [ (o) ds (3.90)
tn—1

From (2.138), and utilizing the Cauchy-Schwarz, Young’s inequalities and (1.14), we

obtain

1/2

tn
2l en) — 20} ) < CAH? ( / ||uhtt<t>||2dt) leall.
tn—1
K v tn
= n||2+cm/ e ()| . (3.91)
tn—1

Similarly, following the steps involved in bounding (3.91) and using Lemma 1.7, we

arrive at

1/2

tn
2 (a(W)ys ) — a(B, 0,)) < CAL? ( / ||uhtt<t>|r§dt) leal.
tn—1
K v tn
== n||2+CAt/ e ()12 . (3.92)
tn—1

Apply (3.89)-(3.92) in (3.88), multiply the resulting inequality by Ate*** and sum
over n =1to m (< M), where T'= MAt. Then, using

m m—1
> At flen] = e = D € (28 — 1) le
n=1 n—=

m
Z Ate*™ dale,, e,) = e a(en, en) — e (208 _ 1a(e,, e,),

n=1 n=1

Lemmas 1.6 and 1.7, we arrive at

0 ([lewl|* + Kir len2) + KAty e,

n=1

m—1
20 (230 — 1) (e || + Korllen]?)

n=1

CAES” e (14 [up]|?) el

+,

n=1
m

tn
£ OB (14 g [ o)
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m tn
+CALY et / (I[anee (0117 + [[nee (£) ) . (3.93)
n=1 tn—1

Now the desired result is achieved by applying estimates (3.11) and (3.12), the fact
e?eAt — 1 < CAt, and discrete Gronwall’s lemma in (3.93). O

Theorem 3.2. Under the assumptions of Theorem 3.1 and Lemma 3.8, the following

estimates hold true:

lu(t,) — U"|| < Kp(h"™ + At),
lu(t,) — U] < Ko(h" + Ab).

Proof. A combination of Theorem 3.1 and Lemma 3.8 leads to the desired result. [

Lemma 3.9. Under the hypotheses of Theorem 3.1 and Lemma 3.8, the error e, =

U" — uj, satisfies
H(‘?tenH + H@tenHE S KTAt
Proof. Rewrite the non-linear terms in (3.86) as

An(@y) = Ay(dy) + Aj (@) = — CUnil(uZ_la en, ¢p,) + CUTH(UZ —up ' uy, ¢
— " (eno1, U, @) + Ad (). (3.94)

A use of (2.55) yield

n—1 n— n—1 n n— n n—1 n
|CU (uh 17en7¢h>+CU (uh_uh l’uh7¢h)+cU (en_l,U 7¢h)| (3~95)

< Cllap ™ [llenllclldnlle + Clluy = il [uhllli@nll + Cllens Ul dll--
Further, using (1.14), (2.60) and triangle inequality, we arrive at
AR ()] < C(I[uh —up e + lenille) [up el (3.96)
A combination of (3.95)-(3.96) in (3.94) yields

[An(@n) < C (g lellenlls + Tuh — wp =Ml ugle + llen— [l T

+ [l — w e flag e + el [[uglle) |l (3.97)

A use of Lemma 1.7 leads to

|a(en, @) < Ksllen|lcl|dnlle- (3.98)
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Apply (1.14), (2.138) and the Cauchy-Schwarz inequality to arrive at

tn 1/2
(Wl G0) — (O], ) < CAL (/ Huhtt<s>||2czs) ™0

tn—1

tn 1/2
so(sup Huhtt@)u?) (/ 1ds) A gylle. (3.99)
tn—1

0<t<oo

Following the similar analysis as in (3.99), we obtain
K (a(uZta ¢h> o a(atu27 ¢h>)

tn 1/2
< C’( sup ||uhtt(t)\|§) (/ 1ds> A2 ||, - (3.100)
tn—1

0<t<oo
Substitute ¢, = 0:e,, in (3.86) and use (3.97)—(3.100) with ¢,, replaced by d;e,,. Then,
apply Young’s inequality, and estimates from (3.11), (3.12) and Lemmas 1.6, 3.7, 3.8

to arrive at the desired result. This completes the rest of the proof. O]

Lemma 3.10. Under the hypotheses of Theorem 3.1 and Lemma 3.8, forn =1,2,--- |
M, the following holds true

1P = pill < KrAt.
Proof. Subtract (3.7) from (3.78) to arrive at
0(Pp, P — p) =(upy, @p) — (Opuy, @) + K a(uyy, @) — ka(Opuy, éy)
— (Oen, @) — K a(Oren, pp,) — valen, @) + An(ey),

for all ¢, € Xj. Performing the steps required to prove Lemma 3.9 and applying

Lemma 1.8, we obtain
[P = pill < CUll0wenll + l|Orenlle + [lenlle + AL).
Finally, an application of the Lemmas 3.8 and 3.9 concludes the proof. O]

The following error estimate on the pressure is easily derived from Lemma 3.10 and

Theorem 3.1.

Theorem 3.3. Under the assumptions of Theorem 3.1 and Lemma 3.10, the following
hold true:

Ip(tn) = P*|| < K (h" + At).

Remark 3.2. Similar to Remark 2.5, the optimal order convergence rates derived in

this chapter can be extended to the 3D case.
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3.6 Numerical Experiments

In this section, we present numerical examples to verify the theoretical results stated
in the Theorems 3.2 and 3.3. We have used the mixed finite element spaces P, —
P,_q, r = 1,2 for the space discretization and a backward Euler method for the time
discretization. The domain € = [0,1] x [0, 1] is chosen here. We have considered here
four examples where the first three examples are computed in time interval [0, 1] and

the fourth one in time interval [0, 75]. In all the cases, time step is At = O(h™*1).

Example 3.1. In our first ezample, the right hand side function f is chosen in such

a way that the exact solution (u, p) = ((uy, uz), p) is

uy = 2% (x — 1)%y(y — 1)(2y — 1) cos(t) p = 2(z —y) cos(t),

uy = —2z(x — 1)(22 — 1)y*(y — 1)* cos(t).

In Tables 3.1 and 3.2, we present the errors and convergence rates of the approx-
imate velocity and pressure obtained by using the discontinuous mixed finite element
spaces P, — Py and P, — P;, respectively, with the retardation time x = 1072 and
kinematic viscosity v = 1. The penalty parameter is chosen as o, = 10 for r = 1 and
. = 20 for r = 2. The numerical results in Tables 3.1 and 3.2 support the theoretical

derivations in Theorems 3.2 and 3.3.

Table 3.1: Errors and rates of convergence of velocity and pressure using discontinuous

P1—Py element for Example 3.1.

ho | [[u(T)—UM|. | Rate | |u(T)—UM| | Rate | |p(T)— P"| | Rate
1/4 | 3.3927x1072 2.4193x10~3 1.0667x 1072
1/8 | 1.4413x1072 | 1.2350 | 5.3378x10~* | 2.1802 | 7.0680x10~% | 0.5937
1/16 | 6.1566x1072 | 1.2271 | 1.2089x10~* | 2.1424 | 4.1982x107% | 0.7515
1/32 | 2.7335x1073 | 1.1713 | 2.8341x107° | 2.0928 | 2.3113x10~3 | 0.8610
1/64 | 1.2676x10~2 | 1.1086 | 6.8138x107% | 2.0563 | 1.2137x10~3 | 0.9292
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Table 3.2: Errors and rates of convergence of velocity and pressure DG approximations

using Po—P; element for Example 3.1.

ho | [[u(T) —UM|. | Rate | |u(T)—UM| | Rate | |p(T)— PY| | Rate
1/4 3.1902x 1073 1.4918x10~* 1.4342x1073
1/8 7.4906x10™% | 2.0904 | 1.9706x107° | 2.9203 | 4.1075x10™* | 1.8040
1/16 | 1.7576x10™* | 2.0914 | 2.4316x107¢ | 3.0186 | 1.1433x10~* | 1.8450
1/32 | 4.2589x107° | 2.0450 | 2.9815x1077 | 3.0278 | 3.0616x10~> | 1.9008

Example 3.2. In this ezample, we take the force term f resulting in the following

solutions
uy = 27 sin’(7x) sin(7y) cos(my) cos(t) p = 10 cos(mz) cos(my) cos(t),
uy = —27 sin(7x) cos(mx) sin?(7y) cos(t).

In Tables 3.3-3.10, we have shown the errors and rates of convergence for velocity and
pressure approximations based on discontinuous P; — Py mixed finite element space
for different values of x and v, respectively. The Tables 3.3-3.6 depict the numerical
results for different values of x = {1,107%,107%,107°} with the choice of v = 1 and
0. = 10. The numerical convergence rates in the tables validate the theoretical findings
obtained in Theorems 3.2 and 3.3. Moreover, it can be inferred that the numerical
results still hold for small values of k. The Tables 3.7-3.10 represent the errors and
convergence rates for different values of v = {1,1/100,1/1000,1/10000} with x = 1
and the corresponding penalty parameters are chosen as o, = {10, 20,50,200}. The
numerical outcomes depicted in the tables verify the derived theoretical results. We
can therefore conclude that the scheme is robust with repsect to the retardation time
and the viscosity. Further, we have presented CPU times for obtaining the results of
Tables 3.7-3.10 in Table 3.11. The table shows that for the proposed DG scheme, the
CPU time increases as we go for smaller v, from v = 1 to 1/10000. This is because
as we go for smaller and smaller values of v, more iterative steps are needed for the

nonlinear solver to achieve the desired accuracy, resulting in increased CPU time.
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Errors and rates of convergence of velocity and pressure using P1—Py dis-

continuous finite element for Example 3.2 with x = 1.

ho | [[u(T) —UM|. | Rate | |u(T)—UM| | Rate | |p(T)— PY| | Rate
1/4 1.5402x10° 9.4053x 1072 7.9248x1071
1/8 | 8.3518x1071 | 0.8830 | 3.6571x107% | 1.3627 | 4.6779x10~! | 0.7605
1/16 | 4.0990x10~' | 1.0268 | 1.1250x1072 | 1.7007 | 3.0020x10~" | 0.6399
1/32 | 1.9845x1071 | 1.0464 | 3.0411x1073 | 1.8872 | 1.7352x10~* | 0.7907
1/64 | 9.7912x107% | 1.0192 | 7.8060x10~* | 1.9619 | 9.1903x1072 | 0.9169
Table 3.4: Errors and rates of convergence of velocity and pressure using P;—Py dis-

continuous finite element for Example 3.2 with x = 1073.

ho | [[u(T)—UM|. | Rate | |u(T)—UM| | Rate | |p(T)— P"| | Rate
1/4 2.8738x 10" 1.9019x10~1 1.1188x10°
1/8 1.5151x10° | 0.9235 | 7.2358x1072 | 1.3942 | 7.6840x10~! | 0.5420
1/16 | 7.1620x107* | 1.0810 | 2.2403x107% | 1.6914 | 5.2929x10~! | 0.5377
1/32 | 3.4390x107' | 1.0583 | 6.0853x1073 | 1.8803 | 3.1001x10~! | 0.7717
1/64 | 1.6943x107' | 1.0212 | 1.5656x1073 | 1.9585 | 1.6448x10~! | 0.9143
Table 3.5: Errors and rates of convergence of velocity and pressure using PPy dis-

continuous finite element for Example 3.2 with x = 107°.

ho | |u(T)—UM|. | Rate ||u(T)—UM|| Rate ||p(T)— PM| | Rate
1/4 | 2.8733x10° 1.9012x 107" 1.1201x10°
1/8 | 1.5150x10° | 0.9234 | 7.2334x1072 | 1.3942 | 7.6949x10~" | 0.5416
1/16 | 7.1618x10~" | 1.0809 | 2.2397x10~2 | 1.6913 | 5.3010x10~" | 0.5376
1/32 | 3.4389x10~" | 1.0583 | 6.0837x10~3 | 1.8802 | 3.1049x10~" | 0.7716
1/64 | 1.6943x1071 | 1.0212 | 1.5652x1073 | 1.9585 | 1.6474x10~" | 0.9143
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Table 3.6: Errors and rates of convergence of velocity and pressure using PPy dis-

continuous finite element for Example 3.2 with x = 1077,

ho | [[u(T) —UM|. | Rate | |u(T)—UM| | Rate | |p(T)— PY| | Rate
1/4 2.8733x10° 1.9012x1071 1.1201x10°
1/8 1.5150x10° 0.9234 | 7.2334x1072 | 1.3942 | 7.6949x10~! | 0.5416
1/16 | 7.1618x10~' | 1.0809 | 2.2397x1072 | 1.6913 | 5.3010x10~" | 0.5376
1/32 | 3.4389x1071 | 1.0583 | 6.0837x107% | 1.8802 | 3.1050x 107t | 0.7716
1/64 | 1.6943x1071 | 1.0212 | 1.5652x107% | 1.9585 | 1.6474x107" | 0.9143

Table 3.7: Errors and rates of convergence of velocity and pressure using P;—Py dis-

continuous finite element for Example 3.2 with v = 1.

ho | [[u(T)—UM|. | Rate | |u(T)—UM| | Rate | |p(T)— PM| | Rate
1/4 | 1.5402x10° 9.4053x 102 7.9248x107!
1/8 | 8.3518x10~' | 0.8830 | 3.6571x1072 | 1.3627 | 4.6779x10~" | 0.7605
1/16 | 4.0990x10~" | 1.0268 | 1.1250x10~2 | 1.7007 | 3.0020x10~" | 0.6399
1/32 | 1.9845x1071 | 1.0464 | 3.0411x1073 | 1.8872 | 1.7352x10~" | 0.7907
1/64 | 9.7912x1072 | 1.0192 | 7.8060x10~* | 1.9619 | 9.1903x10~2 | 0.9169

Table 3.8: Errors and rates of convergence of velocity and pressure using PPy dis-

continuous finite element for Example 3.2 with v = 1/100.

ho | |u(T)—UM|. | Rate ||u(T)—UM| | Rate ||p(T)— PM| | Rate
1/4 | 2.1245x10° 1.7552x 10~ 2.7807x10°
1/8 | 1.1761x10° | 0.8531 | 6.9141x1072 | 1.3440 | 2.5762x10° | 0.1102
1/16 | 5.8002x10~% | 1.0198 | 2.3090x1072 | 1.5822 | 1.9189x10° | 0.4249
1/32 | 2.8034x1071 | 1.0488 | 6.5192x1073 | 1.8245 | 1.1279x10° | 0.7666
1/64 | 1.3849x107' | 1.0173 | 1.6976x1073 | 1.9411 | 5.9625x 10" | 0.9196
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Table 3.9: Errors and rates of convergence of velocity and pressure using PPy dis-

continuous finite element for Example 3.2 with v = 1,/1000.

h | |u(T)—UM|. | Rate | ||u(T)—UM|| | Rate | |p(T)— PM| | Rate
1/4 | 3.0068x10° 3.1054x 10! 0.3942x 10°
1/8 2.0223x10° 0.6147 | 2.0393x10™! | 0.6067 | 11.5269x10° | -0.2951
1/16 | 9.9427x107' | 1.0243 | 9.2334x1072 | 1.1431 | 9.7804x10° | 0.2370
1/32 | 3.9501x107 | 1.3317 | 3.0098x107% | 1.6171 | 6.1873x10° | 0.6605
1/64 | 1.6088x1071 | 1.2958 | 8.2414x1073 | 1.8687 | 3.3562x10° | 0.8824

Table 3.10: Errors and rates of convergence of velocity and pressure using P;—Pg

discontinuous finite element for Example 3.2 with v = 1/10000.

ho | [[u(T)—UM|. | Rate | |u(T)—UM| | Rate | |p(T)— PY| | Rate
1/4 | 3.9021x10° 4.2416x10~ 13.8802x 10°
1/8 | 2.7820x10° | 0.4881 | 3.1569x10~" | 0.4260 | 19.0729x10° | -0.4585
1/16 | 1.4817x10° | 0.9088 | 1.6018x10~' | 0.9787 | 17.6551x10° | 0.1114
1/32 | 5.8599x10~" | 1.3383 | 5.7335x1072 | 1.4822 | 11.9890x10° | 0.5583
1/64 | 2.0647x107" | 1.5049 | 1.6400x10~2 | 1.8056 | 6.7234x10° | 0.8344

Table 3.11: CPU time (s) for Example 3.2 with v = {1,1/100,1/1000, 1/10000}.

h | v=1 |v=1/100| v =1/1000 | v = 1/10000

1/4 0.72 0.88 2.35 3.75
1/8 8.18 10.29 16.35 20.62
1/16 | 86.47 130.39 151.15 191.50
1/32 | 925.98 978.47 1285.22 1457.76

1/64 | 16250.16 | 18240.89 18673.18 19685.24

Example 3.3 (Taylor-Green vortex). Another widely used test case for the verification
of numerical methods is the Taylor-Green vortex problem. The analytical unsteady
solution is (u, p) = ((u1, uz), p), where

_8n2ut 1 —16m2ut

uy = — cos(2mx) sin(27y)e1+872s p= _1(008(47”5) + cos(4my))e 1+872s
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—8n2ut

Uy =sin(27mx) cos(2my)e1+87x
The wnitial condition is obtained from the above exact solution.

Here, the contours of exact velocity components and pressure magnitudes are presented
in Figure 3.1 and the contours of P; — Py DG approximate velocity components and
pressure magnitudes are shown in Figure 3.2 with x = 1072, v = 1/100, o, = 20 and
final time 7' = 1.0. A plot comparison of contours between the exact and DG approx-
imate solutions validates the theoretical findings. Further, the numerical convergence
results are shown in Tables 3.12, 3.13 and 3.14 for the cases v = 1/100, 1/1000 and
1/10000, respectively. Note that, for the cases v = 1/1000 and 1/10000, o, = 50 and
200, respectively. We observe from the results in tables that the optimal convergence
rates are achieved for this benchmark test problem verifying the theoretical results in

Theorems 3.2 and 3.3.

(c) Pressure contour

Figure 3.1: Velocity components and pressure plots for exact solution of Example 3.3.
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(c) Pressure contour

Figure 3.2: Velocity components and pressure plots of Example 3.3 for DG method

with P; — Py element.

Table 3.12: Errors and rates of convergence of velocity and pressure DG approxima-

tions using P;—Py element for Example 3.3 with v = 1/100.

ho | |la(T) —UM|. | Rate | |u(T)—UY| | Rate | |p(T)— PM|| | Rate
1/4 1.95622 1.8842 x 107! 5.1839 x 10~
1/8 1.10616 0.8225 | 6.7070 x 102 | 1.4902 | 3.6098 x 10~' | 0.5220
1/16 0.54554 1.0198 | 1.8027 x 1072 | 1.8954 | 2.0458 x 107! | 0.8192
1/32 0.26317 1.0516 | 4.4449 x 107 | 2.0199 | 9.6212 x 1072 | 1.0884
1/64 0.12927 1.0255 | 1.0842 x 1073 | 2.0354 | 4.4230 x 102 | 1.1211
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Table 3.13: Errors and rates of convergence of velocity and pressure DG approxima-

tions using P;—Py element for Example 3.3 with v = 1/1000.

ho | [[u(T) - UM|. | Rate | |u(T)—UM| | Rate | ||p(T)— P™| | Rate
1/4 4.05548 4.3236 x 1071 1.0029 x 10°
1/8 2.16577 0.9049 | 1.9918 x 107! | 1.1181 | 6.5306 x 10~ | 0.6190
1/16 0.93863 1.2062 | 6.5539 x 1072 | 1.6037 | 3.7808 x 10! | 0.7885
1/32 0.39069 1.2645 | 1.8138 x 1072 | 1.8532 | 1.7453 x 107! | 1.1152
1/64 0.17551 1.1544 | 4.6031 x 1073 | 1.9783 | 7.8598 x 102 | 1.1509

Table 3.14: Errors and rates of convergence of velocity and pressure DG approxima-

tions using P;—Py element for Example 3.3 with v = 1/10000.

ho | [[u(T)—UM|. | Rate | |u(T)—UM| | Rate | ||p(T)— P™| | Rate
1/4 5.98427 9.7215 x 107" 2.5750 x 10°
1/8 3.23232 0.8886 | 4.6190 x 107! | 1.0735 | 1.5929 x 10° | 0.6929
1/16 1.42203 1.1846 | 1.5501 x 107! | 1.5751 | 8.2872 x 107! | 0.9426
1/32 0.61274 1.2145 | 4.3481 x 1072 | 1.8339 | 3.5883 x 107! | 1.2075
1/64 0.28118 1.1237 | 1.1169 x 1072 | 1.9608 | 1.6003 x 10~ | 1.1649

Example 3.4 (Benchmark Problem). This example considers the lid-driven cavity
flow on a two-dimensional unit square [0, 1] x [0,1]. No forces are acting on the body.
The lid of the cavity is moving in the horizontal direction with a non-zero wvelocity
(ur,us) = (1,0). The no-slip boundary conditions are applied to other parts of the

cavity boundaries.

For the space discretization, we employ P; — Py mixed finite element space and for the
time discretization backward Euler method. We choose the lines (0.5,y) and (z,0.5)
for numerical simulations. Figures 3.3a and 3.3b plot the fully discrete backward
Euler and steady-state velocity approximations of (3.1)-(3.3), whereas Figures 3.3c
and 3.3d represent the graphs of unsteady and steady states pressure approximations
for viscosities v = {1/100,1/300,1/600}, retardation times x = 0.1 x v, final time
T = 75, mesh size h = 1/32, time step At = O(h?) and penalty parameter o, = 40.

The graphs depict that the time-dependent Kelvin-Voigt solution converges to its
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steady-state solutions for a considerable large time.

O Steady State v=1/100
Unsteady State 1=1/100 | |
Steady State 1=1/300
Unsteady State 1=1/300 | |
%  Steady State v=1/600
Unsteady State 1=1/600 | |

O Steady State v=1/100
Unsteady State v=1/100
Steady State 1=1/300
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Figure 3.3: Velocity components and pressure for lid driven cavity flow.

3.7 Conclusion

In this chapter, we have applied the SIPG method to the Kelvin-Voigt equations of
motion represented by (3.1)-(3.3), which is the first work in this direction. We have de-
fined the semi-discrete DG formulation to (3.1)-(3.3) and have derived a priori bounds
to the velocity approximation. In order to establish error estimates, we have intro-
duced a modified Sobolev-Stokes projection S;° on appropriate DG spaces and proved
the approximation properties. Then, by using duality arguments along with the ap-
proximation properties of Py and S;°, we have obtained optimal error estimates for
the velocity in L>(L*) and pressure in L>(L?)-norms. Moreover, under the small-
ness assumption on the data, we have shown that the semi-discrete error estimates
are uniform in time. Furthermore, we have employed a backward Euler method for
full discretization and have achieved optimal convergence rates for the approximate

solution. Finally, we have conducted the numerical experiments and have shown that
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the outcomes verify the theoretical results. Also from our numerical results we have

observed that the scheme works well even for small values of v and k.
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