Chapter 4

DG Method for the Oldroyd Model
of Order One

In this chapter, we analyze a DG finite element method for the equations of motion that
arise in the Oldroyd model of order one. We investigate the existence and uniqueness
of semi-discrete discontinuous solutions, as well as the consistency of the scheme. We
derive new a priori and regularity results for the semi-discrete solution. We next apply
the backward Euler method for time discretization and derive a prior: estimates for the
fully discrete solution. Optimal error estimates in L*>°-norm in time, and energy and
L%-norms in space for the velocity, and L?(L?) and L*(L?)-norms for the pressure are
established for the fully discrete case. At the end, we conduct numerical experiments
to support our theoretical results, and analyze the findings. Part of this work has been

published in [143].

4.1 Introduction

For the sake of continuity, we first recall the time-dependent Oldroyd flow of order

one, which is described by the following nonlinear integro-differential equations

t
‘?)_‘;_ Au+u.vu—/5(t—T>Au(x,T>dT+Vp:f(a:,t>, TEQ t>0 (41)
0

along with the continuity equation
V-u=0, z€Q, t>0, (4.2)
and the initial-boundary conditions

u(z,0) =up, inQ, u=0, ond, t>0, (4.3)
115
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Here p = 2xkA71, kernel 5(t) = yexp (—dt) and v = 2A7 (v — kA™!) > 0 with A > 0
and ~ > 0 are the relaxation and retardation time, respectively, d = A~! and, v > 0 is
the kinetic coefficient of viscosity.

We study here, a DG method for the Oldroyd model of order one, which is the
first attempt in this direction to the best of authors’ knowledge. The goal of this
chapter is to formulate a DG scheme for the problem (4.1)-(4.3) and analyze it. For
our DG scheme, we choose to discretize the equations (4.1)-(4.3) by mass conservative
IP DG methods. The SIPG, NIPG and ITPG methods are considered for the space
discretization. We first present the DG weak formulation of the model on the spaces

X and M: Seek (u(t),p(t)) € X x M, t > 0, such that

(w(t), @) + pa(u(t), ) + c“(t)(u(t), u(t), ) + /Ot Bt — s)a(u(s), ¢p)ds

+b(¢,p(t)) = (f(t), @), VX, (4.4)
b(u(t),q) =0, Vqge M, (u(0), ) = (ug, ), Ve X. (4.5)

Below is the semi-discrete DG formulation for the equations (4.1)-(4.3) on the spaces
Xy and Mp: For t > 0, we seek a pair of discontinuous functions (uy(t),pn(t)) €

X, X My, satisfying

(uht(t)a ¢h) + /LCL(uh(t)a ¢h> + CUh(t)(uh(t)7 uh@): ¢h> + /Ot B(t - S)G(uh(s)a ¢h) ds

+0(dy, pu(t)) = (£(t), @),), Vb, € X, (4.6)
b(up(t),qn) =0, Vg, € My, (un(0), @) = (g, y,), Vo, €X,. (4.7)

We next note that the integral term has positivity property of certain form (see Lemma

1.4 ) which has been preserved for the SIPG case, that is, for & > 0 and 0 < ¢ < t¥,

/Ot /Ot exp(—alt — s))a(y(s), dp(t)) dsdt > 0 Ve, € X,

The result has been proved in Lemma 4.2. With this property, we establish a prior:
estimates of the semi-discrete solutions for SIPG which are uniform in time. However,
this does not hold true for the NIPG or IIPG case, but we derive uniform in time a
priori bounds in these cases also by analyzing long term behaviour of the solution. We
finally establish the existence of unique semi-discrete solutions, for all three cases.
For a temporal discretization of the semi-discrete DG formulation of the Oldroyd

model of order one presented in equations (4.6)-(4.7), we further employ the backward
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Euler method and analyze it. Since backward Euler method is a first order difference

scheme, the right rectangle rule is chosen here to approximate the integral term
n . tn
W) =8 g [ (e - Syl ds (19
=1 0

where f,,_; = [(t, — t;). Positivity of the quadrature rule has been shown in Lemma
4.5.

The fully discrete numerical scheme for the problem (4.6)-(4.7) is now presented below.
For 1 < n < M, given a function U}, seek (U}, P!) € X}, x Mj, such that for each

(Vh, qn) € Xp X My,

(B:U7,va) + pa(U}, vi) + a(q(Us), vi) + <% (U1 UY, v)
+b(vp, P = (7, vy), (4.9)

b}, 1) = 0. (4.10)

Note that UY = local L? projection of uy onto Xj. A priori estimates of the fully
discrete solution have been presented in Lemma 4.6 for all the three cases. The global
well-posedness of the SIPG scheme has been discussed then. But in the other cases,
namely, NIPG and ITPG, only local well-posedness has been established.

For error analysis, we have considered error involved in the fully discrete approxi-
mations rather than doing it in two steps, once for semi-discrete approximations, and
the other for time discretization. Fully discrete optimal error estimates for the velocity
in energy norm and pressure in L?(L?) are shown. Additionally, optimal error esti-
mates for the velocity and pressure in L>(L?) and L*(L?)-norms, respectively, have
only been derived for the SIPG method as the NIPG and IIPG methods yield theo-
retical estimates that are sub-optimal (see Chapter 2 for the case of NSEs). Finally

we carry out numerical computations to validate our results.

Below, we summarize our results:

e Positivity property of the kernel § associated with the integral operator in (4.1)
for the SIPG discretization. Regularity results for the semi-discrete solution for
SIPG, NIPG and IIPG cases. Existence and uniqueness of the discrete solution

and consistency of the scheme.

e Positivity property of the right rectangle rule (4.8) in terms of the SIPG bilinear
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form a(-,-) and regularity results for the fully discrete solution. Existence and

uniqueness of the fully discrete solution.

e Optimal error estimates in energy-norm for fully discrete DG approximate so-
lutions to the velocity for SIPG, NIPG and IIPG cases. Optimal L?(L?)-norm

error estimate for fully discrete approximations to the pressure (for SIPG case).

e A new modified Stokes-Volterra projection S}ff’l for DG spaces, which plays an
important role in deriving the fully discrete L>°(L?)-norm velocity error estimates

related to the SIPG method. Optimal approximation estimates for SZ"Z.

e Optimal error estimates for SIPG case in L>°(L?) and L>(L?) norms for fully

discrete DG approximate solutions to the velocity and pressure, respectively.

This chapter is arranged as follows: In Section 4.2, we present the consistency of the
DG scheme and a priori bounds of the semi-discrete solution. A fully discrete scheme
can be found in Section 4.3. Fully discrete error estimates for the velocity in energy
norm and pressure in L?(L?)-norm are presented there. Section 4.4 deals with the fully
discrete optimal error estimate in L>(L?)-norm for velocity, whereas optimal L (L?)-
norm estimate for pressure is presented in Section 4.5. Numerical experiments are
conducted in Section 4.6, and the results are analyzed. Finally, Section 4.7 concludes
this chapter by summarizing the results briefly.

Throughout this chapter, we will use C, K(> 0) as generic constants that depend on
the given data, u, a, v, d, Ky, Ko, Cy but do not depend on h and At. Note that, K
and C may grow algebraically with p~!. Further, the notations K (t) and K7 will be

used when they grow exponentially in time.

4.2 Consistency and a prior: Bounds

We begin this section by discussing about the consistency of the scheme (4.4)-(4.5).
This is followed by a prior: bounds of the semi-discrete solutions.

We present the lemma below stating the consistency of the scheme.

Lemma 4.1. Let (u,p) be the solution of (4.1)-(4.3). Then (w,p) satisfies (4.4)-(4.5).
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Proof. Due to (4.2), (4.3) and the fact that [u] - n. = 0 on every edge e, equation
(4.5) is directly satisfied. Now, multiply (4.1) by ¢ € X and integrate over each mesh

element £ € &,. By using Green’s formula and summing over all elements F, we

obtain
E;h/Eut-¢+ME§h/EVu:Vqﬁ—ueezrh/e[Vune-¢]+E;h/Eu.vu_¢
+ tﬂ(t— )( Vu(r): V¢ — A% ()e¢])d
/0 T E;h/E u(r e%;h e u(7)n T
N Voot po-n]= [ -

Note that, [Vun, - ¢] = {Vu}n, - [@] + [Vuln,. - {¢}. Thus, the regularity of u implies

MZ/EVu:Wb—MZ [Vun, - ¢]

Ee&;, ecly, €
Y [VuiVe-u Y [(Vupm ¢l = patu. o)
Ee&y, E ecl'y, 7€

An application of similar arguments as above, we can find

/Otﬁ(t—T)( Z /EVu(T) Vo — Z Vu(r)n, - qb])dT

Ee&;, ecly, ¥ ¢
:Aﬂw4mmm@w.

With the incompresibility condition (4.2), and regularity of u and p, one can find

5 [0To

Ec&y
and
—Z/pv-dﬂrz [p$ - n.] = b(u, p).
Eec&y, E ecly, 7€
This completes the proof of this lemma. O

Below we present an important result, the positive property of the kernel 5 connected

with the integral term in (4.1), which only holds for the SIPG case.

Lemma 4.2. Suppose o, is large enough. Then, for the symmetric form of a(-,-) and

for arbitrary o > 0, t* > 0, the following positive definite property holds true:

/Ot /Ot exp(—a(t — s))a(d,(s), p,(t))dsdt >0 V¢, € X}, (4.11)
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Proof. First of all we expand the left hand side of (4.11) as

/0 /0 exp(—a(t — s))a(py(s), @, (t)) dsdt

:/: /Ote:cp(—oz(t—s (

ACIERLC /{wh )b, - [, (1)

Eegy, ecl'y,
5 [ o +z||/¢h o)
ecl'y, ecl'y,
=B, + By + Bs + By. (4.12)

B can be rewritten as follows

B =) / ( / —2at / eV, (s -eatvgbh(t)dsdt)

E€€y
—_ Z/ (/ —2at _ (/ eV, (s)ds : /t e** Ve, (s) ds) dt)
Ees 0 0
Let us denote, q.’>h fo e** ¢, (s) ds. From the integration by parts and the definition
of || - | z2()-norm, we have
EED> (¢ IV e 20 [ IV, O] (@19
h

Again, by applying integration by parts, one can obtain

Bt b= = X [ (e 1900 b))

~2a Y / ( / TG, O} [B,(0] ).

Now, a use of the Cauchy-Schwarz inequality yield a lower bound of By + Bs:

Byt By>— Y ( ||{va>h<t*>}ne||m<e>|e|1/2—1/2||{&sh@*mme))

eth

—20) (/ e V(O }ncll o e (1) 2o dt)‘

ecl'y,
Let mg be the maximum number of neighbours of an element (my = 3 for a triangle
and mg = 4 for a quadrilateral). Thus, using the trace inequality (1.36) and the

Cauchy-Schwarz inequality, one can find

o Lo 1/2 o 1/2
Byt By > - Cmm( # 3 Ll >]Hiz(6>) ( 2 5 1V () )

ecl'y, Eegy,
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/2

— QCOzml/z(/ et Z le| ¢h ||L2 dt)

ecl’y,
t* ~ 1/2
x ( A SY\ AT dt)
0 Ee&y,

Using Young’s inequality, for [ > 0, we have

720125 202m0 —2at™ 1 7 * 2
BQ + Bg > — Z HVd)h HLQ - Te Z Hu[d)h(t )]HL2(6)

Eeg&), eel’,

la / 20NV (1)l e

EES}L

4C am 90,

A amg / R IEn 08 (414
ecl'y,

Similar to B;, we arrive at the following form of Bjy:

1 o, «
B, = = e —2at
! 2Z|er<€

ecl'y,

(@1 (E)]11Z2(c) +2a/0 e 2 [ (6)]1172 ) dt)- (4.15)

Combining (4.13)-(4.15) in (4.12), we arrive at

/ / cap(—alt — 5))a(d,(s), () dsdt > L (1~ 1) 3 e [V, () o
Ecéy
0_6_40 mo
a(l—1) / e Y IV e dt + Lemzar ZT\![¢h<t*)1\|iz<e>
EGS}L eEFh
L 0_6_40 mg )
+a / o5 T T (0] dt

ecl'y,
Choosing [ appropriately (for example [ = 1/2) and choosing o, > ZLCQTT”O, we finally

obatin (4.11). This completes the proof of this lemma. O
The next lemma states the a priori bound for the discrete solution uy,.

Lemma 4.3. Let 0 < a < min(é, gg;) Then, for t > 0, the semi-discrete DG

approximate solution wy, of the velocity u satisfies
t
lun (8)* + 62‘”/ e |Jup(s)|Zds < C, (4.16)
0
where C' 1s a positive constant depend only on the given data.

Proof. Choose ¢, = uy, in (4.6), g, = pp, in (4.7), and apply (1.14), (1.19), Lemma 1.6
and the Cauchy-Schwarz inequality to obtain

1d

5 g leell® + pJun 2 + / Bt = s)a(un(s), un(t)) ds < Cllup[lfIf].  (4.17)
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First, we consider a(-,-) is symmetric. A use of Young’s inequality, multiply (4.17) by

e?*t integrate from 0 to ¢t with respect to time and noting that the resulting double

integral term becomes non-negative, due to (4.11), provided § > o > 0, we arrive at

62at*

t* t*
wn(£)]? - 2a / 22 [un (B)|2 dt + ks, / 2 [un (1) dt
0 0
t*
<l (O + C / &2 £ (8)| .

—2at*

By using LP estimate (1.14) and multiplying by e , we obtain

t*
[an (#)[* + (k) — 20204)6_2“*/ e |[up (1)]|2 dt
0
t*
< 72 |uy, (0|2 + Ce 2t / &2 ||£(t)]|2dt. (4.18)
0

Note that, the second term on the left-hand side of (4.18) is non-negative provided
a < ‘;—IC(S With 0 < a < min(, ’5—521), we arrive at (4.16) for the SIPG case.
If a(-,-) is non-symmetric, then multiply (4.17) by e***, integrate with respect to time

and use Young’s inequality to obtain
. t* t*
2 uy ()] — 20 / &2 [wn (£)|? d + 205, / 22wy ()2 dt
0 0
t* t
+ 2/ ezo‘t/ (t — s)a(up(s),up(t)) dsdt
0 0
t*
<l (0P + C / 2 £ [un (0. dt. (4.19)
0

Using Lemma 1.7, Holder’s and Young’s inequalities, we find that
t* t
2‘ / ego‘t/ B(t — s)a(un(s),un(t))ds dt‘
0 0
t* t
<c [ [ ate = o))l (o). ds d
0 0

1K, t* t* t 2
<P emoae o [ [ et u i)
0 0

0

K * C 2 t* t

< M21/ 62at||uh(t)||§dt+w+/ /e2a5|’uh(s)||§dsdt. (4.20)
o Jo

0 a)
We incorporate (4.20) in (4.19), and apply (1.14) and Young’s inequality to arrive at

t*
e lun ()1 + (ks — 20204)/ e [lup ()| dt < [l (0)]]*
0

t* t* t
+c/ eg"‘t||f(t)||2dt+0/ /e2o‘s||uh(s)||§dsdt. (4.21)
0 0 0
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With 0 < o < min(J, S—IC(;) and using Gronwall’s lemma, and multiplying the resulting

208 we arrive at

inequality by e~
* t* *
Fan ()] + e / e up (t)[|2 dt < Ce . (4.22)
0

The above inequality is valid only for finite time t*.

For large time, we consider the case t* — co. We first multiply (4.19) by e 2% to find
e ot
lan (#) 1 + 2p ke 7> / e [[ay (£)]|2 dt + 2¢7" / et
0 0
t
/ Bt — s)a(up(s),u(t)) dsdt
0

t* t*
< 2 [uy (0)] + 206 / 2wy (DI dt + Ce> / 22 £ [un (1) dt.
0 0

(4.23)
Note that, from L’Hopital’s rule and Lemma 1.6, we can find
ot t
lim sup 2e 2 / eQat/ Bt — s)a(up(s),un(t)) dsdt
t*—o00 0 0
K
— i sup a(un(t), un(t)) = L limsup Juy (£ 2, (4.24)
« t*—o00 055 t*—o0
and
* t* ILLKl
20K lim sup e 2 / e ||uy, () ||? dt = lim sup ||uy, (%) ||. (4.25)
t*—o00 0 o t*—o00

Take t* — oo in (4.23), and employ L’Hopital’s rule, (4.24) and (4.25) to arrive at

(254 )t 002 < & tmsup 806 )]

(07 t*—o00 t*—o00

which implies
lim sup [Ju, (7). < C. (4.26)
t*—o00

* .
2at” e obtain

Applying (4.26) in (4.21) and multiplying by e~
t*
fan(e)|? 4+ e [ a2 < . (4.27
0

Combining (4.17) and (4.22) with finite time t*, we obtain (4.16) for NIPG and IIPG
cases. This completes the rest of the proof. m
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The existence and uniqueness of the discrete velocity u; is an immediate consequence
of the coercivity property from Lemma 1.6, positivity property of ¢(-,-,-) (1.19) and
Lemma 4.3. Existence and uniqueness of the discrete pressure pj, follows from the
discrete inf-sup condition in Lemma 1.8.

Before proceeding to the next section, we state a lemma for the error involving af(-, ).

The proof is similar to that of Lemma 2.3 and hence we give a miss.

Lemma 4.4. There is a constant C' > 0, independent of h, such that for all u €
H(Q)n Hy(Q), we have

la(uw — Mpu, vy)| < Ch™|ulsq||Valle, Yvi € X

4.3 Fully Discrete Scheme

Since the fully discrete scheme has been presented in the introduction, we begin this
section by working on the well-posedness of the scheme. For this, it is crucial to present
the positivity property of the quadrature rule, i.e., the right rectangle rule in terms of

the bilinear form a(-,-), which is valid only if a(-,-) is symmetric.

Lemma 4.5. Suppose o, is large enough. Then for the symmetric form of a(-,) and

for arbitrary ag > 0, the following positivity property holds

AtZAtZe oltn=tidg(pi @dr) >0 Vo, € X

Proof. From the definition of a(-,-), we find

Atz Atze—ao(tn —t;) ¢hﬂ ¢h t2 Z e—ZOéotn Z Z / aotzvd)z . aothd)n

=1 Eeé‘h

- AtQ Z —2a0tn Z Z / aoti{v¢2}ne . eaotn [¢Z]

=1 EEFh

R0 Xastd 3 oy [ESLEASE )

1=1 e€l’y,
+ AtQ Z —2a0tn, Z Z oeotl ¢l] X Ocotn [qsm
i=1 EEFh

=F + F5 + F3+ Fjy.
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n

Let us define, " = At Z e . After a two times use of summation by parts on
i=1

F} and simplifying the terms, we arrive at

1 1 m—1
= 5@*2% > IV e + 5 D (720 — 20ty 37 [T
Ee&y, n=2 Ecé&,
m
At?
Z Z Hv¢h”L2(E T 2a0tm-1 Z Hv¢hHL2
n=2 E€&), Eegy,
At? _
7(2 — e 200t2) Z HV(ﬁ}L”%Q(E)

Ecé&y

In a similar way, Iy can be presented as follows

m—1
1 e n
ot 3 T g g D (€7 = et S e
(@ B ©
eely, n=2 el

At? m At —%. Oe

g E ¢h ||L2(6) + — 2a0tm—1 E E"[¢}L]H%2(e)

n—= 26€Fh eel"h
At —2apt Oe 11112

+7(2 e “a0t2) E HH[(f’h]”L?(e)'

ecl'y,

Again, a repeated application of summation by parts, we find a combined form of F3

and F3 as

Pt Fy== Y [t (Vg n - (7]

eth
Sy [t — et (D, )
n= Qeth
—MZ Z /{V¢h}ne' [Ph] — At?(2 — e 20%2) Z /{V¢h}ne' [D4]-
n=2eel’y ecly,

Recall that, myg is the maximum number of neighbours of an element. Now, we use the
Cauchy-Schwarz inequality to the terms on the right hand side of the above equality.
Then use (1.36) in the resulting inequality to the terms containing the function {-}.

Finally, by applying Young’s inequality, we write

|
Fi 4 Pyt Fy+ Fy > (1= De 2 3 V™72

2 Eeg&y,
1 m—1
- 5(1 —1) D (e720t — 720ty B [V s
n=2 EeEh
+ 2% Z > 196 + 5= D=2 Y [V0hlaqe
AtQ g 1 Con Oe — 4CQmO m
e Y IV + g D I

Ee&y, ecly,
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1 m—1 o, — 4C2m0
— — €
LD e D D e | [
n=2 ecl’y,
A2 N o, — 1m0 At o
2 3 T Rl + e 3 il
n=2 ecl'y, ecl'y
AtQ B o, — 402m0
+—(2-e 2a0f2) N %H[@Hné(e)'
ecl’y,

In the above inequality C' and [ are the positive constants corresponding to trace
inequality (1.36) and Young’s inequality, respectively. A suitable choice of [ and o, so

that (1 —1) > 0 and o, — 402# > 0, completes the rest of the proof. O
Next, we will establish the stability of the scheme in the following lemma:

Lemma 4.6. Let 0 < a < min (5, ‘;—g;) If the bilinear form a(-,-) is symmetric, the

discrete solution Uy, n > 1 of (4.9)-(4.10) satisfies the following estimate:

IO+ e aty e | U2 < C.

n=1
Furthermore, for the non-symmetric form of a(-,-), choose ko small so that 0 < At <

ko and the following estimate hold true
IO (P + e Aty || U2 < K.
n=1

Here, K7 > 0 depends on T'.

Proof. Put vi, = U}, in (4.9) and g, = P} in (4.10). Observe that

n n 1 n n— n 1 n n— 1 n
(at haUh) - E(Uh - Uh 17Uh> > ﬁ(HUh”Q - HUh 1||2) = §3t||Uh||27

and from the positivity of ¢(-,-,-) in (1.19) and the coercivity property in Lemma 1.6,

we obtain
O[URI1? + 20 UL |12 + 2a(gr (U), Uy) < 2[|£7]|[[TR]]. (4.28)
First of all, we prove this lemma for the SIPG discetization. Noting that

D At URP =D e (U] = [Up )
n=1 n=1

m—1
= Rt |[URP = 37 (05— 1)|URJ - MUY,

n=1
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and due to the Lemma 4.5, we have
Z Ate**na(qg"(Uy), UY) = At Z e At Z Bty LU > 0.

Multiply (4.28) by Ate?**» sum over n = 1 to m, and using (1.14) and Young’s

inequality, we have

2ait m||2 02(62aAt 2at 2
e U + ( uky — Atz "[URIZ

C? i
< MU+ —2 Atzem"ﬂfﬂz (4.29)
Choose « in such a way that

2
On multiplying (4.29) through out by e~2*" we establish our desired estimate for the
SIPG case.
For the NIPG or IIPG case, the third term on the left hand side of (4.28) can be

bounded using Lemma 1.7 and Young’s inequality as follows:
la(q(Un), Up)| < CAtZﬁ(tn — )| U103l
i=1

Bt o +C(At26 1)U, ||g) S (430)

Insert (4.30) in (4.28), multiply the resulting inequality by Ate?*™ sum over n = 1 to
m and using (1.14), we find

02 (€2aAt o m

1
e?atmuumm(um— Y ))AtZehthU”uas M UR?

02 m 4 2
+ Mé ALY e |f]? +0Atzemn (AtZﬁ(tn —tl-)||U§l||5) . (4.31)
L = n=1 i=1

The last term in the right hand side of (4.31) is bounded using Holder’s inequality as

follows:

m n 2 m n
At) e (At > Blta — ti>||U;;||e) <Ay (At 3 e—w—am—m)
n=1 i=1 n=1 i=1
X (AtZe AH?)
=1
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2 2

< AtQZZ

n=1 =1

ullz (4.32)

Combining (4.32) with (4.31), choosing « similar to the SIPG case, applying discrete
Gronwall’s lemma and after a multiplication of the resulting inequality by e™2%™  we

conclude our desired estimate for the NIPG or IIPG case. ]

The existence and uniqueness of the fully discrete solutions to the discrete problem
(4.9)-(4.10) can be achieved using (1.19), Lemmas 1.6, 1.8, 4.5, 4.6, and following

similar steps as in [72].

4.3.1 Fully Discrete Error Analysis

We are now going to discuss about the error bounds of the fully discrete scheme. We
first observe that due to conformity, the exact solution pair (u(t),p(t)) of (4.1)-(4.3)
satisfy the system (4.4)-(4.5), that is, for (u(t),p(t)) € (Xn, M),

(we(t), vi) + pa(u(t),va) + O u(t), ult), vi)
/ Bt —s) s),vp)ds + b(vy,p(t)) = (£(t), vp), (4.33)
b(u(t),qn) =0, and (u(0),vp) = (ug,vp), (4.34)

for (v, qn) € (Xn, M)
Denote E" = u” — U} withn =1,2,..., M. At t =t,, the equations (4.33) and
(4.34) become
tn
(i) -+ a(u vy) (' i) [l = s)alus)vi) s
+b(vy, ") = (7, vy), (4.35)
b(u",qn) =0, (4.36)

for (vp,qn) € Xp, x M. We now obtain the error equations from (4.9), (4.10), (4.35)
and (4.36) in the following form:

(8tEn7 Vh) +u @(En’ Vh)"i_a(q?(E% Vh) + Cun (un7 un7 Vh) - CUZ?l (Uz_la Uza Vh)
+0(vi, p" = B) = — (u,vi) + (Gu", vi) + alg (w), va)
/ 5 tn — S ( ),Vh) ds, Vv e Xy, (437)

b(ETb’ Qh) :Oa VQh € Mh- (438)
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Before looking into the error analysis, we will need the error associated the quadrature

rule. For 1p € C'[0,1,], the error associated with the rule (4.8) is given by

[t = i) as - | < cary [0

The above estimate can be derived with the help of the following estimate: For @ &
Cl [tn—ly tn]

9 B(t, — s)9(s))|ds.  (4.39)

vl 5 [ v =g [ et ds (1.40)

tn—1
The next theorem establishes a velocity error estimate for SIPG method in the

fully discrete discretization.

Theorem 4.1. Let the assumption (A3) be hold true and 0 < a < min (5, géﬁ)

Then, if a(-,-) is symmetric, there is a constant Kt independent of h and At, such
that .
B |2 + Ate=2n Y~ e* |[E" |2 < Kr(h* + At?).

n=1

Proof. First, we define ¢,, = U} — (II;(u))" and n,, = u" — (Il,(u))"*. We choose
vy, = ¢, in (4.37) and observing the fact

CINAESLIIN

and using Lemma 1.6, we find that

KNG > + 201Gl + 20(g](C), €,) — 26" (u",u”, &) +2¢%0 (U7, UG C,)
<[2(uf, ¢,.) — 200", ()| + [2(0m,,, €) | + 20l a(m,, C,)| + 126(C,,, p" — B)Y)]

/ Bt — s)a(u(s), C,) ds| + [2a(q"(n). C,)

=H, + Hy + Hs + H, + Hs + Hg. (4.41)

+ 2|a

Using the continuity of u, we eliminate the superscripts from the trilinear forms and

then rewrite them as

(U Up, €)= e(uut, ¢) = (U™ G ) — et M €)
+C(Cn717 un’ Cn) - C(nnflﬁ (Hh(u))n7 Cn) - C(un_17 M Cn) - C(un - un_l7 un’ Cn)

From the positivity property (1.19), the term c(U}",¢,,,¢,) is non-negative. The

other nonlinear terms can be bounded similarly as in the proof of Theorem 5.2 in [98].

Klﬂ

[e(Cimts M )l < 1160l + ClICall,



130

n Kip
(¢, ¢ < ——L—chni+—<7ncn_1n%
n K Kip
le(1,_1, (Ra(w)", )| < —
|c<u“—17nn,cn>|_. HC 12+ Ch* a2,

K
e(u" —w ¢ <

1 NGl + CR¥ a7y,

1 NGl + CAtlwliag, -

Regarding the term H;, (2.138), and the Cauchy-Schwarz and Young’s inequalities
yield
1/2

tn K
ngcmw(/ ||utt<t>|12dt) ¢, < Ko
tn—1

tn
E +0At/ |y (1)]? dt.
th—1

For the term Hs,, containing J;, we can write

1 (™0
om =5 | gD s

Hence, Hy can be bounded by using (1.14), (1.28), and the Cauchy-Schwarz and

Young’s inequalities as

hr Kl,u ) h2r
Hy < CW||utHL2(tn,1,tn;H*(9))||Cn||e < HC Iz + CAt [ ——
Using (1.26), (4.38), Lemmas 4.4 and 2.4 and Young’s inequality, we can bound the

bounds for the linear terms Hs and H, as follows

K
Hy < 1“

||C H2+Ch2r|u r—+1

K
Hy < 2|b(Cmp” = (ra(P))")] + 216(C, (ru(p))" = P)| < 6—1!||Cn||§ +Ch¥[p"[7.

Note that, since u is continuous, the two jump terms containing u in Hs5 will vanish.
Using the trace inequality (1.24), definition of the bilinear form a(-, -), estimate (1.14)
and (4.39), we obtain

i< (ot [ (6uttn = o)l + (o)l

+ B(tn — s)(Jus(s)ll + hlluy(s)]2)) dS) 1€alle-

Similar to Hj, the term Hg can be bounded using Lemma 4.4 as

H6 S OhrAtZ@(tn - t1)|ul‘T+1||CnH5

=1
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Collecting the bounds for the nonlinear terms and Hy, Hs, Hs, Hy, Hs, Hg in (4.41)

and using Young’s inequality, we obtain

Ol Call* + KapllGullZ + a(gr'(€), ) < ClIC, I + CR* ([ [y + [p"[7)

tn hQT tn
sont [ ()l + @) de+ 5 [ o) d
tn—1 tn—1

tn
+ CM/ e 2O (u(@)[IF + P2 a3 + ()] + h?[la(0)])3) dt
0
n 2
+ Ch* At? ( Z B(t, — ti)|ui|r+1) : (4.42)
i=1

Multiplying (4.42) by Ate?**» summing the resulting inequality from n =1 ton =m
(m < M), noting

m m—1
D AL, = 1P =D e (e = 1)IC, )17
n=1 n=1

and due to Lemma 4.5

ZAteMn a(ql (¢ Atz QM"AtZﬂ a(¢;,C,) =

we arrive at

3

m
¢l + KmAtZ ¢, 12 < Z 20t (208 — 1) CulI? + CALY e |¢, |

n=1 n=1 n=1

m m tn
+Ch2TAtZ€2“t”(\u”!?+1+Ip"|3)+CAtzze2°‘t"/ (e (O + [[ue(B)]?) dt

n=1 n=1 tn—1

m tn
+OAE Y e /0 =20 (lu(t)|2 + B2|[u() |3 + [l (8)]12 + 2w, (£)13) dt

+Ch27‘ i erztn /t

n=1 In—1

2
g ( )|2dt+ch2mtzemtmt2<25 —tz-)|ui|T+1> :
(4.43)

Since 2@t — 1 < C'(a)At, the first and second terms on right hand side of (4.43) can

be combined. Using assumption (A3), we now observe that

m tn
cary e / ()R + e (9 it

_cmzz / P (g (1) 3 + (1)) dt
tn—1

< CAte A/ A (a(t)|E + ua (D) de < CARms (4.4
0
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Similarly, one can obtain

m tn
CAL Y e /0 e 20 ((lu@)[fF + PP [u)]f3 + [lue (@) + A2 [ui(6)]3) d

n=1

< OAe*m, (4.45)

Now, by using the Cauchy-Schwarz inequality and change of order of summation, we

obtain
2(0—a) At

Chz’”AtZ g2t (Atz B(t, — )’ yrH) < Chz” Atzewﬂu 2.

(4.46)

Insert (4.44)-(4.46) in (4.43) and apply assumption (A3) to arrive at

2 1C |12 + Kyt 2|2 S CALD M|, [ + Ot

n=1 n=1

+ O A e2tm+1,

Using discrete Gronwall’s lemma and multiplying by e~2%" we obatin

1Coll® + Kapaty i€ |2 < CeT (B + AF). (4.47)

n=1
Noting that, E" = n,, — (,,, and an application of triangle inequality, approximation

properties (1.28) and (1.29), and assumption (A3) give us the desired result. O

In the case of NIPG or IIPG discretizaton, the analysis will slightly differ since
the Lemma 4.5 will not hold. In fact, the analysis for NIPG or IIPG case will be
identical as Theorem 4.1, except for the quadrature term, a(¢*(¢), ¢,,), which needs to
be bounded. The following theorem establishes an error estimate of velocity for these

two cases.

Theorem 4.2. Under the assumptions of Theorem 4.1, and if a(-,-) is non-symmetric,

then there exists a constant Kr > 0, such that, the following estimates hold true:

||Em||2—I—At@_Qath@QathEan < KT(h2T+At2).

n=1
Proof. Following the proof of Lemma 4.6 for the NIPG or [IPG case, the term a(q”(¢),
¢,) can be bounded. The only difference is that, we have to incorporate ¢,, in place
of U} in (4.30). Multiply (4.42) by Ate*** sum over 1 < n < m < M and proceed

similarly as Theorem 4.1, we obtain

€+ Kap S ¢, 2 < CALS ¢, [P+ ChPr et

n=1 n=1
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+ CAt?e*m+tr L OAt? i i e

n=1 i=1
Using discrete Gronwall’s lemma and triangle inequality, we complete the proof of this

theorem. O

For deriving fully discrete pressure error estimate, we next present an auxiliary lemma.
We only take into consideration the scenario when a(-,-) is symmetric since the non-

symmetric form of a(-, ) generates sub-optimal rates of convergence.

Lemma 4.7. Suppose the assumptions of Theorem 4.1 are satisfied. Then, for SIPG

discretization, the following estimate holds true:

e ALY "B + B2 < Kr(h™ + AL, (4.48)

n=1
Proof. We put v, = 0,(,, and g, = P} in the error equations (4.37) and (4.38),
respectively, to find that

||atCn||2 + lua(Cnv atCn) + a(Q;CL(C% atCn) + CUZ?I (Uzilﬁ UZ? atCn) - Cun (un’ uny atCn)

<|(uy,0:¢,) — (9", 0:C,,)| + [(Oem,,, 0:C,)| + pla(n,,, 0:C,)| + |algr (n), 0:C,)

100G = I+ [ = )a(u(s).06,)ds — algr ). 06,)
=H;+ Hg+---+ Hys. (4.49)
The superscripts are removed and the trilinear forms are rewritten as follows
CU;LH(UZ_l, Uy, 0,,) — Cszl(un, u”,9,¢,) = —c(u", E", 9,C,,)
—c(u" —u"tu",0¢,) + (B u",0C,) +c(n,_ 1, E™, 0.,)
— (€1 My 0C) + (G, €y 91C)- (4.50)

Similar to Theorem 4.1, the first five terms on the right hand side of (4.50) can be

bounded as follows:

lc(u"' E™, 0,¢,) + c(u” —u"t u”, 0,C,) + (B u”, 0,C,)

+ (M1, B, 0iC) + c(Comry My 0iC) | < 6—4HGtC I

o Ol oz (T2 + VB2 4 1612 + Atllwg e, oray)- (451)
The term ¢(¢,,_;, ¢, 0:€,,) in (4.50) is estimated by applying Lemma 1.10 as

|e(Cr1s € 0iC) 19:Call* + C— G- HZNEIZ. (4.52)

|_64

Eegh
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The terms H; and Hg can be bounded similar to the terms H; and H; in Theorem 4.1
with an exception that, here we have to bound 0,¢,, in L2-norm.

We now multiply (4.49) by Ate*** and then sum fromn=1ton=m (m < M). In
the terms corresponding to Hg, Hyo and Hy1, we shift the discrete time derivative to
the other arguments in the bilinear forms by using summation by parts. For instance,
the term corresponding to Hy is bounded using Lemma 4.4 and Young’s inequality as
follows

ALY~ a(n,, 06, < e (i, €l + plalig, Go)l

n=1

> (1= ea) e ja(n, 1, C,)) ALY Oy )

K
<t B[+ CAEY (0t + )G, 2+ O,

n=1

+ Ch [ugl2,y + CRT ALY et ju | 1+0h’”2 20t / g (t)2,, d

n=1

(4.53)

Similarly, the terms corresponding to Hyg and H;; can be bounded as

K m
R [ R/t S G /| Y

AtZeQO‘t" a(qr(m), 0:,,) ol 2
+Ch2”AtZe2at"\u 2, (4.54)
n=1
and
Atnfjlemwb(ﬁt@ap - PM)| < “6121 2O‘tm||(_,‘m||€+C’At§:l (e20tn=1 4 2otn) ¢, |2
+Ch%e 2atm\pm|r+0h27"AtZ 2atnt |pn= 1|2+0h2rz 20t t U m@Rd  (455)
n=1 n—=1 n—1

Again, by using summation by parts, the Cauchy-Schwarz, Young’s inequalities and

(4.39), and observing e2**! — 1 < C'(a)At and 2! — 1 < C(§)At, one can obtain

3o [0, = s)atu(9),86,) ds — alg(w,8¢,)
n=1

p20tm / " B(tm — s)a(u(s),¢,,) ds — a(g™(0),¢,)
oot _ ’”Z e ([ e = 9atu(s). ¢ ds - atap )¢, )|

+ ]AtZ (g [ Bt - alu(e). ¢, ds - HO)atr ) \

n=1
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m—1 tn
Fetdu(ent ) 37 et ( / B(t — s)a(u(s), ) ds — a(g] (), <n>) ]
n=1 0
Pk 2t 2 . 2ty 2 2
<1 ¢ lmliz+ CALY ™ (¢ 12 + 1€ lI2)
n=1

m tn
+0At3262at”/0 e X0 ((lu)]fF + B2 [a)]f3 + [[w )]+ p?[ui(6)]13) dt
n=1

tm
+ CAe* /0 (la@®F + r*[[a@®)3 + [[u O + 2 [l (t)]]3) dt. (4.56)
Similar to the above estimate and with an application of Lemma 1.7, we find

m
At Z e2atn
n=1

G(CI?(C)» atCn)

,UKl atm - atn
< B0, + CALY D (6,12 + ¢, 7).
n=1

(4.57)
Since a(-,-) is symmetric, one can obtain
- 2aty, 1 2ot 1
At Z € a(Cna atCn) = 56 a(Cma Cm) - §a(CO7 CO)
n=1
1 — 20ty (20t 1 2 - 2aty
=5 2 (e = Da((,, C,) + 5 A > e*ma(0C,, 06,)- (4.58)
n=0 n=1

Combining (4.50)—(4.58) in the resulting inequality, and using Lemmas 1.6 and 1.7,

we obtain
m m m—1
ALY 20,8, |17 + nE1e2 ™ |C,, 12+ Ki AR Y |0, )12 < CAL Y e*in|¢, |12
n=1 n=1 n=1
m—1 m
+ ALY |G 12+ CALY M (JEPE + B2+ 11C, 12+ 1€a012)
n=1 n=1
At & 2atn 2 2 2 [ oar 2
+C—, e” [ CnorllZlICnlIZ + CAL e* g (t) 17 dt
min hg 0
Eeé&y, n=1

tm m
+COAL? / g ()|* dt + CRF b (0™ 2y + [p™7) + CR ALY e [u [,
0

n=0

m tm
+ON ALY e o [ a0+ ()

n=1

tm
+CM2/O (T + R a3 + h?[[ui()]]3) dt + Ch* fuol? 4. (4.59)

An application of the discrete Gronwall’s lemma, estimate (4.47), Theorem 4.1 and

assumption (A3) yield

ALY - E 0GP+ B G lIE < Ot (R + AP,

n=1
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R34+ A2
min hg
Ecé&y

B > 0, independent of h and At, L. < B. Finally, an application of triangle inequality,

where L = . In this case, we require that the mesh satisfies for some constant

estimates (1.28) and (1.29), and assumption (A3) complete the rest of the proof. [

The next theorem is for the fully discrete error estimate on pressure which is an
immediate consequence of the discrete inf-sup condition in Lemma 1.8, Lemma 4.7

and Theorem 4.1.

Theorem 4.3. Under the assumptions of Theorem 4.1, the following hold true for
SIPG case:

e 2t ALY et |pt — B2 < Kp(h + At2).

n=1

4.4 Optimal Error Estimates for Velocity in L>®(L?)-

norm

In this section, we focus on deriving optimal estimates for SIPG discretization of the
velocity error E" = u” — U} in L>°(L?)-norm, where 0 < n < M. For this reason, we
consider the scheme (4.9)-(4.10) on the space V.

Now, the fully discrete scheme on V}, is described as: For v;, € V,, we seek {U} },,>1 €
V,, such that

(atU27 Vh) + /LCL(UZ, Vh) + a(Qf(Uh% Vh) + CUZ_l (UZ_17 UZ: Vh)
= (f",vn), Vv €V (4.60)

We initiate by examining the linearized error and consequently introduce the solution
vi(t) € Vi, where 0 < t < T, derived from a DG approximation of a linearized

problem. In other words, v;(t) stands as the solution for:

(Vat, @n) + pa(va, op,) + /0 Bt = s)a(va(s), @p) ds = (f, @) — " (u, 0, ¢,), (4.61)

for all ¢, € V5. With the help of v,(t) at t = t,, we split E" into two parts as
E" = (u" —v}) + (vii = U}) = £€" + n". By considering (4.61) and (4.33), we can
derive the equation involving &(t) for ¢ > 0:

(& @n) + pa(§, op) +/0 Bt —s)a(€(s), dp) ds = —b(¢y,p), P € Vi (4.62)
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In order to derive optimal L>(L?)-norm estimates of &, we define the following auxil-

fary projection S¢u : [0,00) — V), satisfying,

/j’a(u - SZOlua d)h) + /0 /B(t - S) a((u - SZOlu)(S)v ¢h) ds + b(d)hap) =0, V¢)h €Vy
(4.63)

and call it modified Stokes-Volterra projection. We now split the error £ into two parts
as follows:
£=(u—S8;"u)+(S;"u—vy) =C+80.

First of all, we will derive optimal error bounds for (.

Lemma 4.8. The term  satisfies the following estimates:
eI + 12102 <02 a0 + o)
e [ u, ends). e
IS + R2[IC,(B)][2 < Ch*+2 (IU(t) 1+ PO+ T + ()]
e [Emuap, cpeas). 1)
Proof. With ¢ = u — S¥°'u, we rewrite the equation (4.63) as
palC.on)+ [ Bl=9)alc(s) ¢ ds = HBp). VoL EVi (460
Set ¢, = P;,¢ in (4.66) and use the definition of the space Vj, to arrive at
pa(Pr¢, Prl) + /Ot B(t = s) a(Pr¢(s), Pr¢) ds = —pa(u — Pru, Pp()
PG~ ralp)) = [ Bl s)al(u— Pru)(s) PiQ)ds. (467

With the help of Lemma 2.3, we can bound the last integral term in (4.67) by using

Young’s inequality as

t 2
< Sl v o ([ st ool as)
0

(4.68)

/0 B(t — s)a((u — Pru)(s), Pr¢) ds

Applying Lemma 1.6, (4.68) in (4.67), and estimating the first two terms on the right
hand side of (4.67) similar to Lemma 2.5, we find

Kol Pl + 2 / B(t — s) a(Py¢(s), P¢) ds < CH¥([ul?,, + |pl?)
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+COR* (/Otﬁ(t = s)lu(s)|rn d5>2- (4.69)

We now use triangle inequality ||C]|: < |[|PrC]lc + ||lu — Ppu||. with Lemma 2.2 in in-

equality (4.69). Then, multiply the resulting inequality by e?**, integrate with respect
to time and note that the resulting double integral on the left hand side is non-negative

due to Lemma 4.2 to finally obtain
t t
| emieeolzas scn [ (uts),, + o)) ds
0 0

+ Ch*" /Ot 62%(/085(3 —)a(r)]rs1 d7>2ds. (4.70)

For the second term, i.e. the double integral term on the right-hand side of (4.70), we
bound it similar to the I term in the proof of [134, Theorem 2.1] by

t
ChQT/ e***lu(s)|2,, ds.
0
Thus, from (4.70), we arrive at
t t
| emieizas <cr [ (ue), + o)) ds (4.71)
0 0

Now multiply (4.69) by ¢?***, and use Lemma 1.7, Hélder’s and Young’s inequalities.

ot and employ triangle inequality and Lemma 2.2 to find

Again, multiply by e =2
IGIE < O (2 + 1912) + O [ o)z, ds
0
+ Ce 2 /Ot e?||PL¢(s)]2 ds. (4.72)
Again, using triangle inequality and Lemma 2.2, we can easily find that
IGIE < O (2 + 1912) + O [ o)z, ds
0
+ Ce 2 /t e?|1¢(s) |2 ds. (4.73)
0
Using (4.71), from (4.73), we finally able to manage

t
M@scwnﬁﬂ+ma+mﬁeMAeMWmﬁH+Wﬂ%@. (4.74)

In order to estimate ¢ in L%norm, we utilize Aubin-Nitsche duality argument. Let
(w,q) € Hy(Q) € L*(Q)/R be the solution of the following dual problem:

—puAw+Vg=¢ inQ, V-w=0 inQ, wlypg=0. (4.75)
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Further, (w, q) satisfies the following bound
1wl + [lgll < CliC]- (4.76)

Take L? inner product between (4.75) and ¢. Now utilize (4.66) with ¢, = P,w, and

incompressiblity condition satisfied by w, regularity of w and ¢ to obtain

1< ||2—uZ/Vw Pyw) : VC+;LZ/{VC}H@ [P,w — w]

TeTh ecl’y,

_MZ/{VW P,w)in, - [¢ Z W= Piw] - [¢]

eel"h eel"

—b(Prw —w,p—ru(p)) +0(¢, q) + /0 Bt —s)a(C(s),w — Prw)ds

—/0 Bt — s)a({(s),w)ds. (4.77)

Following similar procedure used in deriving the bounds of the right hand terms of
(2.34) (see Lemma 2.5), and by using (4.76) in place of (2.33) and Young’s inequality,
one can bound all the right hand side terms of (4.77), except the last two terms, by

—||CH2+Ch2HCHQ+0h2’"+2(\U\ Pl (4.78)

Again, Lemma 2.2, the regularity result (4.76), Young’s and Holder’s inequalities yield

(t —s)a(l(s),w —Ppw)ds

< [ 800 = UG Il + O fufs)allwl) ds
< gl + o ( [ s olcolas)

+Cnr ( /Ot At = s)luls)lr d8)2- (4.79)

From the consistency of diffusion and pressure term, and using (4.75), the eighth term

on the right hand side of (4.77) is written as

/ﬂt—s :——/ﬁt—s ),€(t))ds
+;/0 Bt —s)b(¢(s),q) ds. (4.80)

Furthermore, similar to the bound of b(¢{, q), using (4.76), Young’s and Hoélder’s in-
equalities, we bound the last term on the right hand side of (4.80) as

‘ /ﬁt—s ) ds

_+KW+0#(/ﬁt—sm<wAQ2
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+COhr? ( /Ot At = s)luls)lr dS)Q- (4.81)

Substitute (4.78)—(4.81) in (4.77) and rewrite the resulting equation, we find that
IC@)I* + / B(t = 5)(¢(s), ¢(1) ds < CRCH)IZ + Ch 2 (lu(t) 74y + [p(1)]7)

ron( / @(t—s>||c<s>|r£ds)2+cmr+2( / tﬁ(t—S)Iu(S)\mdS)z- (152)

Multiply (4.82) by e2** and integrate from 0 to . We now drop the double integral
term on the left-hand side of the resulting inequality, being non-negative. The double
integral terms on the right-hand side is handled exactly similar to the double integral

term of (4.70). Finally use (4.71) to conclude

t t
/ 2| ¢ (s)|2 ds < R / 2 (ju(s)2 + [p(s)F) ds.  (4.83)
0 0

From (4.82), it easily follows that

t t
SO <Crlelz +C [ g s+ orte ™ [ e le)|ds
0 0
t
SO (O, + p(OR) + O e [l ds. (48)
0

Incorporate (4.71), (4.74) and (4.83) in (4.84), we establish (4.64).
For the estimates involving ¢,, we differentiate (4.66) with respect to the temporal

variable t and use Leibniz integral rule to find that

pa(Cy, @) + 5(0) t), bn) / Bi(t — s) a(C(s), py) ds = =b(y,, i), V), € Vi
(4.85)

Choose ¢, = Py¢, = ¢, — (uy — Ppu;) in (4.85), and notice that (0) = v and
Bi(t — s) = —08(t — s) to observe that

wa(Pr¢,, Pr¢,) = — pa(u, — Pruy, Pr¢,) — va(C(t), Prc,)

+ (5/ Bt — s)a(C(s), Pr¢,) ds — b(Prl,, pe)-

By using the similar set of arguments as used for deriving the estimates of {(¢) and

with the help of estimate of ||{(?)||, we obtain
ICN12 <Con™ <|u(t) rin @+ w7 + (O]

ren [ u, + )R ds ).
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Finally, for the estimation of ¢, in L?*-norm, we again appeal the dual problem (4.75),
replacing ¢ by ¢,. Using similar steps required for deriving [|{]| estimate, we can

establish the estimate for ||¢,||. This completes the proof of Lemma 4.8. O

We can now estimate £ in the L and || - ||.-norms, for ¢ > 0. Since € = ¢ + 6 and the
estimates of ¢ are known from Lemma 4.8, it is sufficient to estimate 6. In order to

derive estimates of @, we consider the folowing equation in 6:

(01, py,) + 1a(8, p,) + /Otﬂ(t —5)a(0(s), ¢y,) ds = —(C;, @), Vo, € Vi (4.86)

Lemma 4.9. Under the assumption (A3) and 0 < o < min ((5, g—g;), there is a positive

constant C' such that for t > 0, &€ satisfies the following estimates

1@ + hlE@)). < CR* 2, 0<t<T. (4.87)

t

Proof. We choose ¢, = 0 in (4.86), multiply the resulting equation by e¢***, and use

the coercivity result of Lemma 1.6 and the Cauchy-Schwarz inequality to arrive at

1d

52 (EI0@I) = ac 0(1) |2 + uEe® 01 2

T el / Bt — T)a(8(r), 0() dr < ¢ D6

Now, integrate the above inequality with respect to time, use (1.14) and Young's

inequality to find
t
00| + (4K, — 2aC) / &22%(16(s) 2 ds
0

t S t
oy / / e (77 O(r), e0(s)) dr ds < C / 25 ¢, (5)]2 ds.
0 0 0

at

Consequently, multiplying the above inequality by e 2%, using the estimate (4.65),

Lemma 4.2 and assumption (A3), and choosing 0 < a < min (9, "%) in the above
2

inequality, we arrive at
oo + e [ etz ds < o
0
By using the inverse relation (1.37), one can obtain
lo@)I* + r*lle)|Iz < Ch* . (4.88)

Finally, combining (4.88) with (4.64) and using assumption (A3), we obtain the desired
result. O
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Below, we derive some regularity bounds for vy,.

Lemma 4.10. Let 0 < a < min (5, ;;IC(;) Then, the solution v,(t), t > 0, for the
problem (4.61) satisfies

t
62“/ e (Iva(s)IZ + [[vas(s)2) ds < C, (4.89)
0

t
e [ ) s < C (490
0

where C' s a positive constant.

Proof. Choose ¢, = v, in (4.61), and apply Lemma 1.6, estimates (1.14) and (2.56),
the Cauchy-Schwarz inequality and Young’s inequality to obtain

5O+ ka0 + [ 3= s)atwals) va(0) ds

< M

Va2 + CIE@)IP + Cllu@)llT (4.91)

Multiplying (4.91) by e2*, integrating from 0 to ¢ and using (1.14), observing that the
resulting double integral on the left hand side is non-negative due to Lemma 4.2, we
find that

t t
@)+ (uks ~ 2aC3) [ e vals)|2ds < a0 + € [ = e(s) s
0

0
t
e M — / 2 u(s)]2 ds.

Multiplying the above inequality by e=2¢

2281
2C5

, and using assumption (A3), and choosing

a < we obtain

t
Va1 + 6_2“/0 e*[lvi(s)[2ds < C. (4.92)

Differentiate (4.61) with respect to ¢ to find

(Vaue(t), dp) + pa(vi(t), @) + B(0)a(va(t), é4) / Pilt = s)a(vi(s), pp) ds
= (£(t), ¢n) — "V (w(t), ult), @p) — O (u(t), w(t), #1), ¥y € Vi (4.93)

Take ¢, = v (t) in (4.93), and apply (1.14), (2.56), Lemmas 1.6 and 1.7, the Cauchy-
Schwarz inequality and Young’s inequality, and noting that 5(0) = v and §,(t — s) =

—6p(t — s), we arrive at

%tht(t)H2 + K [[vae ()12 <CIE@ + Cllva (B2 + C(/O Bt = s)l[va(s)lls dS)
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+ Clla(®)[F][u @)

Now, multiply the above inequality by e2*, integrate from 0 to ¢ and handle the

resulting double integral term similar to the double integral term of (4.70) as

' s 2 t
¢ [ ( [ o= nlvinlar) as<c [ e zas

t
Vi (O + (nky —2a02)/ e**[|vis(s) |2 ds < ||Vht(0)||2+0/ e**||lvi(s)||2 ds
0

t
0

to obtain

t t
SNeI T - / ||, (s)|2 ds + C / 27|, (5)|? ds.

J12i8Y —2at

2C5
(A3), we obtain

Choosing o < after a multiplication by e~***, and utilizing (4.92) and assumption

t
Ivre (11 + 6_2”/ || vas(s)[2ds < C. (4.94)
0

Combining estimates (4.92) and (4.94), we arrive at (4.89). Finally, consider (4.93) to
derive the estimate (4.90). Thus an application of (1.14), (2.56) and Lemma 1.7 to
find

(Ve (), d) < C(IIVht(t)Hs +lva@®le + /0 Bit = s)[lva(s)lle ds + (0]
+ ||ut(t)||1||u(t)||1) [l

Now, apply the definition of ||-||_1 », square both sides of the above inequality. Further,
multiply the resulting inequality by e?*!, integrate from 0 to ¢, and then multiply
by e72%" and use (4.92), (4.94) and assumption (A3) to find estimate (4.90). This
completes the rest of the proof. O

The next lemma establishes the estimates for n" = vj — Uj.

j22:61

Lemma 4.11. Suppose the assumption (A3) is satisfied and 0 < o < min(d, 551).

Let vi(t) € V}, be a solution of (4.61) corresponding to the initial value v = Ppuy.

Then, the error n" = vi — U}, satisfies

||'I’]m||2—f—Ate_QathGQat”H’r]n”? < KT(h2r+2 +At2).

n=1



144

Proof. We consider the equations (4.61) at ¢t = t,, and (4.60), satisfied by v;, and Uy},

respectively, to obtain
(Om", @) + pa(n”, @) + alg; (n), &) = (Opvy, — iy, &) + ala, (vh), @)
[ Bl = halonle) i) ds + V(UL UL ) - )
for ¢;, € V},. Then, setting ¢, = 0™ and using Lemma 1.6, we find that
1<9tH'r7”H2 + pkal[n®lle + alg(n), n") < vy — Vi, ") + alg(va), n")
/ B(tn — s)a(vi(s),n™) ds + Yn (UZ‘I,UZ,U”) — ™ (u",u",n").  (4.95)

We now estimate the terms on the right hand side of the above inequality. An appli-
cation of (2.138), Holder’s and Young’s inequalities lead to

1/2

ln
Ot i) < 00 ([ w0l r) Il
tn—1

tn
H
< H?+0At/ [Vaee(£)]|, dt. (4.96)
n—1

The estimate (4.39) and Lemma 1.7, Holder’s and Young’s inequalities yield

a(qr(vp),m / B(t, — s)a(vi(s),n™)ds

<o(mz [ Gt M+ 50 = () @ .

< Bt |!2+C<Atz / (Bultn — V) + Bltn — 8)[vin()]1.) d )

(4.97)

Let us consider the nonlinear terms from (4.95). Due to the regularity of u”, we have
zero jump of of u” and hence can rewrite the nonlinear terms as follows
n-l n— n ,.n u/..n ..n ..n n-1 n— =l pno.no.n
CUh (Uh laUhan)_c (uﬂlﬂ?):CUh (Uh lthﬂ?) U (uﬂlﬂ?)
- _ CU:LL*l (Uz—l’ ,rln7 ,r’n) _ CU;TI (En—l’ un’ ,’,'n) . CUh*l(un —u! 7un’ ,rln)
+ CUZ?I (Sn—l’ En) nn) + CU'Z*l(,rln—l7 En’ nn) _ CU'Z*l(,’,’n—l7 un’ nn)
n—1 n— n n n—1 n— n n n—1 n— n n
=ML ) 1 (g ) =1 (un T ). (4.98)
From inequality (1.19), the term cY (U” ') n", ") is non-negative. The remain-
ing nonlinear terms on the right hand side of (4.98) can be estimated following the

estimation techniques of (2.94)-(2.99) and (2.144) as follows

n=l, opn— n ,.n Kllu n n n— n—
cPn (€ ut )| < o1 M 12+ Clla[5(1€"H1* + h*[1€"12), (4.99)
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ur—l,/ n— n .n Klu n n— n n

e (0" € )| < TR 124+ Cla™ HIS(1€7 (17 + r2(1E]12), (4.100)
n=l ip— n ..n Kl:u n n— n

V(g7 €0 )| < o1 1M 12+ CllE"HI2N1€™ 12, (4.101)

O € )| < 2 On2e Pl (4.102)
n=l, o n o.n Kllu’ n n n—

% (" ut, )| < o1 M 12+ Clla™ 5] 1%, (4.103)
n=1, n n— n o.n K I n n n

e (u —u T u" )| < _611 7" (|2 + CAt[|u Hz/ Jw,(t)[|*dt,  (4.104)

tn—1

ur~ /. n— n .n n=l, p n .n K By oy — n n—
(g gt — 19 (u € )| < 6—1H"I 12+ Ch2 €12 ™12
+ e 12N1Em12. (4.105)

It is easy to check that

m m—1
Atzezat"atHnnHz _ e2athan2 - €2atoH,’70”2 ZaAt Z €2at"H7lnHQ-
n=0

n=1

Substitute (4.96)-(4.105) in (4.95), and multiply the resulting equation by Ate?*» and
sum over 1 <n < m < M, where T'= M At and apply Lemma 4.5 to observe that

m

At) e*algr(n)n") = yAty Aty e IO a(e ' et 2 0
n=1 i=1

n=1

and find that

m m—1
€2athan2 + KlﬂAtZ€2atn”nan < (62aAt . 1) Z e2athnnH2 (4106)
n=1 n=0
m m
+OAEY ([ + A€ 2 I P+ CAEY el 3(1€7 P + hP €7 12)
n=1 n=1
m m
+OAEY [ B1€" 1P+ hAIEMTHIZ) + CALY |22
n=1 n=1
m tn
+oae 3 et [0 (v o) + v(0)2) de
0

n=1

m tn
oAy / Vst (D112 1,5t + Cllull e o,rimrzn AL Y €2 / e ()] dt.
n=1 n—l

n=1

We now bound the terms involving vy, v and vy using estimates (4.89) and (4.90).

For instance, we only show the following bounding technique

m tn
LD / 20 (v ()12 + [va (DI) dt
0

_cmsz / 200 (| (1) |2 + v (8)])
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m tn
< cMZ/O ([ Va(®) 12 + [Vae(O)I2) dt < Cetn A,
=1

In a similar manner, the last two terms on the right hand side of (4.106) are esti-
mated by CAt*e?*m+1 Thus, with the above estimates, and from (4.106), Lemma
4.9, assumption (A3) and ||n°|| = 0, one can find

m m—1
6204than2 +KlﬂAtZ€2athnn“§ SCAtZ@Qath’r]nHQ +Ch2r+2€2atm

n=1 n=1

+ C At e2otm+r

A use of the discrete Gronwall’s lemma and after a final multiplication of the resulting

inequality by e~2%"m completes the rest of the proof. n

The next theorem states optimal L>(L*)-norm fully discrete error estimate of the

velocity.

Theorem 4.4. Suppose the assumption (A3) is satisfied. Further, let the discrete

initial velocity U?L e V, with U?l = Pruy, and 0 < a < min <(5, ;;?) Then, there

exists a positive constant Kr, such that
lu" = Uyl < Er(R + At).

Proof. A combination of Lemmas 4.9 and 4.11, completes the proof of this theorem. [

4.5 Error Estimates for Pressure in L>°(L?)-norm

In this section, we derive error estimates for the DG approximation in L>°(L?)-norm of
the pressure. Before proving our main theorem we need an auxiliary lemma. First, we
define the following discretization error x" = P,pu” — Uj. From the equations (4.33)
at time level ¢ = t,, and (4.60), and applying the definition of L*-projection Py, we

find the equation for x™ as follows
(OX", &p) + palx”, ¢p) + alg) (x), ) = —(uf — ", ¢y,) — pa(u” — Pru”, ¢,,)
T a(g! (Pyu), ;) — / Bt — s)a(Ppu(s), @) ds
/ Bt — s)a(u(s) — Pruls), ) ds — b(hyp")

+ U (UL UL @) — < (0" g,), e, € Vi (4.107)
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Before proceeding, we mention an important property of P which can be easily derived
employing triangle inequality, the standard Lagrange interpolant, (1.36), (1.37) and

Lemma 2.2:
HPhVHE SC‘V‘l, Vve Jl. (4108)
The following lemma establishes an estimate for ||0;E"™||.

Lemma 4.12. The error O,E" satisfies

O™+ e2m ALY 2 |2 < K (¥ + At).

n=1

Proof. Subtract (4.107) at time t,,_; from (4.107) at time ¢,, and substitute ¢, = 0, x"

and use Lemma 1.6 to find

AL (0ex™), 0eX™) + nEKLAL| 0|2 + Ata(9eq) (x), 0ex™) < —At(O(uf — Opu™), dex™)
— pAta(d;(u™ — Pyru™), 0 x") + At a(drq) (Pru), 9 x™)

- ( ' B(tn — s)a(Ppu(s),dyx") ds — / " B(tn—1 — s)a(Ppu(s), dx") ds>
0 0
- ( ; ' B(tn — s)a(u(s) — Ppu(s), dx™) ds

_ /Otn1 B(tn_1 — s)a(u(s) — Pru(s), &, x") ds)

n—1

— Ath(9x™, ™) + cn (UL UL, 9x™)
_ CUZ_Z(sza szl, atXn) o (un’ u”, atXn) 4o

n—1

(u"t u" Tt 9x™). (4.109)

Let us rewrite the non-linear terms as follows

—2

cUZ?l(UZ_l, UL, 0x"™) — ¢ (U2 U1 9,x™) — ¢ (u™, u™, 9yx"™)
+ M W u T oxY)
=— AthZ?l(atunfl, E", 0,x") — AthZ?l(at(u” —u" ), u", 9x")

- AthZ?l(atE”_l, Uy, 0ix") — AthZ?l(u"_l, OE", 0px™)

— AtUR (a = w2, 0,UT, 0,x") — AtcYr (E"2,0,U7, 0,

FIV U U 9 — 19 (URR U O, (4.110)
An application of Hoélder’'s and Young’s inequalities, Taylor expansions, estimates
(1.14) and (2.56), the fact u"™' —u"? = /tnl u;(t) dt, and noting that u’, i =

tn—2
n,n — 1,n — 2 satisfies incompressibility condition and is continuous, one can find

AtleU (G B 0x")| < CALa | E" (|19 -
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ILLKlAt

tn—1
<C||E"|? / lus(0)]12 dt + o2 (4.111)

tn—2
n—1 tn
AtV (@,(u" — u), A | < CA / I (OIV |10 1010y
tn—2

,uKlAt

tn
SCHU”H%NQ/ [l (£)]1* dt + 1012 (4.112)
th—2

Since E"! = u" ! —P,u™ ! +x"!, we can rewrite ¢9n  (§,E"!, UY, 9,x™) as follows

At (QE U, 9x") =At YR (@, — Prut ), UL, 9,7
+ AL (9 U, 0. (4.113)

Using estimate (2.56), approximation property of Lemma 2.2 and Young’s inequality,

one can derive

A (@0 = Py ™), U 00| < CAHo (! = Py )L [UR o .
,uKlAt

tnfl
<o |[u? / s (£)2, dt + 101 (4.114)

tn—2

An application of Hélder’s and Young’s inequalities, (1.14), trace inequality (1.37),

Lemma 2.6 and definition of || - ||.-norm imply

At [V (9", U, 9ix™)|

1/4 1/2 1/4
gm(zuatx"-wrz%) (Zuvuzuizm) (Znatx”nim)

TeTh TETh TeTh
1/4 1/2 1/4
+0At( 3 ||atx"—1||‘z4m) (Z - |||[U"]||L2(e) (Z ||atx”||i4m)
TeTh ecly, TeT
1/2 1/4 1/4
+At( 5 ||vatx”-1||izm) ( 3 ||U2||i4m) (Z ||atx”||i4m)
TETh TETh TeTh
1/2 1/4 1/4
+0At(2||m 11||i2<e)) (Zuuxnam) (Zuatxnuim)
ecl’y, TeT, TeT,
< CAO U219 s
MK At —2a n— o
< MR st 1\\2+0At2m|ru 1l ol
[LKlAt _ n— At n
B syt 4 BB o 2 cnsee U Sac . (4119

Furthermore, Holder’s and Young’s inequalities, (1.14), (1.25), (1.37), (2.56), and Lem-
mas 2.2 and 1.3 yield

AtCUZ_l(u"_l, OE" 0,x") = AthZ_l(u"_l, d;(u" — Ppu"), 0ix")
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+ AU (W 9, X

tn
< Clu" |y / lae(t) = Prue(t)l| 00" (|- dt + CAL a2 0" =19
tn—1

K At tn
< a2+ o / [ (1)?, dt + CALu" 30" (4.116)
tn—1

Note that, Ath;zkl(u"*1 —u"2 9,U}, 9,x") can be rewritten as
AzchZ?l(u”_1 —u"2,9,U}, 0,x") = —AthZ?l(u”_1 —u"?,9,x", 0, x")
—AthZ?l(u”_1 —u"? 9,(u" — Ppu"), 9, x") + Ath;lH(u"_1 —u""% 0u", 0,x").

Thus, At|c% (u™! — u"2,9,U", 9,x")| is bounded with the help of Holder’s and
Young’s inequalities, (1.14), (1.37) and Lemma 2.2 as follows

n—1 - n— n n n n
A W — a2, 0,07, ™| < OOl o100 [0 - 19|

tn
+ CHuHmoyT;Lw(m)/ i (2) = P (8)]| [0 || d

tn—1

tn—1 tn
e / @l [ )l @i

tn72 tnfl

/ll(l " ., tn
< o 12+ CAt{[ul|F oo 0 7,100 (2 10X |1 + Ch? / |, (t)]74 dt
tn—1
tn
+CAt2||ut||%°°(0,T;H1(Q))/ [, (#)|I3 dt. (4.117)
tn—1

In a similar manner, using triangle inequality and Lemma 2.6 one can show that

At[cUR (B2, 9,U7, 9x™)| < AtV (E"2,0,x", X))
+ At (B2, 0,(u” — Pru™), 9x™)| + AtV (B2, 9,u, 9,x")]
< CAL([E" 2|02 100" 1% + B2 ]| (™ — )] 8x"]|-

+ 1B <[00 |- |9 x"]|)

K At tn
< ” —— || 9" |2 + CAL|E"2 |29 ||* + C| B 2||2/ lu,(8)[Fdt.  (4.118)
tn—1

Using estimate (2.60) and regularity of u"~!, we arrive at

n—1 n—2
‘th (UZ_27 Uz_lv atxn) - th (UZ_27 Uz_lv atxn)|
< CAHUNE 0" [l o
< CAL([|0ix" e + [|0:Pra" ) IE" N0 | 240

A wuse of Young’s inequality and Lemma 2.6 imply

VR (U U A — 19 (U, U o
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K At
E 1o 2 + Ot B

KAt _,, o
<E= e a2 +
(4.119)

tn—1

e | \|Phut<t>uzdt.
tn—2

Now, At a(0:q"(x), O:x™) can be rewritten as

(e = Dalg; ™ (), dx")-

Ata(deq) (x), 0x") = AtB(0)a(x", dx") +

Therefore, Lemma 1.7, Holder’s inequality and Young’s inequality lead to

m K At &
ALY e a(@q; (x) 0x")| < E= DT a2
n=2

n=2
+CALY e Ix"|2. (4.120)

n=2

An application of Holder’s inequality, Young’s inequality and Lemma 2.3 imply

m tm
pAEY e a@i(u - Py o) <O [ o), di
t1

n=2
:uKlAt - 2atn, n|2
FEEISLS o2 (aa21)

n=2

To handle the first term on the right hand side of (4.109), we rewrite it as
At(@t(u?’ — 5’tu”), 8txn) = At@t(u? — @u", &gxn) — At(u?*l — 8tu"71, 3t(8txn))

Therefore, we use summation by parts, (2.138), the Cauchy-Schwarz inequality, Hold-

er’s inequality and Young’s inequality to derive

2at1< g o atul’atxl)

ALY e (Qy(u) — ), 9hx") = € (0] — ™, Ox™) —
n=2
2aAt ZBQQtn 1 81& n—1 atx )
— At Z 2t (u ! — gu"t, 0,(9,x™))
1 Q2o m|2 saty, [ 2 20t 12
< 3¢ O™ |7 + CAte™ g ()7 dt + Ce™™ ||0rx ||
t'm 1
2atq 2 2aty,—1 n—1(12
+ CAte / g ()] dt+CAtZe 19"
n=2
sont | oaney [ gat 2 At? & p20t ny (|2
+ CAt(e + e**2h) > |lug (1) || dt+TZ "0 (Oex™)|I7. (4.122)
0 n=2
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Also, we can rewrite
At a(9,q! (Pru), i) = AtB(0)a(Pru”, 0,x") + (e °2 — 1)a(q} " (Pyu), dex"),
and
tn tn—1
/ B(t, — s)a(Pyu(s), dx™) ds — / Bty 1 — s)a(Pruls), ™) ds
0 0
tn
= / B(t, — s)a(Pru(s), 0px") ds
tn—1

+ (e708 — 1) /0 - B(tn—1 — s)a(Pru(s), dix") ds. (4.123)

With the help of above two equalities, (4.39), (4.40), Lemma 1.7, Holder’s inequality
and Young’s inequality, one can find

m

Z e2atn (At@(atq;l(]?hu), @X") . /tn 5(75” — S)G(Phu(s)a atX”) ds
0

n=2

" /otn_1 Blta-1 — s)a(Pruls), dx") ds)

KAt & tm
SM 611 Ze2atn||atxn“§ + CAt262aAt/ ezatHPhut(t)Hgdt
n=2 t1
m tn—1
+ CAP Ay / EH([Pru(®)|)? + [Prw(t)[|P) dt. (4.124)
n=2 0

With the same technique as (4.123), and using Lemma 2.3, Hélder’s inequality and

Young’s inequality, we arrive at

g e*en ( /0 ’ B(t, — s)a(u(s) — Pru(s), Oix") ds

_ /Otn_1 B(tn_1 — s)a(u(s) — Pyu(s), dix"™) ds)

:uKlAt = «a n r_2a fm «a
<SS o cntens [ o, ar
n—=2 1

m tn—1
+CRY APy /O et u(t)|?, , dt. (4.125)
n=2

Using the definition of the space Vj,, Lemma 2.4, Holder’s inequality and Young’s

inequality, we obtain

ALY b0, 0p") =At Y b0, A" — rip"))
n=2 n=2

m tn
=3 et / b(O", pel(t) — rapn(0)) dt
tn—1

n=2
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KAt & tm
< BELALS™ ot g2 4+ Chmete / tp,(1)2dt. (4.126)
64 —~ t

Substitute (4.111)-(4.119) in (4.110) and then in (4.109). Now, multiply the resulting
inequality by €2* sum over 2 < n < m < M. Note that, ||0;x"|| < [|0;E"||+ |0 (u™ —
Pyu”)| and ||x"||c < ||E™||c + [[u™ — Ppu"||c. Thus, an application of (4.108), Lemmas

2.2, 4.7 and assumption (A3) leads to

|0 1P + ALY e 0|2 < Cer X P + Ce* (WP 4+ At). (4.127)

n=2
It remains to bound ||d;x!||. To handle this term, we denote G* = S¥u™ — U}.

Consider the equations (4.33) and (4.63) at t = t,,, and from (4.60) we find

(0.G", by,) + 1 a(G", @y,) = —(u — du", @,) — (0:C", @y,) — alq(9), b))
+alg? S dn) = [ 8t = alSiu(e). ¢y) ds
—i—cUZfl(UZ_l, Uy, ¢p,) — ¥ (u",u", ¢,), VYo, € V. (4.128)

Now, we consider (4.128) with n = 1, choose ¢, = 9;G' and rewrite the nonlinear

terms to find
18:GM 1> + e a(G', 8:G") = —(u} — 0u',0,G") — (0:C", 0G") — alg}(G), 8:G")
+ a(g}(Si"u), B,GY) - /0 " Bty — s)a(Siu(s), 0,6") ds — YR (u, B, 0,61)
— UH(E®, u',0,G") 4+ URE,E,5,G1) — Yr(u! —u’,ul, 9,6Y). (4.129)
Notice that, G® = 0. Apply the coercivity property from Lemma 1.6 to find
I AL|0,GH1? < pa(G,0,GY) = Atpa(0,GY, 0,GY). (4.130)
Again, with the help of the continuity property of a(-,-), that is, Lemma 1.7, we obtain
|a(g:(G), 0:G")| = B(0)]a(G", G")] < CIG 2. (4.131)

In addition, a use of (4.40), Lemma 1.7, triangle inequality, the Cauchy-Schwarz in-
equality and Young’s inequality imply

a(g (SY), 0,G') — / 1 Bty — s)a(Siu(s), 0,G) ds (4.132)
0

1
At

t1
<CAl / (ISEa(s)[2 + [1Shuy(s)[2) ds + ClIG 12
0

/0 1 S (ﬁs(tl — 5)a(SMa(s), GY) + Bt — s)a(Si%u,(s), gl)) ds
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t1

SCN/OI(HC(S)H?Jr||CS(S)II§)dS+C’At/O ()12 + [[us(s)[12) ds + ClIGIZ.

The rest of the terms on the right hand side of (4.129) can be estimated identically
as Lemma 4.7. Note that, |G'[|. < [|¢*]|- + ||EY]le. Thus, a combination of (4.130)-

(4.132), a multiplication of the resulting inequality by e**'!

(4.64), (4.65), Lemmas 4.7, 4.8 and assumption (A3) lead to

, and an application of

e 0,G)? + pK1e* M AL 9,6 |2 < C(R* + Ab).
We now use the above estimate, triangle inequality

1o | <l|0p(ut = Prut) || + [[0:¢" ] + [10:G|
10l <[10e (' = Prul)le + 10" - + 105,

(4.65) and Lemma 2.2 to observe that
e2at1”atxl”2 +,UK1€2atlAtHatX1Hg S C(h2r + At). (4'133)

Finally, insert (4.133) in (4.127), and use the relation O,E" = 0;(u™ — Ppu™) + 0 x",
Lemma 2.2 and assumption (A3) to conclude the rest of the proof. O

The following theorem establishes fully discrete L>°(L?)-norm estimate for the pressure

eITror.

Theorem 4.5. Under the assumptions of Theorem 4.4 , there exists a positive constant

Kt such that the following error estimate holds:
Ip" — PP < Kr(h™ + AtY?).

Proof. Subtract (4.9) from the equation (4.33) at t = ¢, to find error equation as

follows:

=b(¢y, rn(p") — By)) = (i — ou", @,) + (G:E", ¢,) + pa(u” — Pru”, ¢,,)

Fpa(x™, dp) + alg (), én) + / " B(t, — s)a(Pyu(s), ) ds

—a(q(Pyu), ) + / " Bt — s)a(u(s) — Pyu(s), ) ds

e (" u", @) — U (UL UL, @) + 0(¢y, 0" — 1a(p"), Vb, € X (4.134)

Using Lemma 1.7 and triangle inequality, one can obtain

;' (x), &) < CALY X Nldnll < CALY (E| + o’ = Pru’[l) |-
i=1

=1
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A use of (4.39), Lemma 1.7 and Hoélder’s inequality leads to
tn
[t = atPra(s). 6 s~ atap P, 0,
0
n t;
<CAtY /
i=1 7 ti-1

t7l
goAt( [ e ipe + ||Phus<s>||§>ds)
0

ds

a (ﬁ(tn — s)a(Pyu(s), ¢h))

1/2
[Pl

Applying Lemma 2.3 and Hoélder’s inequality, we arrive at

tn 1/2
scm( / ezasru<s>$+1ds) ™0

In this case, the nonlinear terms can be rewritten by virtue of the continuity of u”™ and

then bounded with the help of (2.56) as follows

‘ /otn Bty — s)a(uls) — Pru(s), ¢,) ds

noonooon n-1 n— n n=l, n _n n—1 n— n
c" (u , U 7¢h) - CUh (Uh 17Uh7¢h) = CUh (u u 7¢h) - CUh (Uh laUhvd)h)
= P B ) + U (0 —w T UL ) U (B UL )
< C(a" LB + Atllail| o200 @) UR e + 1B UR )|l
The remaining terms on the right hand side of (4.134) can be bounded exactly like

Lemmas 4.7 and 4.12. Thus, employing the inf-sup condition from Lemma 1.8, com-

bining all the above estimates in (4.134) and applying Lemma 4.7, we obtain
I (p™) — Pyl < ClOE"| + C(h" + At?).

Since |[p" — P|| < [|p™ — ra(™)|| + [|ra(p™) — P||, using (1.31) and Lemma 4.12, we

arrive at our desired estimate of this theorem. ]

Remark 4.1. If we assume wy; € L>®(0,T; L*(Q)), then we can find an improved

estimate of pressure error:
Ip" — Pl < C(h" + At).
To derive the above estimate , we rewrite (4.134) as
(0ex"; pp) + b(dp, (") — By) = —(uf — Opu™, @) — (9 (0" — Ppu”), ¢y,)
ol = Py ) — s 8y) — alaF ) — [ Bt alPrus). ) ds
Fala ).~ [ Bt~ halu(s) ~ Pru(s). ) ds

n n-1 — n n n
= (utu dy) + e (U UL @) = b, 0" — (@), Yy, € Xpe (4.135)
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The term (u} — du”, ¢;,) is bounded employing (1.14), (2.138), the Cauchy-Schwarz

and Holder’s inequalities as follows

tn 1/2
0~ ot gl < A2 ([ utolPde) lanll < €t sup il
tn—1 YA

For the term (0;(u™ — Pru"™), ¢;,), using (1.14), Lemma 2.2 and the Cauchy-Schwarz
inequality, we find

tn

1
O~ Py 9] < 5 [

tn—1

[us(s) = Prus(s)l|@plle ds < Ch™ sup  [up],[|¢y ..
1<n<M

The remaining terms on the right hand side of (4.135) can estimated similar to Theorem

4.5. Now, Lemma 1.8 leads to

HatXnH +6*||Th(pn) _ P}:LH < sup (atx a¢h) + sup b(¢harh(p )_ Ph).

@, eX,\{0} (AR @, X\ {0} [form[e

The desired estimate is obtained by applying the above bounds in (4.135).

Remark 4.2. Similar to Remark 2.5, the optimal order convergence rates derived in

this chapter can be extended to the 3D case.

4.6 Numerical Experiments

This section provides numerical results that corroborate the established theoretical re-
sults. To discretize space, we utilize P.-P,._; (r = 1,2) mixed spaces. For discretization
in time direction, we employ a backward Euler method that has first-order accuracy.
The spatial computational domain {2 is selected as [0, 1] x [0, 1]. Examples 4.1 and 4.2

are computed on the time interval [0, 1].

Example 4.1. In this example, the following exact solutions (u,p) = ((ul(:n,y,t),
us(z,y,t)), p(z, vy, t)) are considered:

ui(z,y,t) =222 (z — 1)*y(y — 1)(2y — 1) cos(t),
ug(z,y,t) = — 2x(z — 1)(22 — 1)y*(y — 1)% cos(t),

p(ZL“, Y, t) =2 COS(t)(‘/E - y)
We compute the forcing term f from the above exact solution.

Tables 4.1 and 4.2 present the numerical errors and rates of convergence for the P; — P

mixed finite element space, whereas Tables 4.3 and 4.4 are for Py — P; space. The
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parameters are chosen as 4 = 1, v = 0.1, § = 0.1 for Tables 4.1-4.4. The penalty
parameter o, = 10 and 20 for » = 1 and 2, respectively. The time step At is chosen as
O(h") for Tables 4.1 and 4.3, and O(h"*!) for Tables 4.2 and 4.4. We have considered
three DG methods namely, SIPG, NIPG and ITPG. The convergence rates are optimal
for velocity in energy norm and for pressure in L?norm in Tables 4.1 and 4.3, and for

velocity in L?norm in Tables 4.2 and 4.4, as predicted by the theory.

Table 4.1: Numerical results with P;—IP, finite element for Example 4.1.

Method | A | |u(T)—UM|. Rate | |p(T)— PM|| Rate
SIPG | 1/4 | 2.8328 x 1072 1.0486 x 102
1/8 | 1.2429 x 1072 1.1885 | 7.1664 x 10~  0.5491
1/16 | 5.4126 x 1073 1.1993 | 4.3413 x 10~  0.7231
1/32 | 2.4326 x 107 1.1538 | 2.4102 x 1073 0.8489
1/64 | 1.1362 x 107 1.0982 | 1.2698 x 10~  0.9245
NIPG | 1/4 | 1.2675 x 102 1.3412 x 1072
1/8 | 6.2917 x 1073 1.0104 | 1.0711 x 1072 0.3244
1/16 | 3.1137 x 107®  1.0147 | 6.9746 x 10~  0.6189
1/32 | 1.5458 x 107%  1.0102 | 3.9503 x 10~ 0.8201
1/64 | 7.7025 x 10~*  1.0050 | 2.0882 x 10~  0.9196
IIPG | 1/4 | 1.3262 x 1072 1.2781 x 1072
1/8 | 6.5214 x 1073 1.0241 | 1.0541 x 1072 0.2780
1/16 | 3.1718 x 1072 1.0398 | 6.9157 x 10~3  0.6081
1/32 | 1.5569 x 1072 1.0266 | 3.9357 x 1073 0.8132
1/64 | 7.7221 x 107*  1.0116 | 2.0849 x 10~ 0.9165

Table 4.2: Numerical results with P;—P finite element for Example 4.1.

Method | & | |u(T)—UM| Rate
SIPG | 1/4 | 2.1525 x 1073

1/8 | 4.7248 x 107*  2.1876

1/16 | 1.0314 x 104 2.1955

1/32 | 2.3388 x 107> 2.1408

1/64 | 5.5033 x 107%  2.0873
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Table 4.3: Numerical results with Po—IP; finite element for Example 4.1.

Method | A | |u(T)—UM|. Rate | |p(T)— PM|| Rate
SIPG | 1/2 | 1.0191 x 1072 3.7928 x 1073
1/4 | 3.2147 x 107 1.6646 | 1.5561 x 107° 1.2852
1/8 | 7.4950 x 10~*  2.1006 | 4.7252 x 10~* 1.7195
1/16 | 1.7473 x 10~*  2.1007 | 1.3290 x 10~* 1.8300
1/32 | 4.2214 x 107> 2.0494 | 3.5666 x 1075 1.8977
NIPG | 1/2 | 9.1793 x 1073 2.9873 x 1073
1/4 | 3.1398 x 1073 1.5476 | 2.2555 x 1073 0.4054
1/8 | 8.2579 x 10~*  1.9268 | 5.1996 x 10~* 2.1169
1/16 | 2.0821 x 10~*  1.9876 | 1.1558 x 10~* 2.1695
1/32 | 52325 x 107°  1.9925 | 2.7201 x 107> 2.0871
IIPG | 1/2 | 8.8447 x 1073 2.9281 x 1073
1/4 | 2.9530 x 1073 1.5825 | 1.9636 x 1073 0.5764
1/8 | 7.4931 x 10~*  1.9785 | 4.8520 x 10~* 2.0168
1/16 | 1.8588 x 10~* 2.0111 | 1.1833 x 10~* 2.0357
1/32 | 4.6497 x 107> 1.9991 | 2.9740 x 107> 1.9923

Table 4.4: Numerical results with Po—IP; finite element for Example 4.1.

Method | h | [[w(T) —UM| Rate
SIPG | 1/2 | 9.1376 x 1074

1/4 | 1.4803 x 10~* 2.6258
1/8 | 2.0159 x 105 2.8763

1/16 | 2.6797 x 106 2.9113

1/32 | 3.3465 x 1077 3.0013

Example 4.2. In this test case, the initial and boundary conditions and f are picked

such that the analytical solutions (u, p) = ((ul(a:',y,t), us(z,y,t)), p(x,y,t)) are

Ul(% Y, t) = Cos(27rx) sin(zﬁy)e—&r%?

us(z,y,t) = — sin(27x) (:08(27Ty)6—s7r2wt7

1 2
p(l’, Y, t) - - Z(COS(ZLWJ:) + COS(47Ty>)6_167r :“t.
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We choose the penalty parameter o, = 20 and 40 for » = 1 and 2, respectively.
Other parameters are taken as v = 0.001, 6 = 0.01. The computational errors and
convergence orders are shown in Tables 4.5-4.8 with g = 1/100. Tables 4.5 and 4.6 are
for the case r = 1, and Tables 4.7 and 4.8 are for r = 2. Optimal rates of convergence

are obtained for this test problem.

Table 4.5: Numerical results with P;—Py element for Example 4.2 .

Method | & | |u(T)—UM|. Rate | |p(T)— PM|| Rate
SIPG | 1/4 | 1.5340 x 10° 4.1795 x 102
1/8 | 7.6118 x 1071  1.0109 | 2.5388 x 1072 0.7191
1/16 | 3.5366 x 10~ 1.1058 | 1.0213 x 1072 1.3137
1/32 | 1.7315 x 107! 1.0302 | 4.8638 x 102 1.0702
1/64 | 8.6291 x 1072 1.0047 | 2.4399 x 1073  0.9952
NIPG 1/4 1.5220 x 10° 4.1153 x 1072
1/8 | 7.3415 x 107! 1.0518 | 2.2886 x 1072 0.8465
1/16 | 3.4782 x 1071 1.0777 | 9.8146 x 1073 1.2214
1/32 | 17227 x 101 1.0136 | 4.8303 x 103 1.0228
1/64 | 8.6199 x 1072  0.9989 | 2.4366 x 1073 0.9872
PG 1/4 1.5203 x 10° 1.2781 x 1072
1/8 | 7.4449 x 10-'  1.0300 | 1.0541 x 10~ 0.7911
1/16 | 3.5002 x 10~*  1.0888 | 6.9157 x 1073 1.2616
1/32 | 1.7256 x 1071 1.0203 | 3.9357 x 1073  1.0444
1/64 | 8.6216 x 1072 1.0010 | 2.0849 x 102 0.9915

Table 4.6: Numerical results with P;-Py element for Example 4.2 .

Method | h | [[u(T)—UY| Rate
SIPG | 1/4 | 1.4240 x 10~

1/8 | 4.8458 x 1072 1.5551
1/16 | 1.1158 x 102 2.1185
1/32 | 2.5256 x 1073 2.1434
1/64 | 6.0406 x 10~*  2.0638




Table 4.7: Numerical results with Po—IP; element for Example 4.2 .

Method | A | |u(T)—UM|. Rate | |p(T)— PM|| Rate
SIPG | 1/2 | 1.6672 x 10° 1.3814 x 107"
1/4 | 8.0392 x 107" 1.0523 | 2.9275 x 1072 2.2384
1/8 | 1.6804 x 107" 2.2582 | 1.3203 x 1072 1.1487
1/16 | 3.7013 x 1072 2.1827 | 3.5454 x 1073  1.8969
1/32 | 84995 x 1072 2.1225 | 9.0318 x 10~* 1.9728
NIPG | 1/2 | 1.6849 x 10° 1.3685 x 107!
1/4 | 7.8166 x 107" 1.1081 | 2.9688 x 10~2 2.2046
1/8 | 1.6351 x 107" 2.2571 | 1.3046 x 1072 1.1862
1/16 | 3.6318 x 1072 2.1706 | 3.4602 x 10~3 1.9147
1/32 | 8.4214 x 1073 2.1085 | 8.7769 x 10~* 1.9790
IIPG | 1/2 | 1.6762 x 10° 1.3746 x 107!
1/4 | 7.9212 x 107" 1.0814 | 2.9480 x 102 2.2212
1/8 | 1.6554 x 1071 2.2584 | 1.3120 x 10~2  1.1679
1/16 | 3.6423 x 1072 2.1843 | 3.5009 x 10~%  1.9059
1/32 | 85372 x 1073 2.0930 | 8.8994 x 10~* 1.9759

Table 4.8: Numerical results with P,—P; element for Example 4.2 .

Method | h | [[w(T) —UM| Rate
SIPG 1/2 | 1.4479 x 1071

1/4 | 5.3989 x 1072 1.4232

1/8 | 6.0808 x 1073  3.1503

1/16 | 55700 x 104 3.4482

1/32 | 6.7527 x 1075 3.0443
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Example 4.3. In this problem, we consider the lid-driven cavity flow on the computa-

tional domain [0, 1]* with £ = (0,0). The velocity on the upper boundary is w = (1,0).

No slip boundary conditions are considered on the other portions of the cavity bound-

aries.

For computation, we first choose P; — Py elements with 7" = 75, h = 1/64 and
At = 0.01. Here, we have considered different p = {1/100, 1/400, 1/1000}, o, = 50,
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and for spatial discretization SIPG, NIPG and IIPG schemes are implemented. In
Figures 4.1, 4.2 and 4.3, we have shown a comparison along the lines (0.5,y) and
(x,0.5) between unsteady backward Euler and steady state DG velocities and pressure
for p = 1/100, 1/400, 1/1000, respectively. The parameters for this experiment are
v = 0.1p and 6 = 0.1. We repeat this experiment by employing P, — P; elements
for ;4 = 1/1000 in Figure 4.4. It can be concluded from the Figures 4.1-4.4 that for
large time, the Oldroyd model DG solution coincide with the steady state DG solution
which support the theoretical findings.
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Figure 4.1: Velocity components and pressure for lid driven cavity flow with ¢ = 1/100.
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Figure 4.2: Velocity components and pressure for lid driven cavity flow with © = 1/400.
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Figure 4.3: Velocity components and pressure for lid driven cavity flow with pu =
1,/1000.
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Figure 4.4: Velocity components and pressure using P, — P; element for lid driven

cavity flow with p = 1/1000.

Note that, when v = 0, the viscoelastic model under consideration (4.1) transforms
into the well-known NSEs. In Figures 4.5 and 4.6, we depict for various p the streamline
plots of the NSEs and our model problem at final time 7" = 10 for SIPG discretization
utilizing P; — Py and Py, — IP; elements, respectively. In this case, the parameters are
v =0.01 and § = 0.01. From these graphs, we observe that the swirls situated in the
corners of the cavity from the proposed Oldroyd viscoelastic flow problem are smaller
than those from the NSEs. This is due to the presence of integral term which plays a

crucial role in stablizing the velocity field.
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Figure 4.5: Streamlines for NSEs (first column) and viscoelatic model problem (4.1) -

using P; — Py elements with x4 = 1/100,1/400, 1/1000 at final

(4.3) (second column)

time T=10.
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Figure 4.6: Streamlines for NSEs (first column) and viscoelatic model problem (4.1) -

(4.3) (second column) using Py — P; elements with p = 1/100,1/400, 1/1000 at final

time T=10.
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4.7 Conclusion

In this chapter, we have applied a DG method to the Oldroyd model of order one.
Regularity results of the semi-discrete DG solution, and existence, uniqueness of the
discrete solutions, and consistency of the scheme have been shown. A fully discrete
scheme with the backward Euler method for time discretization has been studied and
a priori bounds of the fully discrete solution have been derived. We have established
optimal error estimates of the velocity in energy norm for SIPG, NIPG and ITPG meth-
ods, and optimal error estimates for pressure in L?(L?)-norm only for SIPG method of
the fully discrete approximations. Furthermore, optimal L*(L?*) and L°(L?)-norms
error estimates for the velocity and pressure, respectively, are derived only for the

SIPG method. Our numerical results support our theoretical findings.
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