
Chapter 3

DG Method for the Kelvin-Voigt

Model

A DG finite element approximation for the Kelvin-Voigt viscoelastic fluid flow equa-

tions, is proposed and analysed in this chapter. Based on the new a priori and reg-

ularity results for the semi-discrete solutions, well-posedness and consistency of the

DG scheme are discussed. A priori error estimates of the semi-discrete DG approxi-

mations of the velocity and pressure, in L∞(L2) and L∞(L2)-norms, respectively, are

then derived. Our proof relies on the standard elliptic duality argument and a modified

Sobolev-Stokes operator defined on appropriate broken Sobolev spaces. For sufficiently

small data, uniform in time error estimates are proved. Furthermore, backward Euler

scheme is considered for a full discretization and optimal fully discrete error estimates

are derived. Finally we work out numerical experiments to substantiate our theoretical

findings. It is worth mentioning that the analysis here is the first of its kind for the

Kelvin-Voigt model. This work has been published in [17] for r = 1.

3.1 Introduction

Let us recall, the Kelvin-Voigt viscoelastic fluid flow is modelled by the following

momentum and continuity equations:

∂u

∂t
+ u · ∇u− κ∆ut − ν∆u +∇p = f(x, t), x ∈ Ω, t > 0, (3.1)

∇ · u = 0, x ∈ Ω, t > 0, (3.2)
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where, κ > 0 is the retardation time. The velocity u further satisfies the initial and

homogeneous Dirichlet boundary conditions

u(x, 0) = u0 in Ω, and u = 0, on ∂Ω, t ≥ 0, (3.3)

where ∂Ω represents the boundary of Ω.

As can be seen from Section 1.5.1, the literature for the problem (3.1)-(3.3) is confined

to the finite element analysis for the CG methods. And, to the best of our knowledge,

there is hardly any literature dedicated to the finite element analysis of DG methods

applied to the Kelvin-Voigt equations of motion. This chapter can be considered as

the first attempt in this direction. We mainly focus on deriving semi-discrete and

fully discrete optimal error estimates for the SIPG method applied to the problem

(3.1)-(3.3) as the NIPG and IIPG methods is known to provide sub-optimal error

estimates which has been already discussed in Chapter 2. In the earlier chapters, we

have mentioned that the Kelvin-Voigt model is a perturbation of the NSEs. Thus, in

this chapter, we have followed the DG variational formulation for NSEs from Chapter

2 and defined a DG formulation for (3.1)-(3.3) on the discontinuous spaces X and M

as: Find the pair (u(t), p(t)) ∈ X×M, t > 0, such that

(ut(t),φ) + κ a(ut(t),φ) + ν a(u(t),φ)

+ cu(t)(u(t),u(t),φ) + b(φ, p(t)) = (f(t),φ) ∀φ ∈ X, (3.4)

b(u(t), q) = 0 ∀q ∈M, (3.5)

(u(0),φ) = (u0,φ) ∀φ ∈ X. (3.6)

The consistency proof of (3.4)-(3.6) can be done following the similar analysis as

adopted in [98, Lemma 3.2] for the DG formulation of NSE.

Next, we define the semi-discrete DG variational formulation for the system of equa-

tions (3.1)-(3.3): For t > 0, find (uh(t), ph(t)) ∈ Xh ×Mh such that

(uht(t),φh) + κ a(uht(t),φh) + ν a(uh(t),φh)

+ cuh(t)(uh(t),uh(t),φh) + b(φh, ph(t)) = (f(t),φh), ∀φh ∈ Xh (3.7)

b(uh(t), qh) = 0, ∀qh ∈Mh (3.8)

(uh(0),φh) = (u0,φh) ∀φh ∈ Xh. (3.9)
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The equivalent DG formulation corresponding to the scheme (3.7)–(3.9) on the space

Vh is the following: For t > 0, find uh(t) ∈ Vh such that

(uht(t),φh) + κ a(uht(t),φh) + ν a(uh(t),φh)

+ cuh(t)(uh(t),uh(t),φh) = (f(t),φh), ∀φh ∈ Vh. (3.10)

In order to establish optimal semi-discrete error estimates related to the DG meth-

od, we have introduced a modified Sobolev-Stokes projection Ssoh (see Section 3.3) for

broken Sobolev spaces. Optimal order estimates for Ssoh have been established then,

based on the approximation properties of Ph (see Chapter 2). Although we have

applied the ideas of [15], there are analytical differences and difficulties due to the DG

formulation and difference in finite element spaces. For example, the analysis of the

nonlinear term in the DG formulation needs a special kind of attention. Finally, the

backward Euler method have been applied to discretize the time variable and optimal

fully discrete error estimates are achieved.

The main ingredients in achieving the goals of the chapter are as follows:

1. We have defined a modified Sobolev-Stokes projection Ssoh in DG set up, which

plays an essential role in deriving the semi-discrete error estimates. The optimal

estimates for Ssoh are derived.

2. By means of the modified Sobolev-Stokes projection Ssoh and duality arguments,

we have achieved optimal a priori error bounds for the semi-discrete DG approx-

imations to the velocity in L∞(L2)-norm and pressure in L∞(L2)-norm. These

estimates are uniform in time for sufficiently small data.

3. Then the backward Euler scheme have been applied to the semi-discrete discon-

tinuous Kelvin-Voigt model. Optimal error estimates have been derived for the

fully discrete velocity and pressure.

4. Finally, we have provided numerical examples and analyze the outcomes to verify

the theoretical results.

This chapter is divided into the following sections: The derivation of a priori and

regularity bounds of the discrete solution are dealt with in Section 3.2. The modified

Sobolev-Stokes operator and its properties, and optimal a priori error estimates for



86

the velocity are represented in Section 3.3. The optimal a priori error estimates for the

pressure are derived in Section 3.4. The backward Euler method for the discretization

in the time direction is employed, and the fully discrete error estimates are obtained

in Section 3.5. A few numerical examples are discussed, and the results are analyzed

to verify the theoretical findings in Section 3.6. Finally, the main contributions of this

chapter are summarized in Section 3.7.

Throughout this chapter, we will use C, K(> 0) as generic constants that depend on

the given data, ν, κ, α, K1, K2, C2 but do not depend on h and ∆t. Note that, K and

C may grow algebraically with ν−1. Further, the notations K(t) and KT will be used

when they grow exponentially in time.

3.2 A priori and Regularity Estimates

We start this section by presenting a priori and regularity bounds for uh which will

be used in deriving the existence and uniqueness of the semi-discrete solution and fully

discrete error estimates.

Lemma 3.1. Let 0 < α < νK1

2(C2+κK2)
. Then, there exists a positive constant C, such

that, for each t > 0, the semi-discrete DG solution uh(t), satisfies the following bounds:

sup
0<t<∞

(‖uh(t)‖+ ‖uh(t)‖ε + ‖uht(t)‖ε)

+ e−2αt

∫ t

0

e2αs
(
‖uh(s)‖2

ε + ‖uht(s)‖2
ε

)
ds ≤ C, (3.11)

sup
0<t<∞

(‖uhtt(t)‖+ ‖uhtt(t)‖ε)

+ e−2αt

∫ t

0

e2αs
(
‖uhss(s)‖2 + ‖uhss(s)‖2

ε

)
ds ≤ C. (3.12)

Moreover,

lim sup
t→∞

‖uh(t)‖ε ≤
C2‖f‖L∞(L2(Ω))

K1ν
. (3.13)

Proof. Choose φh = uh in (3.10) and apply the coercivity result from Lemma 1.6, pos-

itivity of c(·, ·, ·) (1.19), estimate (1.14), the Cauchy-Schwarz inequality and Young’s

inequality to obtain

1

2

d

dt

(
‖uh‖2 + κ a(uh,uh)

)
+ νK1‖uh‖2

ε ≤ ‖f‖‖uh‖ ≤
νK1

2
‖uh‖2

ε +
C2

2

2νK1

‖f‖2. (3.14)
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A multiplication of (3.14) by e2αt, an integration from 0 to t, and an application of

estimate (1.14), Lemmas 1.6 and 1.7, lead to

e2αt(‖uh(t)‖2 +K1κ‖uh(t)‖2
ε) + (νK1 − 2α(C2 + κK2))

∫ t

0

e2αs‖uh(s)‖2
ε ds

≤ ‖uh(0)‖2 +K2κ‖uh(0)‖2
ε + C

∫ t

0

e2αs‖f(s)‖2 ds. (3.15)

Again, multiply (3.15) by e−2αt, use the fact that

e−2αt

∫ t

0

e2αs ds =
1

2α
(1− e−2αt)

and choose 0 < α < νK1

2(C2+κK2)
to obtain

‖uh(t)‖2 + ‖uh(t)‖2
ε + e−2αt

∫ t

0

e2αs‖uh(s)‖2
ε ds ≤ C. (3.16)

Again, multiply (3.14) by e2αt, integrate from 0 to t, and a use of Lemma 1.7 implies

e2αt
(
‖uh(t)‖2 + κ a(uh(t),uh(t))

)
+ ν K1

∫ t

0

e2αs‖uh(s)‖2
ε ds

≤
(
‖uh(0)‖2 + κK2‖uh(0)‖2

ε

)
+ 2α

∫ t

0

e2αs
(
‖uh(s)‖2 + κ a(uh(s),uh(s))

)
ds

+ (e2αt − 1)
C2

2‖f‖2
L∞(L2(Ω))

2ανK1

.

Multiply the above inequality by e−2αt, take limit supremum as t → ∞ and noting

that,

νK1 lim sup
t→∞

e−2αt

∫ t

0

e2αs‖uh(s)‖2
ε ds =

νK1

2α
lim sup
t→∞

‖uh(t)‖2
ε,

we arrive at

νK1

2α
lim sup
t→∞

‖uh(t)‖2
ε ≤

C2
2‖f‖2

L∞(L2(Ω))

2ανK1

. (3.17)

Next, differentiating (3.10) with respect to t, we obtain

(uhtt,φh) + κ a(uhtt,φh) + ν a(uht,φh)

+ cuh(uht,uh,φh) + cuh(uh,uht,φh) = (ft,φh), ∀φh ∈ Vh. (3.18)

Substitute φh = uht in (3.18), apply Lemma 1.6, the Cauchy-Schwarz and Young’s

inequalities, and the fact that cuh(uh,uht,uht) ≥ 0 from (1.19), we obtain

d

dt

(
‖uht‖2 + κ a(uht,uht)

)
+ 2νK1‖uht‖2

ε ≤ −2cuh(uht,uh,uht)
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+C‖ft‖2 +
νK1

2
‖uht‖2

ε. (3.19)

Using (2.57) and Young’s inequality, we can bound 2cuh(uht,uh,uht) as follows:

|2cuh(uht,uh,uht)| ≤ C‖uht‖1/2‖uht‖3/2
ε ‖uh‖ε ≤

νK1

2
‖uht‖2

ε + C‖uht‖2‖uh‖4
ε.

Applying the above bound in (3.19), we arrive at

d

dt

(
‖uht‖2 + κ a(uht,uht)

)
+ νK1‖uht‖2

ε ≤ C‖uht‖2‖uh‖4
ε + C‖ft‖2. (3.20)

Multiply (3.20) by e2αt, integrate from 0 to t, and finally use Lemmas 1.6 and 1.7 to

obtain

e2αt(‖uht(t)‖2 + κK1‖uht(t)‖2
ε) + (νK1 − 2α(C2 + κK2))

∫ t

0

e2αs‖uht(s)‖2
ε ds

≤ ‖uht(0)‖2 +K2κ‖uht(0)‖2
ε + C

∫ t

0

e2αs‖uhs(s)‖2‖uh(s)‖4
ε ds+ C

∫ t

0

e2αs‖fs(s)‖2 ds.

Choosing 0 < α < νK1

2(C2+κK2)
, and applying (3.16), Gronwall’s lemma and after a final

multiplication by e−2αt, we obtain the estimate as

‖uht(t)‖2 + ‖uht(t)‖2
ε + e−2αt

∫ t

0

e2αs‖uhs(s)‖2
ε ds ≤ C. (3.21)

Now, we substitute φh = uhtt in (3.18), use Lemma 1.6 and obtain

‖uhtt‖2 +K1κ ‖uhtt‖2
ε ≤− ν a(uht,uhtt)− cuh(uht,uh,uhtt)− cuh(uh,uht,uhtt)

− (ft,uhtt). (3.22)

Apply (2.55), Lemma 1.7 and Young’s inequality to obtain

‖uhtt‖2 +K1κ ‖uhtt‖2
ε ≤ C(‖uht‖2

ε + ‖uht‖2
ε‖uh‖2

ε + ‖ft‖2). (3.23)

A use of (3.16), (3.21) in (3.23) yield

‖uhtt‖2 + ‖uhtt‖2
ε ≤ C. (3.24)

Finally, multiply (3.24) by e2αt and integrate with respect to time from 0 to t. Then

multiply the resulting inequality by e−2αt to arrive at

e−2αt

∫ t

0

e2αs(‖uhss(s)‖2 + ‖uhss(s)‖2
ε)ds ≤ C. (3.25)

A combination of (3.16), (3.17), (3.21), (3.24) and (3.25) completes the proof of Lemma

3.1.
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Now, the existence and uniqueness of the semi-discrete discontinuous Galerkin Kelvin-

Voigt model (3.7)-(3.9) (or (3.10)) can be proved following the analysis in [98, Lemma

3.4], and using the results in (1.19), (3.11), Lemmas 1.6 and 1.8.

For deriving the optimal error estimates for semi-discrete discontinuous velocity and

pressure approximations, we work on the weakly divergence free spaces. Below, we

provide one of our main contributions, stating the optimal semi-discrete error esti-

mates.

Theorem 3.1. Let the assumption (A2) be satisfied and let 0 < α < νK1

2(C2+κK2)
.

Furthermore, let the discrete initial velocity uh(0) ∈ Vh with uh(0) = Phu0. Then,

there exists a positive constant K, independent of h, such that

‖(u− uh)(t)‖+ h‖(u− uh)(t)‖ε + h‖(p− ph)(t)‖ ≤ K(t)hr+1,

where K(t) grows exponentially in time.

The sections 3.3 and 3.4 are devoted to the proof of Theorem 3.1.

3.3 DG Error Estimates for Velocity

This section deals with the optimal estimates of the velocity error e = u − uh in L2

and energy-norms for t > 0. We start by analysing the linearized error and therefore

introduce the solution vh ∈ Vh of a DG approximation of a linearized Kelvin-Voigt

problem, that is, vh is the solution of

(vht,φh) + κ a(vht,φh) + ν a(vh,φh) = (f ,φh)− cu(u,u,φh) ∀φh ∈ Vh. (3.26)

With the help of vh, we split e into two parts as e = (u − vh) + (vh − uh) = ξ + Θ.

Observe that, ξ is the error committed by approximating a linearized Kelvin-Voigt

problem and Θ represents the error due to the presence of the non-linearity in problem

(3.1). From the equations (3.26) and (3.4), we have the following equation in ξ as

(ξt,φh) + κ a(ξt,φh) + ν a(ξ,φh) = −b(φh, p), φh ∈ Vh. (3.27)

For deriving the optimal error estimates of ξ in L2 and energy-norms for t > 0,

we introduce, as in [15], the following modified Sobolev-Stokes’s projection Ssoh u :

[0,∞)→ Vh satisfying

κ a(ut − Ssoh ut,φh) + ν a(u− Ssoh u,φh) = −b(φh, p) ∀φh ∈ Vh, (3.28)
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where Ssoh u(0) = Phu0. In other words, given (u, p), find Ssoh u : [0,∞)→ Vh satisfying

(3.28). With Ssoh u defined as above, we now split ξ as

ξ = u− Ssoh u + Ssoh u− vh =: ζ + ρ.

Using (3.28), we find the equation in ζ to be

κ a(ζt,φh) + ν a(ζ,φh) = −b(φh, p) ∀φh ∈ Vh. (3.29)

Firstly, we will focus on deriving the estimates of ζ. Next, we will establish the

estimates of ρ. A combination of these estimates will result in the estimates of ξ.

Lemma 3.2. Under the assumptions of Theorem 3.1, and for t > 0, ζ satisfies the

following estimates:

‖ζ(t)‖2
ε + e−2αt

∫ t

0

e2αs
(
‖ζ(s)‖2

ε + ‖ζs(s)‖2
ε

)
ds ≤ Ch2r.

Proof. Set φh = Phζ = ζ − (u − Phu) in (3.29), use the definition of space Vh and

obtain

κ a(Phζt,Phζ) + ν a(Phζ,Phζ) =− κ a(ut −Phut,Phζ)− ν a(u−Phu,Phζ)

− b(Phζ, p− rh(p)). (3.30)

By a virtue of Lemma 2.3 and Young’s inequality, we arrive at

κ |a(ut −Phut,Phζ)| ≤Cκhr|ut|r+1‖Phζ‖ε ≤
K1ν

24
‖Phζ‖2

ε + Ch2r|ut|2r+1, (3.31)

ν |a(u−Phu,Phζ)| ≤Cνhr|u|r+1‖Phζ‖ε ≤
K1ν

6
‖Phζ‖2

ε + Ch2r|u|2r+1. (3.32)

Owing to Lemma 2.4 and Young’s inequality, the term involving the pressure in (3.30)

is reduced to

|b(Phζ, p− rhp)| ≤ Chr|p|r‖Phζ‖ε ≤
K1ν

6
‖Phζ‖2

ε + Ch2r|p|2r. (3.33)

Apply (3.31)-(3.33) and the bound of Lemma 1.6 in (3.30). Then, multiply the result-

ing equation by e2αt, integrate from 0 to t, use Lemmas 1.7 and 1.6, and observe that

Phζ(0) = 0, we obtain

κK1 e
2αt‖Phζ‖2

ε + (K1ν − 2ακK2)

∫ t

0

e2αs‖Phζ(s)‖2
εds
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≤ Ch2r

∫ t

0

e2αs
(
|us(s)|2r+1 + |u(s)|2r+1 + |p(s)|2r

)
ds. (3.34)

Multiply (3.34) by e−2αt and use assumption (A2) to complete the energy norm esti-

mates of Phζ as

‖Phζ(t)‖2
ε + e−2αt

∫ t

0

e2αs‖Phζ(s)‖2
εds ≤ Ch2r. (3.35)

Since ζ = u−Phu+Phζ, using the triangle inequality and the bounds in Lemma 2.2,

(3.35), we arrive at

‖ζ(t)‖2
ε + e−2αt

∫ t

0

e2αs‖ζ(s)‖2
εds ≤ Ch2r. (3.36)

To derive the estimates of ζt in energy norm, we substitute φh = Phζt in (3.29). Then,

apply Young’s inequality, (3.36), and Lemmas 1.6, 1.7, 2.2, 2.3, 2.4 and assumption

(A2) to the resulting equation and arrive at

‖Phζt(t)‖2
ε ≤ Ch2r. (3.37)

A multiplication of (3.37) by e2αt, an integration from 0 to t with respect to time, and

then again a multiplication by e−2αt lead to

e−2αt

∫ t

0

e2αs‖Phζs(s)‖2
ε ds ≤ Ch2r. (3.38)

Use triangle inequality and bounds of (3.37), (3.38), Lemma 2.2 yielding

‖ζt(t)‖2
ε + e−2αt

∫ t

0

e2αs‖ζs(s)‖2
ε ds ≤ Ch2r. (3.39)

Combining the estimates (3.36) and (3.39), we arrive at the desired result.

Lemma 3.3. Under the assumptions of Theorem 3.1, and for t > 0, ζ satisfies the

following estimates:

‖ζ(t)‖2 + e−2αt

∫ t

0

e2αs‖ζ(s)‖2 ds ≤Ch2r+2, (3.40)

e−2αt

∫ t

0

e2αs‖ζt(s)‖2 ds ≤Ch2r+2. (3.41)

Proof. For the estimate of ‖ζ‖, we apply the duality argument due to Aubin-Nitsche.

Let (v, q) ∈ J1 × L2(Ω)/R be the pair of unique solution of the steady state Stokes

system stated as

−ν∆v +∇q = ζ in Ω, (3.42)
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∇ · v = 0 in Ω, v = 0 on ∂Ω,

satisfying the following regularity:

‖v‖2 + ‖q‖1 ≤ C‖ζ‖. (3.43)

Forming L2 inner product between (3.42) and ζ, and applying the regularity of v and

q, we obtain

‖ζ‖2 =ν
∑
E∈Eh

∫
E

∇v : ∇ζ − ν
∑
E∈Eh

∫
∂E

(∇vnE) · ζ

−
∑
E∈Eh

∫
E

q∇ · ζ +
∑
E∈Eh

∫
∂E

qnE · ζ

=ν
∑
E∈Eh

∫
E

∇ζ : ∇v − ν
∑
e∈Γh

∫
e

{∇v}ne · [ζ] + b(ζ, q).

Using (3.29) with Phv in place of φh, and observing [v] · ne = 0 on each interior edge

and b(v, p− rh(p)) = 0, we find

‖ζ(t)‖2 =ν a(ζ,v −Phv) + κ a(ζt,v −Phv) + b(ζ, q)

− b(Phv − v, p− rh(p))− κ a(ζt,v). (3.44)

For the last term of the above equality, we again form an L2 inner product between

(3.42) and ζt, use integration by parts and the fact that [v] · ne = 0 on each interior

edge to derive the following:

‖ζ(t)‖2 =ν a(ζ,v −Phv) + κ a(ζt,v −Phv) + b(ζ, q)− b(Phv − v, p− rh(p))

+
κ

ν
b(ζt, q)−

κ

ν
(ζ, ζt). (3.45)

First and second terms on the right hand side of (3.45) can be estimated similar to

Lemma 2.3. Then, we apply Lemma 2.2 and (3.43) to arrive at

|ν a(ζ,v −Phv) + κ a(ζt,v −Phv)|

≤ Ch‖v‖2‖ζ‖ε + Chr+1|u|r+1‖v‖2 + Ch‖v‖2‖ζt‖ε + Chr+1|ut|r+1‖v‖2

≤ 1

8
‖ζ‖2 + Ch2(‖ζ‖2

ε + ‖ζt‖2
ε) + Ch2r+2(|u|2r+1 + |ut|2r+1). (3.46)

We can handle the third term on the right-hand side of (3.45) as

b(ζ, q) = b(ζ −Phu + Ssoh u, q) + b(Phζ, q) = b(u−Phu, q) + b(Phζ, q − rh(q))
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= −
∑
E∈Eh

∫
E

q∇ · (u−Phu) +
∑
e∈Γh

∫
e

{q}[u−Phu] · ne + b(Phζ, q − rh(q)). (3.47)

In addition, applying Green’s theorem to the first term on the right hand side of (3.47)

and using the fact that q is continuous, we obtain

b(ζ, q) =
∑
E∈Eh

∫
E

∇q · (u−Phu) + b(Phζ, q − rh(q)).

From the Cauchy-Schwarz and Young’s inequalities, (1.31), (3.43), and Lemmas 1.5

and 2.2, we obtain

|b(ζ, q)| ≤
∣∣∣∣Chr+1|q|1|u|r+1 −

∑
E∈Eh

∫
E

(∇ ·Phζ)(q − rh(q))

+
∑
e∈Γh

∫
e

{q − rh(q)}[Phζ] · ne
∣∣∣∣

≤ Chr+1|u|r+1‖ζ‖+ Ch|q|1‖Phζ‖ε

≤ 1

8
‖ζ‖2 + Ch2(h2r|u|2r+1 + ‖Phζ‖2

ε). (3.48)

Similar to (3.48), and using (1.31), (3.43), Lemmas 1.5 and 2.2, the 5th term on the

right hand side of (3.45) can be bounded as follows:

|b(ζt, q)| ≤
∣∣∣∣Chr+1|q|1|ut|r+1 −

∑
E∈Eh

∫
E

(∇ ·Phζt)(q − rh(q))

+
∑
e∈Γh

∫
e

{q − rh(q)}[Phζt] · ne
∣∣∣∣

≤ 1

8
‖ζ‖2 + Ch2(h2r|ut|2r+1 + ‖Phζt‖2

ε). (3.49)

Apply the Cauchy-Schwarz inequality, Young’s inequality, (1.31), (3.43) and Lemma

2.2 to arrive at

|b(Phv − v, p− rh(p))| ≤ Chr+1|p|r‖v‖2 ≤
1

8
‖ζ‖2 + Ch2r+2|p|2r. (3.50)

A use of (3.46) and (3.48)–(3.50) in (3.45) leads to

1

2
‖ζ(t)‖2 +

κ

2ν

d

dt
‖ζ(t)‖2 ≤Ch2(‖ζ‖2

ε + ‖ζt‖2
ε + ‖Phζ‖2

ε + ‖Phζt‖2
ε)

+ Ch2r+2(|u|2r+1 + |ut|2r+1 + |p|2r). (3.51)

A multiplication of (3.51) by e2αt and an integration of the resulting equation with

respect to time from 0 to t yield

e2αt‖ζ(t)‖2+

(
ν − 2κα

ν

)∫ t

0

e2αs‖ζ(s)‖2ds ≤ Ch2r+2|u0|2r+1
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+ Ch2

∫ t

0

e2αs
(
‖ζ(s)‖2

ε + ‖ζt(s)‖2
ε + ‖Phζ(s)‖2

ε + ‖Phζt(s)‖2
ε

)
ds

+ Ch2r+2

∫ t

0

e2αs(|u(s)|2r+1 + |ut(s)|2r+1 + |p(s)|2r) ds. (3.52)

Multiply (3.52) by e−2αt and use (3.35), (3.36), (3.38), (3.39) with assumption (A2)

to arrive at

‖ζ(t)‖2 + e−2αt

∫ t

0

e2αs‖ζ(s)‖2ds ≤ Ch2r+2. (3.53)

This completes the proof of (3.40) in Lemma 3.3.

Following the similar steps as involved in proving the L2 estimate of ζ in (3.40), we

arrive at the L2 estimate in (3.41) involving ζt. Only difference is in the dual problem,

where the right hand side is changed to ζt. With the resulting L2 estimate of ζt, we

conclude the proof of Lemma 3.3.

Below, in Lemma 3.4, we derive the bounds of ρ.

Lemma 3.4. Under the assumptions of Theorem 3.1, and for t > 0, the following

estimates hold true:

‖ρ(t)‖2 + h2‖ρ(t)‖2
ε + e−2αt

∫ t

0

e2αs
(
‖ρ(s)‖2 + h2‖ρ(s)‖2

ε

)
ds ≤Ch2r+2.

Proof. Subtract (3.29) from (3.27) and write the equation in ρ as

(ρt,φh) + κ a(ρt,φh) + ν a(ρ,φh) = −(ζt,φh), ∀φh ∈ Vh.

Substitute φh = ρ in the above equation and use Lemma 1.6 to obtain

1

2

d

dt

(
‖ρ‖2 + κ a(ρ,ρ)

)
+ νK1‖ρ‖2

ε ≤ −(ζt,ρ). (3.54)

Multiply (3.54) by e2αt, integrate the resulting inequality with respect to time from 0

to t, and use Lemmas 1.6, 1.7, the Cauchy-Schwarz inequality, Young’s inequality and

ρ(0) = 0 to arrive at

e2αt
(
‖ρ‖2 + κK1‖ρ‖2

ε

)
+ (νK1 − 2α(C2 + κK2))

∫ t

0

e2αs‖ρ(s)‖2
εds

≤ C

∫ t

0

e2αs‖ζs(s)‖2 ds. (3.55)
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A multiplication of (3.55) by e−2αt and a use of (3.41) in the resulting inequality yield

‖ρ(t)‖2 + κK1‖ρ(t)‖2
ε + e−2αt

∫ t

0

e2αs‖ρ(s)‖2
εds ≤ Ch2r+2. (3.56)

An application of (1.37), (1.38) and (3.56) leads to

h2‖ρ(t)‖2
ε + e−2αt

∫ t

0

e2αs‖ρ(s)‖2ds ≤ Ch2r+2. (3.57)

A combination of (3.56) and (3.57) concludes the proof of Lemma 3.4.

Since ξ = ζ + (Ssoh u− vh) = ζ + ρ, we now apply Lemmas 3.2, 3.3 and 3.4 along with

the triangle inequality to obtain the following estimates of ξ.

‖ξ(t)‖2 + h2‖ξ(t)‖2
ε + e−2αt

∫ t

0

e2αs‖ξ(s)‖2ds ≤ Ch2r+2, t > 0. (3.58)

The following lemma provides the estimates for Θ = vh − uh.

Lemma 3.5. Under the assumptions of Theorem 3.1, and for t > 0, the following

estimates hold true:

‖Θ(t)‖2 + ‖Θ(t)‖2
ε + e−2αt

∫ t

0

e2αs‖Θ(s)‖2
ε ds ≤ K(t)h2r+2.

Proof. From (3.10) and (3.26), we observe that

(Θt,φh) + κ a(Θt,φh) + ν a(Θ,φh) = −
(
cu(u,u,φh)− cuh(uh,uh,φh)

)
∀φh ∈ Vh.

Substitute φh = Θ and use Lemma 1.6 to arrive at

1

2

d

dt

(
‖Θ‖2 + κ a(Θ,Θ)

)
+ νK1‖Θ‖2

ε ≤ −
(
cu(u,u,Θ)− cuh(uh,uh,Θ)

)
. (3.59)

Since u is continuous, we have the following equality:

cuh(u,u,Θ) = cu(u,u,Θ).

Now, the nonlinear terms can be rewritten in the following way:

cuh(u,u,Θ)− cuh(uh,uh,Θ) = cuh(uh,Θ,Θ) + cuh(Θ,u,Θ)− cuh(ξ, ξ,Θ)

−cuh(Θ, ξ,Θ) + cuh(ξ,u,Θ) + cu(u, ξ,Θ) + luh(u, ξ,Θ)− lu(u, ξ,Θ).

Note that, the first term is non-negative due to (1.19) and is therefore dropped. We

find that

cuh(u,u,Θ)− cuh(uh,uh,Θ) ≥ cuh(Θ,u,Θ)− cuh(ξ, ξ,Θ)− cuh(Θ, ξ,Θ)
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+cuh(ξ,u,Θ) + cu(u, ξ,Θ) + luh(u, ξ,Θ)− lu(u, ξ,Θ). (3.60)

Following an identical approach applied in Lemma 2.11 to bound the nonlinear terms,

one can find the following bound for the terms on the right hand side of (3.60) as

follows

|cuh(Θ,u,Θ)|+ |cuh(ξ, ξ,Θ)|+ |cuh(Θ, ξ,Θ)|+ |cuh(ξ,u,Θ)|

+ |cu(u, ξ,Θ)|+ |luh(u, ξ,Θ)− lu(u, ξ,Θ)|

≤ K1ν

2
‖Θ‖2

ε+C(‖u‖2
2 + h−2‖ξ‖2

ε)‖Θ‖2 + C‖u‖2
2(‖ξ‖2 + h2‖ξ‖2

ε) + C‖ξ‖4
ε. (3.61)

Substitute (3.61) in (3.60), and thereby in (3.59), and multiply the resulting inequality

by e2αt to obtain

1

2

d

dt

(
e2αt(‖Θ‖2 + κ a(Θ,Θ))

)
+

(
νK1

2
− α(C2 + κK2)

)
e2αt‖Θ‖2

ε ≤

C(‖u‖2
2 + h−2‖ξ‖2

ε)e
2αt(‖Θ‖2 + κK1 ‖Θ‖2

ε) + Ce2αt‖u‖2
2(‖ξ‖2 + h2‖ξ‖2

ε) + Ce2αt‖ξ‖4
ε.

Integrate the above equation with respect to time from 0 to t and use the fact that

Θ(0) = 0. Then Lemmas 1.6 and 1.7, Gronwall’s inequality, (3.58) and assumption

(A2) lead to the following estimates of Θ

e2αt(‖Θ(t)‖2 + κK1‖Θ(t)‖2
ε) + νK1

∫ t

0

e2αs‖Θ‖2
ε ds ≤ CeCth2r+2e2αt.

Dividing throughout by e2αt completes the proof.

Proof of velocity error estimate in Theorem 3.1. A use of e = ξ+ Θ, triangle’s

inequality, the estimates in (3.58) and Lemma 3.5 yields the desired result. �

Remark 3.1. Under the following smallness assumption on the data

N = sup
vh,wh,zh∈Vh

czh(wh,vh,wh)

‖wh‖2
ε‖vh‖ε

and
2NC2

K2
1ν

2
‖f‖ < 1, (3.62)

the bounds of Theorem 3.1 are uniform in time, that is,

‖(u− uh)(t)‖+ h‖(u− uh)(t)‖ε ≤ Chr+1,

where the constant C > 0 is independent of h and time t.

To achieve this, we rewrite the nonlinear terms similar to (2.102) of Remark 2.4 as

follows:

cuh(uh,uh,Θ)− cuh(u,u,Θ) = −cuh(uh,Θ,Θ) + cuh(ξ, ξ,Θ)− cu(u, ξ,Θ)
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−cuh(ξ,u,Θ)− cuh(Θ,vh,Θ) + lu(u, ξ,Θ)− luh(u, ξ,Θ).

In this case, we have to find a bound for ‖vh(t)‖ε when t→∞, and have to consider

(3.26) instead of (2.81). Therefore, proceeding in a similar manner as in Remark 2.4,

and employing (1.14), (3.58), (3.13), (3.62), Lemmas 1.6 and 1.7, L’Hôpital’s rule and

assumption (A2), we find

lim sup
t→∞

‖Θ(t)‖ε ≤ Chr+1,

lim sup
t→∞

‖Θ(t)‖ ≤ Chr+1.

Combining the above estimates and (3.58), we find that

lim sup
t→∞

(
‖u(t)− uh(t)‖+ h‖u(t)− uh(t)‖ε) ≤ Chr+1.

We would like to point out here that, the smallness condition (3.62) for the Kelvin-

Voigt model can be compared to similar smallness assumption for Navier-Stokes equa-

tions (see [86, Remark 3.2]) and for Oldroyd model (see [83, Remark 1.1 and Theorem

1.1]). This is a restriction amounting to small solutions, needed to establish uniform

in time error estimates. That is, under the smallness condition on data, the derived

error estimates hold for all time.

3.4 DG Error Estimates for Pressure

This section presents the derivation of semi-discrete pressure error estimates. We begin

by proving a lemma which is crucial for establishing these error estimates.

Lemma 3.6. Let the assumption (A2) be satisfied and let 0 < α < νK1

2(C2+κK2)
. Then,

the error e = u− uh in approximating the velocity satisfies for t > 0

‖et(t)‖+ κ ‖et(t)‖ε ≤ K(t)hr.

Proof. Subtract (3.10) from (3.4) to write the equation in error e = u− uh as

(et,φh) + κ a(et,φh) + ν a(e,φh) + b(φh, p) =cuh(uh,uh,φh)− cu(u,u,φh), (3.63)

for all φh ∈ Vh. Choose φh = Phet = et − (ut − Phut) in (3.63) and use Lemma 1.6

to observe that

‖et‖2 + κK1‖Phet‖2
ε ≤ (et,ut − Phut) + κ a(Phut − ut,Phet)− ν a(e,Phet)
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+cuh(uh,uh,Phet)− cu(u,u,Phet)− b(Phet, p). (3.64)

Since u has no jumps, we rewrite the nonlinear terms of (3.64) as

cuh(u,u,Phet)− cuh(uh,uh,Phet) =− cuh(e, e,Phet) + cuh(e,u,Phet)

+ cuh(u, e,Phet). (3.65)

The nonlinear terms on the right hand side of (3.65) can be bounded by applying

(2.56), Theorem 3.1, Young’s inequality and assumption (A2) as

|cuh(e, e,Phet)| ≤ C‖e‖ε‖e‖ε‖Phet‖ε ≤
κK1

12
‖Phet‖2

ε + C‖e‖2
ε, (3.66)

|cuh(e,u,Phet)| ≤ C‖e‖ε|u|1‖Phet‖ε ≤
κK1

12
‖Phet‖2

ε + C‖e‖2
ε, (3.67)

|cuh(u, e,Phet)| ≤ C|u|1‖e‖ε‖Phet‖ε ≤
κK1

12
‖Phet‖2

ε + C‖e‖2
ε. (3.68)

Using (3.66)-(3.68) in (3.65), we arrive at

|cuh(uh,uh,Phet)− cuh(u,u,Phet)| ≤
κK1

4
‖Phet‖2

ε + C‖e‖2
ε. (3.69)

Applying the Cauchy-Schwarz and Young’s inequalities, definition of space Vh, (1.31)

and Lemmas 2.2, 2.3 and 2.4, we bound the second, third and sixth terms on the right

hand side of (3.64) as

κ |a(Phut − ut,Phet)| ≤
K1κ

12
‖Phet‖2

ε + Ch2r|ut|2r+1, (3.70)

ν |a(e,Phet)| ≤
K1κ

12
‖Phet‖2

ε + C‖e‖2
ε + Ch2r|u|2r+1, (3.71)

|b(Phet, p))| = |b(Phet, p− rh(p)))| ≤
K1κ

12
‖Phet‖2

ε + Ch2r|p|2r. (3.72)

An application of the bounds from (3.69)-(3.72) in (3.64) leads to

1

2

(
‖et‖2 +K1 κ ‖Phet‖2

ε

)
≤C‖ut −Phut‖2

+ Ch2r(|ut|2r+1 + |u|2r+1 + |p|2r) + C‖e‖2
ε. (3.73)

Finally, a use of triangle inequality, (3.73), Lemma 2.2, Theorem 3.1, and assumption

(A2) yield

‖et‖2 +K1 κ ‖et‖2
ε ≤ Ch2reCT .

This completes the rest of the proof.
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Proof of pressure error estimate in Theorem 3.1: A use of (3.4), (3.5), (3.7)

and (3.8) leads to the following error equation for all vh ∈ Xh as

−b(vh, ph − rh(p)) = (uht − ut,vh) + κ a(uht − ut,vh) + ν a(uh − u,vh)

+cuh(uh,uh,vh)− cu(u,u,vh)− b(vh, p− rh(p)). (3.74)

Using the inf-sup condition stated in Lemma 1.8, there is vh ∈ Xh such that

b(vh, ph − rh(p)) = −‖ph − rh(p)‖2, ‖vh‖ε ≤
1

β∗
‖ph − rh(p)‖. (3.75)

A combination of (3.74) and (3.75) leads to

‖ph − rh(p)‖2 =(uht − ut,vh) + κ a(uht − ut,vh) + ν a(uh − u,vh)

+ cuh(uh,uh,vh)− cu(u,u,vh)− b(vh, p− rh(p)). (3.76)

Now, following the analysis used in Lemmas 3.5 and 3.6, we bound terms on the right

hand side of (3.76) as

‖ph − rh(p)‖2 ≤C
(
‖uht − ut‖2 + ‖uht − ut‖2

ε + ‖uh − u‖2
ε + ‖uh − u‖2

+ h2r(|u|2r+1 + |p|2r + |ut|2r+1)
)
.

Using the triangle inequality and (1.31), we arrive at

‖p− ph‖2 ≤C
(
‖uht − ut‖2 + ‖uht − ut‖2

ε + ‖uh − u‖2
ε + ‖uh − u‖2

+ h2r(|u|2r+1 + |p|2r + |ut|2r+1)
)
. (3.77)

An application of Lemma 3.6, Theorem 3.1 and assumption (A2) in (3.77) leads to

the desired pressure error estimate. This completes the proof. �

3.5 Fully Discrete Scheme and Error Estimates

For discretization in time variable of the semi-discrete DG Kelvin-Voigt system repre-

sented by (3.7)-(3.9), we employ the backward Euler scheme in this section. Now, the

backward Euler approximations for (3.7)-(3.9) is defined as follows: Given U0, seek

(Un, P n)n≥1 ∈ Xh ×Mh, such that

(∂tU
n,vh) + κ a(∂tU

n,vh) + ν a(Un,vh)
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+ cU
n−1

(Un−1,Un,vh) + b(vh, P
n) = (fn,vh), ∀vh ∈ Xh, (3.78)

b(Un, qh) = 0, ∀qh ∈Mh, (3.79)

where U0 = uh(0) = Phu0.

An equivalent formulation of (3.78)-(3.79) is defined as follows: For each vh ∈ Vh, we

find {Un}n≥1 ∈ Vh, such that,

(∂tU
n,vh) + κ a(∂tU

n,vh) + ν a(Un,vh) + cU
n−1

(Un−1,Un,vh) = (fn,vh), (3.80)

where U0 = uh(0) = Phu0.

Next in Lemma 3.7, we present a priori estimates of backward Euler solution Un of

(3.80).

Lemma 3.7. Let the assumption (A2) be satisfied and let 0 < α < νK1

2(C2+κK2)
. Further,

let U0 = Phu0. Then, there exists a positive constant C, such that the discrete solution

{Un}n≥1 of (3.80) satisfies

‖Un‖2 + ‖Un‖2
ε + e−2αtM∆t

M∑
n=1

e2αtn‖Un‖2
ε ≤ C, n = 0, 1, ...,M,

Proof. Substitute vh = Un in (3.80). Using

(∂tU
n,Un) =

1

∆t
(Un −Un−1,Un) ≥ 1

2∆t
(‖Un‖2 − ‖Un−1‖2) =

1

2
∂t‖Un‖2, (3.81)

a(∂tU
n,Un) =

1

2

(
1

∆t
a(Un,Un)− 1

∆t
a(Un−1,Un−1) + ∆ta(∂tU

n, ∂tU
n)

)
≥ 1

2
∂ta(Un,Un), (3.82)

(1.19) and Lemma 1.6 in the resulting equation and then the Cauchy-Schwarz inequal-

ity, we arrive at

∂t‖Un‖2 + κ ∂t (a(Un,Un)) + 2νK1‖Un‖2
ε ≤ 2‖fn‖‖Un‖. (3.83)

Note that,

m∑
n=1

∆te2αtn∂t‖Un‖2 =e2αtm‖Um‖2 −
m−1∑
n=1

e2αtn(e2α∆t − 1)‖Un‖2

− e2α∆t‖U0‖2. (3.84)

Multiply (3.83) by ∆te2αtn , sum over n = 1 to M , and use (1.14), (3.84), Lemmas 1.6

and 1.7 to obtain

e2αtM‖UM‖2 +K1κ e
2αtM‖UM‖2

ε
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+

(
νK1 − (C2 + κK2)

(e2α∆t − 1)

∆t

)
∆t

M∑
n=1

e2αtn‖Un‖2
ε

≤ e2α∆t‖U0‖2 + κK2e
2α∆t‖U0‖2

ε +
2C2

2

νK1

∆t
M∑
n=1

e2αtn‖f‖2. (3.85)

With α as 0 < α < νK1

2(C2+κK2)
we have

1 +
νK1∆t

C2 + κK2

≥ e2α∆t.

On multiplying (3.85) by e−2αtM and applying assumption (A2), we establish our

desired estimates.

Using (1.19), and Lemmas 1.6, 1.8 and 3.7, the existence and uniqueness of the discrete

solutions to the discrete problem (3.78)-(3.79) (or (3.80)) can be achieved following

similar steps as in [72]. Below, we focus on the derivation of error estimates for the

backward Euler method.

We denote en = Un − uh(tn) = Un − unh, n ∈ N, 1 < n ≤ M . Now, consider the

semidiscrete formulation (3.10) at t = tn and subtract it from (3.80) to arrive at

(∂ten,φh) + κ a(∂ten,φh) + ν a(en,φh) = (unht,φh)− (∂tu
n
h,φh)

+ κ a(unht,φh)− κ a(∂tu
n
h,φh) + Λh(φh), (3.86)

where Λh(φh) = Λ1
h(φh) + Λ2

h(φh) with

Λ1
h(φh) = cU

n−1
(unh,u

n
h,φh)− cU

n−1
(Un−1,Un,φh),

Λ2
h(φh) = lu

n
h(unh,u

n
h,φh)− lU

n−1
(unh,u

n
h,φh).

}
(3.87)

Lemma 3.8. Under the hypotheses of Lemma 3.7 and Theorem 3.1, there exists a

positive constant KT > 0, independent of h and ∆t, such that, the following estimates

hold true:

(‖en‖+ ‖en‖ε) +

(
e−2αtM∆t

M∑
n=1

e2αtn‖en‖2
ε

)1/2

≤ KT ∆t,

where KT depends on T .

Proof. Choose φh = en in (3.86), and use (3.81), (3.82) and Lemma 1.6 to arrive at

∂t
(
‖en‖2 + κ a(en, en)

)
+ 2K1ν‖en‖2

ε ≤ 2(unht, en)− 2(∂tu
n
h, en)

+2κ a(unht, en)− 2κ a(∂tu
n
h, en) + 2Λh(en), (3.88)
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where Λh(en) = Λ1
h(en) + Λ2

h(en). Utilizing an identical technique applied in Lemma

2.17 to bound the terms Λ1
h(en) and Λ2

h(en), one can obtain

|Λ1
h(en)| ≤ K1ν

8
‖en‖2

ε + C‖en−1‖2 + C∆t

∫ tn

tn−1

‖uhs(s)‖2
ε ds, (3.89)

|Λ2
h(en)| ≤ K1ν

16
‖en‖2

ε +
K1ν

16
‖en−1‖2

ε + C‖unh‖4
ε‖en−1‖2

+ C∆t‖unh‖2
ε

∫ tn

tn−1

‖uhs(s)‖2
ε ds. (3.90)

From (2.138), and utilizing the Cauchy-Schwarz, Young’s inequalities and (1.14), we

obtain

2(unht, en)− 2(∂tu
n
h, en) ≤ C∆t1/2

(∫ tn

tn−1

‖uhtt(t)‖2 dt

)1/2

‖en‖ε

≤ K1ν

4
‖en‖2

ε + C∆t

∫ tn

tn−1

‖uhtt(t)‖2 dt. (3.91)

Similarly, following the steps involved in bounding (3.91) and using Lemma 1.7, we

arrive at

2κ (a(unht, en)− a(∂tu
n
h, en)) ≤ C∆t1/2

(∫ tn

tn−1

‖uhtt(t)‖2
ε dt

)1/2

‖en‖ε

≤ K1ν

4
‖en‖2

ε + C∆t

∫ tn

tn−1

‖uhtt(t)‖2
ε dt. (3.92)

Apply (3.89)-(3.92) in (3.88), multiply the resulting inequality by ∆te2αtn and sum

over n = 1 to m (≤M), where T = M∆t. Then, using

m∑
n=1

∆te2αtn∂t‖en‖2 = e2αtm‖em‖2 −
m−1∑
n=1

e2αtn(e2α∆t − 1)‖en‖2,

m∑
n=1

∆te2αtn∂ta(en, en) = e2αtma(em, em)−
m−1∑
n=1

e2αtn(e2α∆t − 1)a(en, en),

Lemmas 1.6 and 1.7, we arrive at

e2αtm(‖em‖2 +K1κ ‖em‖2
ε) +K1ν∆t

m∑
n=1

e2αtn‖en‖2
ε

≤
m−1∑
n=1

e2αtn(e2α∆t − 1)(‖en‖2 +K2κ‖en‖2
ε)

+ C∆t
m∑
n=1

e2αtn(1 + ‖unh‖4
ε)‖en−1‖2

+ C∆t2
m∑
n=1

e2αtn(1 + ‖unh‖2
ε)

∫ tn

tn−1

‖uht(t)‖2
ε dt
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+ C∆t2
m∑
n=1

e2αtn

∫ tn

tn−1

(‖uhtt(t)‖2 + ‖uhtt(t)‖2
ε) dt. (3.93)

Now the desired result is achieved by applying estimates (3.11) and (3.12), the fact

e2α∆t − 1 ≤ C∆t, and discrete Gronwall’s lemma in (3.93).

Theorem 3.2. Under the assumptions of Theorem 3.1 and Lemma 3.8, the following

estimates hold true:

‖u(tn)−Un‖ ≤ KT (hr+1 + ∆t),

‖u(tn)−Un‖ε ≤ KT (hr + ∆t).

Proof. A combination of Theorem 3.1 and Lemma 3.8 leads to the desired result.

Lemma 3.9. Under the hypotheses of Theorem 3.1 and Lemma 3.8, the error en =

Un − unh, satisfies

‖∂ten‖+ ‖∂ten‖ε ≤ KT∆t.

Proof. Rewrite the non-linear terms in (3.86) as

Λh(φh) = Λ1
h(φh) + Λ2

h(φh) =− cUn−1

(un−1
h , en,φh) + cU

n−1

(unh − un−1
h ,unh,φh)

− cUn−1

(en−1,U
n,φh) + Λ2

h(φh). (3.94)

A use of (2.55) yield

|cUn−1

(un−1
h , en,φh) + cU

n−1

(unh − un−1
h ,unh,φh) + cU

n−1

(en−1,U
n,φh)| (3.95)

≤ C‖un−1
h ‖ε‖en‖ε‖φh‖ε + C‖unh − un−1

h ‖ε‖unh‖ε‖φh‖ε + C‖en−1‖ε‖Un‖ε‖φh‖ε.

Further, using (1.14), (2.60) and triangle inequality, we arrive at

|Λ2
h(φh)| ≤ C

(
‖unh − un−1

h ‖ε + ‖en−1‖ε
)
‖unh‖ε‖φh‖ε. (3.96)

A combination of (3.95)-(3.96) in (3.94) yields

|Λh(φh)| ≤C
(
‖un−1

h ‖ε‖en‖ε + ‖unh − un−1
h ‖ε‖unh‖ε + ‖en−1‖ε‖Un‖ε

+ ‖unh − un−1
h ‖ε‖unh‖ε + ‖en−1‖ε‖unh‖ε

)
‖φh‖ε. (3.97)

A use of Lemma 1.7 leads to

|a(en,φh)| ≤ K2‖en‖ε‖φh‖ε. (3.98)
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Apply (1.14), (2.138) and the Cauchy-Schwarz inequality to arrive at

(unht,φh)− (∂tu
n
h,φh) ≤ C∆t1/2

(∫ tn

tn−1

‖uhtt(s)‖2 ds

)1/2

‖φh‖ε

≤ C

(
sup

0<t<∞
‖uhtt(t)‖2

)(∫ tn

tn−1

1ds

)1/2

∆t1/2‖φh‖ε. (3.99)

Following the similar analysis as in (3.99), we obtain

κ (a(unht,φh)− a(∂tu
n
h,φh))

≤ C

(
sup

0<t<∞
‖uhtt(t)‖2

ε

)(∫ tn

tn−1

1ds

)1/2

∆t1/2‖φh‖ε. (3.100)

Substitute φh = ∂ten in (3.86) and use (3.97)–(3.100) with φh replaced by ∂ten. Then,

apply Young’s inequality, and estimates from (3.11), (3.12) and Lemmas 1.6, 3.7, 3.8

to arrive at the desired result. This completes the rest of the proof.

Lemma 3.10. Under the hypotheses of Theorem 3.1 and Lemma 3.8, for n = 1, 2, · · · ,

M , the following holds true

‖P n − pnh‖ ≤ KT∆t.

Proof. Subtract (3.7) from (3.78) to arrive at

b(φh, P
n − pnh) =(unht,φh)− (∂tu

n
h,φh) + κ a(unht,φh)− κ a(∂tu

n
h,φh)

− (∂ten,φh)− κ a(∂ten,φh)− ν a(en,φh) + Λh(φh),

for all φh ∈ Xh. Performing the steps required to prove Lemma 3.9 and applying

Lemma 1.8, we obtain

‖P n − pnh‖ ≤ C(‖∂ten‖+ ‖∂ten‖ε + ‖en‖ε + ∆t).

Finally, an application of the Lemmas 3.8 and 3.9 concludes the proof.

The following error estimate on the pressure is easily derived from Lemma 3.10 and

Theorem 3.1.

Theorem 3.3. Under the assumptions of Theorem 3.1 and Lemma 3.10, the following

hold true:

‖p(tn)− P n‖ ≤ KT (hr + ∆t).

Remark 3.2. Similar to Remark 2.5, the optimal order convergence rates derived in

this chapter can be extended to the 3D case.
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3.6 Numerical Experiments

In this section, we present numerical examples to verify the theoretical results stated

in the Theorems 3.2 and 3.3. We have used the mixed finite element spaces Pr −

Pr−1, r = 1, 2 for the space discretization and a backward Euler method for the time

discretization. The domain Ω = [0, 1]× [0, 1] is chosen here. We have considered here

four examples where the first three examples are computed in time interval [0, 1] and

the fourth one in time interval [0, 75]. In all the cases, time step is ∆t = O(hr+1).

Example 3.1. In our first example, the right hand side function f is chosen in such

a way that the exact solution (u, p) = ((u1, u2), p) is

u1 = 2x2(x− 1)2y(y − 1)(2y − 1) cos(t) p = 2(x− y) cos(t),

u2 = −2x(x− 1)(2x− 1)y2(y − 1)2 cos(t).

In Tables 3.1 and 3.2, we present the errors and convergence rates of the approx-

imate velocity and pressure obtained by using the discontinuous mixed finite element

spaces P1 − P0 and P2 − P1, respectively, with the retardation time κ = 10−2 and

kinematic viscosity ν = 1. The penalty parameter is chosen as σe = 10 for r = 1 and

σe = 20 for r = 2. The numerical results in Tables 3.1 and 3.2 support the theoretical

derivations in Theorems 3.2 and 3.3.

Table 3.1: Errors and rates of convergence of velocity and pressure using discontinuous

P1–P0 element for Example 3.1.

h ‖u(T )−UM‖ε Rate ‖u(T )−UM‖ Rate ‖p(T )− PM‖ Rate

1/4 3.3927×10−2 2.4193×10−3 1.0667×10−2

1/8 1.4413×10−2 1.2350 5.3378×10−4 2.1802 7.0680×10−3 0.5937

1/16 6.1566×10−3 1.2271 1.2089×10−4 2.1424 4.1982×10−3 0.7515

1/32 2.7335×10−3 1.1713 2.8341×10−5 2.0928 2.3113×10−3 0.8610

1/64 1.2676×10−3 1.1086 6.8138×10−6 2.0563 1.2137×10−3 0.9292
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Table 3.2: Errors and rates of convergence of velocity and pressure DG approximations

using P2–P1 element for Example 3.1.

h ‖u(T )−UM‖ε Rate ‖u(T )−UM‖ Rate ‖p(T )− PM‖ Rate

1/4 3.1902×10−3 1.4918×10−4 1.4342×10−3

1/8 7.4906×10−4 2.0904 1.9706×10−5 2.9203 4.1075×10−4 1.8040

1/16 1.7576×10−4 2.0914 2.4316×10−6 3.0186 1.1433×10−4 1.8450

1/32 4.2589×10−5 2.0450 2.9815×10−7 3.0278 3.0616×10−5 1.9008

Example 3.2. In this example, we take the force term f resulting in the following

solutions

u1 = 2π sin2(πx) sin(πy) cos(πy) cos(t) p = 10 cos(πx) cos(πy) cos(t),

u2 = −2π sin(πx) cos(πx) sin2(πy) cos(t).

In Tables 3.3-3.10, we have shown the errors and rates of convergence for velocity and

pressure approximations based on discontinuous P1 − P0 mixed finite element space

for different values of κ and ν, respectively. The Tables 3.3-3.6 depict the numerical

results for different values of κ = {1, 10−3, 10−6, 10−9} with the choice of ν = 1 and

σe = 10. The numerical convergence rates in the tables validate the theoretical findings

obtained in Theorems 3.2 and 3.3. Moreover, it can be inferred that the numerical

results still hold for small values of κ. The Tables 3.7-3.10 represent the errors and

convergence rates for different values of ν = {1, 1/100, 1/1000, 1/10000} with κ = 1

and the corresponding penalty parameters are chosen as σe = {10, 20, 50, 200}. The

numerical outcomes depicted in the tables verify the derived theoretical results. We

can therefore conclude that the scheme is robust with repsect to the retardation time

and the viscosity. Further, we have presented CPU times for obtaining the results of

Tables 3.7-3.10 in Table 3.11. The table shows that for the proposed DG scheme, the

CPU time increases as we go for smaller ν, from ν = 1 to 1/10000. This is because

as we go for smaller and smaller values of ν, more iterative steps are needed for the

nonlinear solver to achieve the desired accuracy, resulting in increased CPU time.
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Table 3.3: Errors and rates of convergence of velocity and pressure using P1–P0 dis-

continuous finite element for Example 3.2 with κ = 1.

h ‖u(T )−UM‖ε Rate ‖u(T )−UM‖ Rate ‖p(T )− PM‖ Rate

1/4 1.5402×100 9.4053×10−2 7.9248×10−1

1/8 8.3518×10−1 0.8830 3.6571×10−2 1.3627 4.6779×10−1 0.7605

1/16 4.0990×10−1 1.0268 1.1250×10−2 1.7007 3.0020×10−1 0.6399

1/32 1.9845×10−1 1.0464 3.0411×10−3 1.8872 1.7352×10−1 0.7907

1/64 9.7912×10−2 1.0192 7.8060×10−4 1.9619 9.1903×10−2 0.9169

Table 3.4: Errors and rates of convergence of velocity and pressure using P1–P0 dis-

continuous finite element for Example 3.2 with κ = 10−3.

h ‖u(T )−UM‖ε Rate ‖u(T )−UM‖ Rate ‖p(T )− PM‖ Rate

1/4 2.8738×100 1.9019×10−1 1.1188×100

1/8 1.5151×100 0.9235 7.2358×10−2 1.3942 7.6840×10−1 0.5420

1/16 7.1620×10−1 1.0810 2.2403×10−2 1.6914 5.2929×10−1 0.5377

1/32 3.4390×10−1 1.0583 6.0853×10−3 1.8803 3.1001×10−1 0.7717

1/64 1.6943×10−1 1.0212 1.5656×10−3 1.9585 1.6448×10−1 0.9143

Table 3.5: Errors and rates of convergence of velocity and pressure using P1–P0 dis-

continuous finite element for Example 3.2 with κ = 10−6.

h ‖u(T )−UM‖ε Rate ‖u(T )−UM‖ Rate ‖p(T )− PM‖ Rate

1/4 2.8733×100 1.9012×10−1 1.1201×100

1/8 1.5150×100 0.9234 7.2334×10−2 1.3942 7.6949×10−1 0.5416

1/16 7.1618×10−1 1.0809 2.2397×10−2 1.6913 5.3010×10−1 0.5376

1/32 3.4389×10−1 1.0583 6.0837×10−3 1.8802 3.1049×10−1 0.7716

1/64 1.6943×10−1 1.0212 1.5652×10−3 1.9585 1.6474×10−1 0.9143
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Table 3.6: Errors and rates of convergence of velocity and pressure using P1–P0 dis-

continuous finite element for Example 3.2 with κ = 10−9.

h ‖u(T )−UM‖ε Rate ‖u(T )−UM‖ Rate ‖p(T )− PM‖ Rate

1/4 2.8733×100 1.9012×10−1 1.1201×100

1/8 1.5150×100 0.9234 7.2334×10−2 1.3942 7.6949×10−1 0.5416

1/16 7.1618×10−1 1.0809 2.2397×10−2 1.6913 5.3010×10−1 0.5376

1/32 3.4389×10−1 1.0583 6.0837×10−3 1.8802 3.1050×10−1 0.7716

1/64 1.6943×10−1 1.0212 1.5652×10−3 1.9585 1.6474×10−1 0.9143

Table 3.7: Errors and rates of convergence of velocity and pressure using P1–P0 dis-

continuous finite element for Example 3.2 with ν = 1.

h ‖u(T )−UM‖ε Rate ‖u(T )−UM‖ Rate ‖p(T )− PM‖ Rate

1/4 1.5402×100 9.4053×10−2 7.9248×10−1

1/8 8.3518×10−1 0.8830 3.6571×10−2 1.3627 4.6779×10−1 0.7605

1/16 4.0990×10−1 1.0268 1.1250×10−2 1.7007 3.0020×10−1 0.6399

1/32 1.9845×10−1 1.0464 3.0411×10−3 1.8872 1.7352×10−1 0.7907

1/64 9.7912×10−2 1.0192 7.8060×10−4 1.9619 9.1903×10−2 0.9169

Table 3.8: Errors and rates of convergence of velocity and pressure using P1–P0 dis-

continuous finite element for Example 3.2 with ν = 1/100.

h ‖u(T )−UM‖ε Rate ‖u(T )−UM‖ Rate ‖p(T )− PM‖ Rate

1/4 2.1245×100 1.7552×10−1 2.7807×100

1/8 1.1761×100 0.8531 6.9141×10−2 1.3440 2.5762×100 0.1102

1/16 5.8002×10−1 1.0198 2.3090×10−2 1.5822 1.9189×100 0.4249

1/32 2.8034×10−1 1.0488 6.5192×10−3 1.8245 1.1279×100 0.7666

1/64 1.3849×10−1 1.0173 1.6976×10−3 1.9411 5.9625×10−1 0.9196
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Table 3.9: Errors and rates of convergence of velocity and pressure using P1–P0 dis-

continuous finite element for Example 3.2 with ν = 1/1000.

h ‖u(T )−UM‖ε Rate ‖u(T )−UM‖ Rate ‖p(T )− PM‖ Rate

1/4 3.0968×100 3.1054×10−1 9.3942×100

1/8 2.0223×100 0.6147 2.0393×10−1 0.6067 11.5269×100 -0.2951

1/16 9.9427×10−1 1.0243 9.2334×10−2 1.1431 9.7804×100 0.2370

1/32 3.9501×10−1 1.3317 3.0098×10−2 1.6171 6.1873×100 0.6605

1/64 1.6088×10−1 1.2958 8.2414×10−3 1.8687 3.3562×100 0.8824

Table 3.10: Errors and rates of convergence of velocity and pressure using P1–P0

discontinuous finite element for Example 3.2 with ν = 1/10000.

h ‖u(T )−UM‖ε Rate ‖u(T )−UM‖ Rate ‖p(T )− PM‖ Rate

1/4 3.9021×100 4.2416×10−1 13.8802×100

1/8 2.7820×100 0.4881 3.1569×10−1 0.4260 19.0729×100 -0.4585

1/16 1.4817×100 0.9088 1.6018×10−1 0.9787 17.6551×100 0.1114

1/32 5.8599×10−1 1.3383 5.7335×10−2 1.4822 11.9890×100 0.5583

1/64 2.0647×10−1 1.5049 1.6400×10−2 1.8056 6.7234×100 0.8344

Table 3.11: CPU time (s) for Example 3.2 with ν = {1, 1/100, 1/1000, 1/10000}.

h ν = 1 ν = 1/100 ν = 1/1000 ν = 1/10000

1/4 0.72 0.88 2.35 3.75

1/8 8.18 10.29 16.35 20.62

1/16 86.47 130.39 151.15 191.50

1/32 925.98 978.47 1285.22 1457.76

1/64 16250.16 18240.89 18673.18 19685.24

Example 3.3 (Taylor-Green vortex). Another widely used test case for the verification

of numerical methods is the Taylor-Green vortex problem. The analytical unsteady

solution is (u, p) = ((u1, u2), p), where

u1 =− cos(2πx) sin(2πy)e
−8π2νt

1+8π2κ , p = −1

4
(cos(4πx) + cos(4πy))e

−16π2νt

1+8π2κ ,
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u2 = sin(2πx) cos(2πy)e
−8π2νt

1+8π2κ .

The initial condition is obtained from the above exact solution.

Here, the contours of exact velocity components and pressure magnitudes are presented

in Figure 3.1 and the contours of P1 − P0 DG approximate velocity components and

pressure magnitudes are shown in Figure 3.2 with κ = 10−2, ν = 1/100, σe = 20 and

final time T = 1.0. A plot comparison of contours between the exact and DG approx-

imate solutions validates the theoretical findings. Further, the numerical convergence

results are shown in Tables 3.12, 3.13 and 3.14 for the cases ν = 1/100, 1/1000 and

1/10000, respectively. Note that, for the cases ν = 1/1000 and 1/10000, σe = 50 and

200, respectively. We observe from the results in tables that the optimal convergence

rates are achieved for this benchmark test problem verifying the theoretical results in

Theorems 3.2 and 3.3.
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Figure 3.1: Velocity components and pressure plots for exact solution of Example 3.3.
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Figure 3.2: Velocity components and pressure plots of Example 3.3 for DG method

with P1 − P0 element.

Table 3.12: Errors and rates of convergence of velocity and pressure DG approxima-

tions using P1–P0 element for Example 3.3 with ν = 1/100.

h ‖u(T )−UM‖ε Rate ‖u(T )−UM‖ Rate ‖p(T )− PM‖ Rate

1/4 1.95622 1.8842× 10−1 5.1839× 10−1

1/8 1.10616 0.8225 6.7070× 10−2 1.4902 3.6098× 10−1 0.5220

1/16 0.54554 1.0198 1.8027× 10−2 1.8954 2.0458× 10−1 0.8192

1/32 0.26317 1.0516 4.4449× 10−3 2.0199 9.6212× 10−2 1.0884

1/64 0.12927 1.0255 1.0842× 10−3 2.0354 4.4230× 10−2 1.1211
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Table 3.13: Errors and rates of convergence of velocity and pressure DG approxima-

tions using P1–P0 element for Example 3.3 with ν = 1/1000.

h ‖u(T )−UM‖ε Rate ‖u(T )−UM‖ Rate ‖p(T )− PM‖ Rate

1/4 4.05548 4.3236× 10−1 1.0029× 100

1/8 2.16577 0.9049 1.9918× 10−1 1.1181 6.5306× 10−1 0.6190

1/16 0.93863 1.2062 6.5539× 10−2 1.6037 3.7808× 10−1 0.7885

1/32 0.39069 1.2645 1.8138× 10−2 1.8532 1.7453× 10−1 1.1152

1/64 0.17551 1.1544 4.6031× 10−3 1.9783 7.8598× 10−2 1.1509

Table 3.14: Errors and rates of convergence of velocity and pressure DG approxima-

tions using P1–P0 element for Example 3.3 with ν = 1/10000.

h ‖u(T )−UM‖ε Rate ‖u(T )−UM‖ Rate ‖p(T )− PM‖ Rate

1/4 5.98427 9.7215× 10−1 2.5750× 100

1/8 3.23232 0.8886 4.6190× 10−1 1.0735 1.5929× 100 0.6929

1/16 1.42203 1.1846 1.5501× 10−1 1.5751 8.2872× 10−1 0.9426

1/32 0.61274 1.2145 4.3481× 10−2 1.8339 3.5883× 10−1 1.2075

1/64 0.28118 1.1237 1.1169× 10−2 1.9608 1.6003× 10−1 1.1649

Example 3.4 (Benchmark Problem). This example considers the lid-driven cavity

flow on a two-dimensional unit square [0, 1]× [0, 1]. No forces are acting on the body.

The lid of the cavity is moving in the horizontal direction with a non-zero velocity

(u1, u2) = (1, 0). The no-slip boundary conditions are applied to other parts of the

cavity boundaries.

For the space discretization, we employ P1−P0 mixed finite element space and for the

time discretization backward Euler method. We choose the lines (0.5, y) and (x, 0.5)

for numerical simulations. Figures 3.3a and 3.3b plot the fully discrete backward

Euler and steady-state velocity approximations of (3.1)-(3.3), whereas Figures 3.3c

and 3.3d represent the graphs of unsteady and steady states pressure approximations

for viscosities ν = {1/100, 1/300, 1/600}, retardation times κ = 0.1 × ν, final time

T = 75, mesh size h = 1/32, time step ∆t = O(h2) and penalty parameter σe = 40.

The graphs depict that the time-dependent Kelvin-Voigt solution converges to its
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steady-state solutions for a considerable large time.
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Figure 3.3: Velocity components and pressure for lid driven cavity flow.

3.7 Conclusion

In this chapter, we have applied the SIPG method to the Kelvin-Voigt equations of

motion represented by (3.1)-(3.3), which is the first work in this direction. We have de-

fined the semi-discrete DG formulation to (3.1)-(3.3) and have derived a priori bounds

to the velocity approximation. In order to establish error estimates, we have intro-

duced a modified Sobolev-Stokes projection Ssoh on appropriate DG spaces and proved

the approximation properties. Then, by using duality arguments along with the ap-

proximation properties of Ph and Ssoh , we have obtained optimal error estimates for

the velocity in L∞(L2) and pressure in L∞(L2)-norms. Moreover, under the small-

ness assumption on the data, we have shown that the semi-discrete error estimates

are uniform in time. Furthermore, we have employed a backward Euler method for

full discretization and have achieved optimal convergence rates for the approximate

solution. Finally, we have conducted the numerical experiments and have shown that
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the outcomes verify the theoretical results. Also from our numerical results we have

observed that the scheme works well even for small values of ν and κ.
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