Chapter 5

Two-Grid DG Method for the

Navier-Stokes Equations

In this chapter, we apply a two-grid scheme to the DG formulation of the transient
NSEs. The two-grid algorithm consists of the following steps: Step 1 involves solving
the nonlinear system on a coarse mesh with mesh size H, and Step 2 involves lineariz-
ing the nonlinear system by using the coarse grid solution on a fine mesh of mesh size
h and solving the resulting system to produce an approximate solution with desired
accuracy. We establish optimal error estimates of the two-grid DG approximations
for the velocity and pressure in energy and L?-norms, respectively, for an appropriate
choice of coarse and fine mesh parameters. We further discretize the two-grid DG
model in time, using the backward Euler method, and derive the fully discrete error
estimates. Finally, numerical results are presented to confirm the efficiency of the

proposed scheme. This work has been published in [142].

5.1 Introduction

The use of DG techniques can result in algebraic equations with extremely high degrees
of freedom, which can be computationally expensive and present a significant challenge
to solve them, especially when we solve a nonlinear system. This chapter presents a
cost-effective two-grid technique in conjunction with the DG method to deal with this
issue for the time-dependent incompressible NSEs, which is the first attempt in this
direction to the best of authors knowledge. The two-grid techniques are currently
recognised as an efficient discretization approach for solving nonlinear problems. They

could solve the system relatively inexpensively while maintaining a certain degree of
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accuracy. Construction of two shape-regular triangulations of 2 is the key mechanism
in this algorithm; a coarse mesh £y and a fine mesh &, with different mesh sizes H
and h ( h < H). Based on triangulations &y and &, we define discontinuous finite
element spaces (Xg, My) and (X, My), which will be referred to as coarse and fine
space, respectively. We further define the weakly divergence free subspaces V) of X,

as follows
Vi ={vieXy: b(vy, qn) =0, Vgr € My},

where A\ = H, h.

The main algorithm for two-grid method for any nonlinear problem is stated as follow:
e Step 1: Solve the nonlinear problem over the coarse mesh Ep.

e Step 2: Solve a time-dependent/independent linearized system over the fine

mesh &y,

As mentioned earlier, two-grid DG methods have never been applied for the tran-

sient NSEs. Therefore, we take a brief literature survey, for results available in CG-
two-grid-NSEs as well in DG-two-grid in related problems. Note that efficiency of such
a method is measured in terms of the scaling between the coarse mesh size and fine
mesh size, that is, between H and h. We will look into these scaling in the related
problems to take a cue for our own problem.
There is plenty of literature available for NSEs using two-grid methods in the context
of CG setting. For example, in the context of steady state NSEs, we refer to [52,
67, 108, 109]. The work has been extended to the transient NSEs in [68] by Girault
et al.. They have established optimal L*(H') and L?(L?)-norm error estimates for
velocity and pressure, respectively, for h = O(H?) and for Mini-element. A fully
discrete two-grid technique which is second order in space and time has been analyzed
for unsteady NSEs, and optimal velocity and pressure errors in L>(H') and L?(L?)-
norms, respectively, are established by Abboud et al. [1] with a choice h? = H® = At%.
This work has been extended to less regular solution at ¢ = 0 by Frutos et al. [54]
and Goswami et al. [74] with uy € H*(Q) and uy € H'(Q), respectively. In [54] and
[74], the authors have shown optimal L>°(H')-norm velocity error and L*(L?)-norm
pressure error with the choice h = O(H?) and h = O(t~Y/2H?), respectively.

Literature related to two-grid DG methods has already been discussed in Section
1.5.4. In the context of nonlinear elliptic and parabolic problems, optimal energy norm
error estimates have been shown with the choice of h" = O(H"*!), when r'* order

polynomial approximation has been carried out, see [21, 22, 51, 176, 177, 180, 189].
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Similar scaling can be observed in other attempted problems as well [179, 190]. In this
chapter, we thrive to obtain similar results for our problem.

We revisit the DG variational formulation of NSEs from Chapter 2 before presenting
the two-grid DG algorithm of this chapter: Find (u(t),p(t)) € X x M, t > 0, such
that

(w(t),v) +va(u(t), v) + cu(t)(u(t), u(t),v) +b(v, p(t)) = (ft), v) vVveX, (5.1)

The algorithm employed in this chapter involves the following steps:

e Step 1: Solve the nonlinear problem over a coarse mesh £y to provide an

approximate solution, say uy.

e Step 2: Linearize the nonlinear system with one Newton iteration around the
coarse grid solution uy and solve it over a fine mesh &, to obtain the solution,

say up.

We now introduce a DG two-grid semi-discrete algorithm applied to (5.1)-(5.3) which
is described as follows:

Step 1 (Nonlinear system on a coarse grid): Find (ug,py) € Xy X My such that for
all (¢, qu) € Xy x My, for ug(0) = Pgyug and t > 0

(ure(t), ¢p) +va(un(t), dy) + O (un(t), un(t), dg)
+b (¢H7 pH(t)) = (f(t>a ¢H)) (54)
b(ug(t), qm) =0.

Step 2 (Update on a finer mesh with one Newton iteration): Find (uy, pn) € Xp, X M,
such that for all (¢, qn) € X, x My, for u,(0) = Prug and ¢ > 0

(une(t), @) +va(un(t), @) + ™ O(un(t), un(t), ¢y)
+c O (ay (t), wp(t), @) + b (e, pu(t) = (£(t), ¢4
+ O (ug (1), ug(t), ¢p),
b(ux(t), qn) =0. )

(5.5)

An equivalent DG two-grid semi-discrete algorithm corresponding to the scheme (5.4)—

(5.5) on the space V) is the following:



170

Step 1 (Nonlinear system on a coarse grid): Find ug € Vg such that for all ¢, € Vg
for ug(0) = Pyug and ¢t > 0

(umi(t), @) +va(uu(t), ¢p) +cO(un(t), un(t), oy) = (), ¢u).  (5.6)

Step 2 (Update on a finer mesh with one Newton iteration): Find u;, € V}, such that
for all ¢, € V}, for u,(0) = Ppug and ¢ > 0

(une(t), d1) +va(un(t), @) + O (un(t), un(t), ¢y)
+ O (g (), wi(t), @) = (£(1), dp) + O (up(t), un(t), ¢p).  (5.7)

Below, we present a summary of the main findings from this chapter:

e Optimal semi-discrete error estimates for the two-grid DG velocity approxima-

tion in energy norm when h = O(H Ttl) and pressure approximation in L°°(L?)-

r41

norm when h = O(H ) are derived.

e Under the smallness assumption on the given data, uniform in time velocity and
pressure error estimates in energy and L°°(L?)-norms, respectively, are estab-
lished.

e Error estimates for the fully-discrete backward Euler velocity and pressure ap-
proximations are derived. Numerical experiments are carried out to show the

performance of the scheme.

This chapter is organized as follows: A priori bounds of semi-discrete solutions and
some relevant estimates are discussed Section 5.2. In Section 5.3, the semi-discrete
velocity and pressure error estimates are shown to be optimal. Fully discrete scheme
is presented in Section 5.4. We have employed the backward Euler method, and
error estimates for the velocity and pressure are derived. We carry out numerical
experiments in Section 5.5, and the results are analyzed. Finally, Section 5.6 concludes
this chapter by summarizing the results briefly.

Throughout this chapter, we will use C, K(> 0) as generic constants that depend on
the given data, v, a, Ki, K5, C5 but do not depend on h and At. Note that, K and
C may grow algebraically with v~!. Further, the notations K (t) and Ky will be used

when they grow exponentially in time.
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5.2 Regularity Bounds and Some Useful Estimates

In this section, we present a prior: and regularity bounds for the Step 1 and Step
2 semi-discrete velocity approximations, and an estimate related to upwinding term
I(+,-,-) which will be useful for Step 2 error analysis.

In Lemmas 5.1 and 5.2, we recall from Lemmas 2.8, 2.13, 2.16, 2.14 and Theorems 2.1,
2.2 of Chapter 2, the Step 1 a priori and regularity estimates, and error estimates,

respectively, which play crucial role in the derivation of Step 2 error estimates.

Lemma 5.1. Suppose the assumption (A1) holds true and 0 < o < ”Kl Then, for
the semi-discrete DG velocity ug(t), t > 0 for step 1, the following holds true:

t
s ()] + ¢ [ e flu(s)|2ds <C. (5.8)
t t 0
/ €205 gy (5)]2 s + e / €20 |[tgraa (3)| 1y ds < C, (5.9)
imsup s ()] < 18 =ca2on,
t—00
(5.10)

where

TP —— {%, b € Xy, oy + 0}-

Lemma 5.2. Suppose the assumption (A1) holds true and let 0 < a < ;_1521 In
addition, let the semi-discrete initial velocity uy(0) € Vg with ug(0) = Pyuy. Then,
there exists a constant K > 0, such that for 0 <t < T,

(e — wr) ()] + H| (w— ug)(t)]|- < K(E)H™,
I(p = pu) (O] < K(t)H",

t
e [ ), () dr < KR
0

Next in Lemma 5.3, we derive a prior: estimates of Step 2 solution uy,.

Lemma 5.3. Let 0 < o < ’;IC(; Then, for the semi-discrete DG velocity uy(t), t > 0

for step 2, the following holds true

t
[l ()] +62“t/0 el (s)[12 ds < K(t).

Proof. Choose ¢, = uy, in (5.7), and apply Lemma 1.6, positivity property (1.19), the
Cauchy-Schwarz inequality and Young’s inequality to obtain

1d

vK,
el B 2 < 2 a2+ CUER + e (g, w)
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-+ |CuH(llH, Ug, uh)|. (511)

The estimates (2.55), (2.57) and Young’s inequality lead to the following bound:

1/2 ‘2/2

| (y, ug, up)| + [ (ag, ug, up)| < C(Jlunl] 2 w22 [ug |- + [ag 2]l

VKl

< w2+ C (] PllasllZ + [l ]2).

Multiplying (5.11) by €?*!, integrating from 0 to ¢ and applying the the above inequal-

ity, we obtain
t t
e un()|* + (VKL — 2a02)/ e |lup(s)[1Z ds < [[un(0)||* +/ e |[£(s)||* ds
0 0
t
+ C/O e ([un () IPllun (s)2 + [[un(s)lI2) ds. (5.12)
Note that, using triangle inequality and Lemma 5.2, we find
Juglle < flu =gl + fluf < (5.13)

Now, multiplying (5.12) by e 2% and using (5.13), the fact

t
1
e2at/ e2as ds = _(1 . 672at),
0 2a

vKq
2027

Gronwall’s inequality and choosing o < we finally arrive at the desired estimate

of this lemma. ]

Now from the coercivity result in Lemma 1.6, the positivity (1.19) and the inf-sup
condition in Lemma 1.8, the existence and uniqueness of the discrete solutions of (5.5)
(or (5.7)) in Step 2 will follow easily, see [98] for details.

The next lemma is an auxiliary result for the upwinding term [(-,-, ) which will be

useful for deriving the error estimates.

Lemma 5.4. For all u,v € X and wy, ¢, € Xy, there exists a positive constant

C independent of h, such that, the following estimate holds true:
1 (v, ) = 1V (v, )] < OB ] ooy [Vl b -

Proof. The derivation of this lemma closely follows the proof of [70, Proposition 4.10].
Let e € T, \ 022 be an edge adjacent to F; and Es with n, = ng,. Then, for any
0, € X}, the contribution of e to the term lﬁ'h(u7 v, ¢;,) reduces to

[urnow-f.
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where 2. = ¢, |z, if {84} 1. < 0, 92|, = By lp, if {84} 1. > 0, and ¢2"|, = 0
if {6,}-n. = 0. In a similar way, if e € Q2N E, then we have n, = ngn. Then, the

0.,
Jtwmv-of,

where (bg’ﬂ6 = ¢y|r if 0, - n. < 0 and (;bgh|6 = 0 otherwise. Set B = (V" (u, v, ¢;) —

lwh(u, v, ;). Then, following the above notation, B can be rewritten as

contribution corresponding to e is

B= Y [(u)nlar - o),

ecl'y,

The domain of integration can be partitioned as follows:

'y =6G1UG, UG UGy,

where

— {e: {wi}-n.#0and {3} -n. # 0 acon e},
Gy ={e: {wn} n.=0and {t,} -n.#0 aeon e},
Gy={e: {4} -n. =0 and {ws} - n, #0 a.con e},
Gi=Th\ (G UG UGs).

Now, applying Holder’s inequality and Lemma 1.10, we can deduce

|B| =

> [turnomer - e

e€G1UG2UG3UG, ¥ ©

<COllullpoy Y 1el VNVl 1 dnll2om e

ecG1UG2UG3UGy

2
<Cllullpe@ >, > ol el 72| (V] 2o | @il 2041

ecG1UG2UG3UG, =1

Furthermore, using Holder’s inequality, Jensen’s inequality and estimate (1.14), one

can obtain

1/2
r/(r Oe
|B| <Ch / +1)||u||L°°(Q) ( Z ?H[‘d”%ﬂ(e)) ||¢h||L2(T+1)(Q)

eth | |

<CRTD | oo @y |Vl

This completes the proof of this lemma. m
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5.3 Semi-discrete Error Estimates in Step 2

This section deals with semi-discrete velocity and pressure error estimates in Step 2.

5.3.1 Velocity Error Estimates

In this subsection, we derive the bounds of semi-discrete velocity error in Step 2 for
two-grid algorithm. Define ey = u — uy and e = u — u;,. Using the equations (5.1)

and (5.7), we obtain
(eta ¢h) +v a(e7 ¢h) + ct (ew ugy, ¢h) + ct (uH7 €, d)h) + ZUh(ua €, d)h)
_luH (ua €y, ¢h) + b(¢h7p) = _CUH (eHa €q, ¢h)7 v¢h € Vh' (514)

Lemma 5.5. Suppose the assumption (A1) holds true and let 0 < a < Z—[C(; Then,
there exists a constant K > 0, such that for 0 <t < T,

t
le(t)]? + e / 2| e(s)[2ds < K (1)(h¥ + 2D 4 )

where K (t) grows exponentially in time.

Proof. Set ¢, = Pre = e+ (Pp,u—u) in (5.14). An application of Lemma 1.6 and

definition of L2-projection, one can find

1d
2dt

—c"(Pre,ug, Pre) — ¢ (u — Ppu,uy,Pre) — ¢ (ug,u — Pyu,Pre)

|Prell® + vKi||Pre|? + c* (uy, Pre, Pre) < va(Pru — u, Pye)

—c" (ey, ey, Pre) + 1" (u, ey, Pre) — 1" (u, ey, Pre) — b(Pre, p). (5.15)

The third term on the left hand side of (5.15) is non-negative due to (1.19). A use of
Lemma 2.3 and Young’s inequality yields a bound for the first term on the right hand
side of (5.15) as

vK
vla(Ppu —u,Pre)| < Cvh”|ul,.oq||Prell: < TJHPheH? + Ch2T|u|f+1. (5.16)

Using estimate (2.57) and Young’s inequality, we arrive at

[ (Pre, upr, Pre)| < C|[Prel|'?[[ug || Pre]

< C|Prell*[lupllz + ——[PrellZ. (5.17)

£

Apply estimate (2.56), Lemma 2.2 and Young’s inequality, we obtain

|c*" (u — Ppu,ugy, Pre) + ¢ (uy,u — Pyu, Pre) + ¢ (ey, ey, Pre)|



175

< Cllu = Prull[[ug|[[Prel + CHeHIIQIIPhella

< Ch*[ul; +1||uH||2+C||eH||4+ ||Phe||2 (5.18)

Following Lemma 5.4, and using Lemma 1.3 and Young’s inequality, we bound the

sixth and seventh term on the right hand side of (5.15) as

1 (u, e, Pre) — [ (u, e, Ppe)] CH/0 ) ufl p(oy les 1 [ Prell.

<CR*C D |ul3llen ) + — VKl <1 IPrelZ. (5.19)
Due to the space V,, the pressure term becomes
b(Pre,p) = b(Pre,p — rp).
We use Young’s inequality and Lemma 2.4 to arrive at
b(Pre, p —r4p)] <—HPhe||2 +Ch¥|pf}. (5.20)

— 10
Collecting the bounds (5.16)-(5.20) in (5.15) and multiplying the resulting inequality

by €2?t we arrive at

d

7 (EPrel) + (VK — 2C20)e* [ Pre]2 < O™ Prel|||u

ORI ey |2 + Ce* ey

+Ce* fuli (h* + 7 [[ug|)2) + Ch* e p];. (5.21)

Integrate (5.21) with respect to time, use |P,e(0)|| = 0, (5.13), Lemma 5.2, Gronwall’s

lemma and assumption (A1) to obtain
t
|Pre(t)||* + 6_20‘t/ e ||Pre(s)||?ds < C(t)(h* + p2r/(r+1) pp2r 4 HZ2),
0

Finally, a use of triangle inequality ||e||. < ||Pre||: + |[|u —Ppu||. and Lemma 2.2 leads

to the desired result. O

Theorem 5.1. Under the assumptions of Lemma 5.5, the error e = u — w, in Step

2 for approzimating the velocity satisfies
o2t /t e20%|| e (s)||2 ds + || e(t)||2 < K (£)(h2 + h2/ G+ [2r 4 pore2y
0
FK(OR L HE (B2 4 k20D 2 g ey,
Proof. Choose ¢;, = Ppe, in (5.14) to obtain
vd

|Pre:* + 57 (a(Pre,Pre)) + ™ (e, uy, Pre;) + ¢ (uy, e, Prey)
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+" (u,eq, Pret) — 1" (u, ey, Pre) + 0(Pre, p) = (Prus — uy, Prey)

+va(Ppu—u,Pre) — " (ey,eq, Prey).

Multiply the above equation by e?* to find

vd
2 dt
+ve 2at (P u—u Phet) +VO[€ (Phe Phe) — €2at llh(e uH7Phet)

2atHP e HZ ( 2at (Phe Phe)) — 2at(Phut _ut,Phet)

€2at H (U.H, € Phet) - €2at e (eHJ €H, Phet) 2atZUh (ua €H, Phet)
+e2m (v, e, Prey) — e*b(Prey, p). (5.22)
First we rewrite
' (e,ug, Pre;) = —c" (e, ey, Pre) + " (e,u, Prey).

Using Holder’s inequality, we obtain

|c* (e, eq, Prey)|

Z/ -Vey) - Pre; + Z/ {e} -ng|(elt —et) - Prel™

E€&y, Ee&p,
+ = Z / eley - Pre, — = Z / ‘n.{ey - Pre,}
EES EGF}L
< D llellze | Venllzz e IPredlzse) + Y I{e} - el lfenlllzzo I Precl i)
EEgh eEFh
+5 Z IVellrzmllen| s m) IPredllzam) + 5 Z €] - mellz2e)l[{en - Prec}rz
Eegh eEFh

We now estimate the terms on the edges. Let us consider the elements F; and FEj
adjacent to e. Now, Lemmas 1.5 and 1.10 lead to

2
1
I{e}  nellsqolllenl ||z Pherllzie < 5 Y lle-nele

2,j=1

yllenlllze)[Predl s, Lo

2
< Chyp' ™ > " (llell e, + hif’

4,j=1

1
)| |1/2H[eH]”L2 yIPredl| e, (5.23)

With an identical approach as above, we can derive the following

€] - nefl 2 e H{eH “Prertlra

<Ch 1/22

1,j=1

1/2

y(lerllzae) + hp

||1/2H efll 2 @) IPreillzqm) (5:24)
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Using Holder’s and Young’s inequalities, (5.23), (5.24), (1.14) and Lemma 1.10, we

arrive at
1
[ (e, e, Prer)| < Ch™'2el|-[len||-|Pre:|| < slIPredl® + Ch7lellZflenllZ. (5.25)
Since u is continuous, Holder’s and Young’s inequalities, Lemmas 1.3 and 1.10 yield

|c* (e, u, Prey)|

Z/E(eVu)-PheH—% Z /E(V-e)u-Phet

Ee&y Ee&y
1
-5 > [ le] - ne{u-Pue}
eel"h €

< el IVullzs sl Predirae + Cllullie@ Y Vel Predl 2

Ee&;, Ecé&y,

1 1/2 1/2
+ Clhullen (3 S RlIE) (3 IPrelia )
ecl'y, Ee€é&y

1

< EHPhetHQ + Cllull3]lell2- (5.26)

In a similar manner, we can bound the fifth terms on the right hand side of (5.22) as

follows
| (ug, e, Pre;)| = ¢ (eq, e, Pre)| + | (u, e, Pre;)|
< Ch™'2|len]|-|lell-|Prec]| + Cllullz]ell-|Pre.

1
< ZIPwed” + Ch7*lelZlen |2 + Clluli]lel2. (5.27)

Again, we rewrite the sixth term on the right hand side of the equality (5.22) as

d
e2atc“H(eH,eH,Phet) :E( 2at _ugy

— 2 (e, e, Pre) — e (ey, emy, Pre).

e (eH,eH,Phe))—2OzezatcuH(eH,eH,Phe)

Apply estimate (2.56) to arrive at

120 M (ey, ey, Pre)| + | c™ (eny, e, Pre)| + [e2*c™ (ey, eny, Pre)|

< Ce*(|len |2 + llen:ll-llenll-) IPre].. (5.28)
Rewrite seventh and eighth terms on the right hand side of (5.22) as

g2t (l“H(u7 e, Pres) — 1" (u,epq, Phet)) = %(ezat (l“H (u,eq,Pre) — 1" (u,epq, Phe)))

— 2 (l“H (u,eq,Pre) — 1" (u,epq, Phe)) — 2t (l“H (u, eq, Pre) — 1" (uy, ep, Phe))
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— 2 (1" (u, ey, Pre) — 1" (u, epy, Pre)). (5.29)
Similar to Lemma 5.5, using Lemmas 1.3 and 5.4, we can bound:

|2a.e? (l“H(u, ey, Pre) — " (u, ey, Phe))| + \eQO‘t (luH (ug, e, Pre) — 1" (uy, ep, Phe))\

< Cht ™ ([[ulla + [[uell2)ler |- | Prell-. (5.30)
and
\eZO‘t (Z“H(u, ent, Pre) — l“h(u,th,Phe))| < Chﬁemﬁ”u”gHthHEHPheHE. (5.31)

Finally, the second and ninth term on the right hand side of (5.22) can be rewritten

as follows
ve*a(Pyu—u,Phe) :1/% (eQata(Phu —u, Phe)) —2ave**a(Ppu — u, Ppe)
—ve*a(Pyu; — vy, Pre) (5.32)
and

d
€2atb<Phet,p) ~dl (ezatb(Ph&P - Thp)) - 2a€2atb(Pheyp — ThD)
— *'b(Pre, pr — ripy). (5.33)

Collecting the bounds (5.25)-(5.33) in (5.22), integrating the resulting inequality from
0 to t, applying Lemmas 1.6, 1.7, 2.2 along with the Cauchy-Schwarz and Young’s

inequalities one can find
t
/ 27| ye, (7|2 dr + v Ky 2| [Pre(t)]2
0
t
<Ch?r /0 o (Ju(r) 24y + [ur ()4 + ()2 + e (7)2) dr
t
OB a0y + p(OF) +C [ |Prelr) 2 dr
0
t t
Lont / 7 e(r) |2l ()| dr + C / o [u(r)|Zle(r)|2 dr + Ce? ex ()2
t 27
e / 9 (legr (1)1 + llers (1) 2ler (r)]12) dr + ChE 2 u(t) |3 lex (1)

2r ! 2r ! aT
+Ch”1/0 eQ‘”(Hu(T)H%JrHuT(T)!%)HeH(T)H?dTJrChT“/0 7 |[ull3]les-(7)|2 dr.
(5.34)

Using triangle inequality |le]|; < ||ju—Pyu||: + ||Prel|s, Lemmas 2.2, 5.2 and 5.5, and
assumption (A1) lead us to the desired estimate of Theorem 5.1. O
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Remark 5.1. Under the smallness condition on the data, that is,

C¢h ('U)h, Vi, wh)

N
and Cy

[[wnl[2[[vnlle Kiv?

N = sup |f]| < 1. (5.35)

¢h7vha'wh€ 13

the bounds of Lemma 5.5 are uniform in time, that is,
t
e(t 2 _'_6720415 e2as els 2d8 <C h2r + h2¢/(r+1)H2r +H2r+2 ]
€
0
where the constant C' > 0 is independent of time t.

Proof. In order to derive the estimates, which are valid uniformly for all ¢ > 0, let us

first bound the nonlinear term ¢*»(Pre, uy, Pre) by using (5.35) as follows:
| (Pre, u, Pre)| < Nugll:||PrelZ.

Now, the proof of Lemma 5.5 is modified in the following manner: Rewrite (5.15) to

obtain
d /(T
lPre]? +2(vKs = Nug|l)[Prell? < C (07D ulloflen]l- + el
1l 1+ B gl + 7l ) [Prelle. (5.36)

Multiply (5.36) by €**, integrate from 0 to ¢, and use Lemma 5.1, Theorem 5.2 and
assumption (A1). After a final multiplication of the resulting equation by ™2, we

arrive at

t

[Pre(t)]” + 26_2at/ e (VKy — Nllugllo)[Pre(s)|? ds
0
¢
< e_QQtHPhe(O)H + 2046_2at/ 62‘“8||Phe(s)||2 ds
0

t
+ C(h2r + h2r/(7‘+1)H27‘ + H2T+2)62at/ €2aSHPhe<S)H€dS.
0

Take t — oo, employ L'Hépital’s rule and (5.10) to obtain

1 NC.

E(VKl - K1V2 1£1] o< (0,00:22(02))) lim sup [Pre(t)]|2
1

< —C(R* 4+ p2/UHD) g2 1 g 2) limsup | Pre(t)|..
« t—o00

Due to the condition (5.35), there holds
limsup ||[Pre(t)||. < C(h* + h2/UHD g2 4 for+2),
t—o00
From (1.14), we now obtain

limsup ||Pre(t)|| < C(h* + p>/CH) g2r 4 g2r2), (5.37)

t—o00
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Substitute (5.37) in (5.21), integrate the resulting inequality with respect to time, use
|Pre(0)]| = 0, (5.13), Lemmas 2.2 and 5.2, triangle inequality and assumption (A1)

to obtain
t
le(t)]I* + 62“/ 2% |le(s)||> ds < C(h* + B2/ P 4 {242,
0

Here, C' > 0 is valid uniformly for all ¢ > 0. ]

5.3.2 Pressure Error Estimates

This subsection is devoted to the derivation of two-grid pressure error estimates. Before
establishing the main result, we obtain the bounds for e;, which will play a significant

role for achieving pressure error estimates.

Lemma 5.6. Under the assumptions of Lemma 5.5, the error e = u — w;, in Step 2

for approximating the velocity satisfies

¢
lexP + 72 [ e en(o)2ds < KOO + 1 DH + 5
+ K(t)h YH? (h* 4 p¥/ 0D g2 4 g+,

Proof. Differentiate (5.14) with respect to time and substitute ¢, = Pre; = (Ppu; —
;) + €, in the resulting equation to find
Ld
2dt
+va(Ppu —uy, Pre) — b(Pres, pr) — ™ (Prey, un, Prey)

|Pre® + v || Pre|? + ¢ (up, Pres, Pre;) = (Pruy — uy, Prey)

—ct (Ut — Prug,upy, Phet) —c'™ (e, UHt¢, Phet) — ' (tha €, Phet)

— ' (UH, w, — Pruy, Phet) — (th, €H, Phet) — ' (eH, €Ht, Phet)

+ (luH (uta €q, Phet) - luh (ut; €n, Phet)) + (luH(ua €, Phet) - ZUh (u; €, Phet)) .
(5.38)

An application of (2.57), (2.56), Lemma 2.2 and Young’s inequality implies

|CUh (Phetv Uug, Phet) + c' (ut - Phut7 Ug, Phet) + cth (e7 Umt, Phet)
+ " (uyy, e, Prey) + M (upy, v, — Pruy, Prey) + ¢ (e, e, Prey)
+ ey, ep, Prer)| < C||Pred|?lup |- || Pre|2

+C (I = Prwglclfug - + llellelmlle + leml-llew:ll-) [Pre:l.

vK
e (L Y R A

+llellZlugellZ + llenllZlem]?)- (5.39)
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Again, a use of Lemmas 1.3 and 5.4, and Young’s inequality, one finds

‘ (ZUH (ut7 eH7 Phet) - ZUh (ut7 eHa Phet)) + (ZUH <u7 th7 Phet) - luh (ua th7 Phet)) }

< Cht([lwell e llen e + [allze@llentlle) [Pretle
VKl

HHPhetHz- (5-40)

2r
< Chrvi([wil3llenll + [lull3lles:12) +

Additionally, similar to the bounds (5.16) and (5.20) in the proof of Lemma 5.5, we

obtain
vK
via(Pyu, —uy, Prey)| + [b(Preg, pr)| < 67I1HPhetH? + CR* (Jwl?,, + [pel?). (5.41)

Apply (5.39)-(5.41) in (5.38), using (1.19) and the definition of L*-projection, we arrive
at

d
%Ilf’hetll2 + v [[Pre|2 < C(llamll2lPredl* + ™ w2 a2 + (el |2
2r 2r
FlewlZllemll? + p w3 lex | + hrtllullZlendl?) + Ch* (lwl?,y + [pif2).

Multiply the above inequality by e?* and integrate with respect to time. Then a use
of Gronwall’s lemma, triangle inequality, (5.13), Lemmas 2.2, 5.1, 5.2, and Theorem

5.1, and assumption (A1) complete the rest of the proof. O

Theorem 5.2. Under the assumptions of Lemma 5.5, there exists a constant K > 0,

such that, the following error estimates hold true:

||p - th2 < K(t)(h% + h2T/(T+1)H2r + H2r+2)
+ K(t)h*1H2T‘(h27‘ + h2T/(r+1)H2r 4 H2T+2).

Proof. We can write the error equation (5.14) as follows:

(et7 ¢h) +v a(ev ¢h) + ™ (e’ U, ¢)h) + (uH7 €, ¢h) + ™ (uv €H, ¢h)
—c (11, €, ¢h) + (eHv €H, ¢h) + b(¢h7p - Th(p)) = b<¢h7ph - Th(p))’ (542)

for ¢, € X;,. By virtue of the inf-sup condition presented in Lemma 1.8, there is
¢;, € X}, such that

b(dn,on = 1u(p) = ~llpw = ra@)I*, N@nlle < %th —ra(p)|- (5.43)

Therefore, from (5.42), we obtain

th - Th<p)H2 = (etv (tbh) +v CL(ea ¢h) + ™ (e7 Umg, ¢h) + (uH7 e, d)h)
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+c (11, €, d)h) —c (u7 €n, ¢h) + (eHu €H, d)h) + b(¢h7p - Th(p))' (544)

The terms on the right hand side of (5.44) can be bounded as in Lemma 5.5 and
Theorem 5.1. Then, applying (5.43), the equality (5.44) becomes

lpn = ra@)II* < C(llecll” + llellz + llupZllellZ + [ulZlenl* + 2*[lalFlles1Z + llesxll:

+ R uli + R pl?).

Finally, using triangle inequality, estimate (1.31), (5.13), Lemmas 5.2, 5.6 and Theorem
5.1, and assumption (A1), we complete the rest of the proof. n

Remark 5.2. Under the condition (5.35) the estimate of Theorem 5.2 is uniform in

time.

5.4 Fully Discrete DG Two-Grid Method

For discretization in time variable, we employ the backward Euler scheme in this
section. We describe below the backward Euler scheme for the semi-discrete DG Two-
grid algorithm (5.4)-(5.5) as follows:

Step 1 (Nonlinear system on a coarse grid): Find (U%;, Pj})n>1 € Xg X My such that
for all (¢, qn) € Xy x My and for UY, = Pyuq

(8tUTIl{a d)H) + VCL(U"H, ¢H) + CUTFLI(UTLH? U?I’ ¢H)
b<U?J7 QH) =0.

Step 2 (Update on a finer mesh with one Newton iteration): Find (U}, P")n>1 €
Xy, X My, such that for all (¢, qn) € X, x M), and for Ug =Pyug

(00}, ) +va(Uy, ¢,)+c(Up, Uy, ¢) + ¢V (U, UL, ¢,)
+0(ey,, Py) =(£", ¢y,) + Vi (UYy, Uy, ¢y,), (5.46)
b(Uy, an) =0.
The DG backward Euler scheme applied to (5.6)-(5.7) is described below in the form
of the following algorithm:

Step 1 (Nonlinear system on a coarse grid): Find U%, € V such that for all ¢p,; € Vg

and for U%, = Pyu,

(0:U%, ) +va(Uy, dy) + (U, Uy, o) = (£, dp). (5.47)
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Step 2 (Update on a finer mesh with one Newton iteration): Find U} € V, such that
for all ¢, € V), and for U = P,u,

(0/U}, ¢p) +va(UL, ¢y) + cOh (U, U, ) +cVi (UL, UL, ¢,) = (£7, by)
+AUE (UL, UY, by). (5.48)

5.4.1 A priori Bounds

Lemma 5.7. Let the assumption (A1) be satisfied and 0 < a < Z—IC(; Then, for the

semi-discrete DG wvelocity uy(t), t > 0 for step 2, the following holds true

t
||’u’h||3: + 6_2at / 62018 Huhss(3>||2,17h ds < C,
0

where

T pp— {%—;ﬁ’“, b1 € X, 0}.

Proof. First of all, we use triangle inequality and Theorem 5.1 to bound
[unlle < flu—wslle + [[ully < C. (5.49)
Now, differentiating (5.7) with respect to ¢, we obtain

(Upst, Bp,) +va(pe, @) + ™ (up, upg, @) + ™ (upy, gy, ¢p,) + ¥ (Up, g, @)

+ M (ug, up, ¢p,) = (£, ¢p,) + " (ugy, g, @p,) + (g, uge, @), (5.50)

for all ¢, € V},. Take ¢, = uy,; in (5.50), apply Lemma 1.6 and positivity result (1.19)
to find

d
e l* + v K [Junl|2 < Ol + | (ans, war, ape)| + [ (an, wpe, p)l
dt
Fe (e, wp, wpe)| + [ (Upe, ugs upe)| + [ (ug, uge aw)]. o (5.51)
A use of estimates (2.55) and (2.57) implies

| (Upe, Upr, Upe)| 4 [ (U, W, Wpe)| + [ (W, g, Up)|
+ | (ugy, ug, uht)\ + \CUH(UH, UH¢, uht)\ < C'Huht||1/2HUH\|aHUhtH§/2

+ C (Il llumelle + [lagmell-anlle) al.. (5.52)

Apply (5.52) and Young’s inequality in (5.51), multiply the resulting inequality by e**

and integrating with respect time from 0 to ¢, we find that

t
! un (O + (K, — 2aCy) / 0wy (3)]2 ds
0
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t
SIIUht(O)H2+0/0 e [lune () [ [[ur ()12 ds

t t
+C/ e ([un(s) 12l uas ()12 + lums(s)lIzllum(s)]12) d8+0/ || fi(s)||* ds.
0 0

l/K1
2Cy 7

final multiplication by e~2%*, we obtain

Choosing a < applying (5.49), (5.13), Lemma 5.1, Gronwall’s lemma and after a

t
[Fane ()1 + 6_2“/ e |lup(s)[2ds < C. (5.53)
0

Again, we use (5.50) as follows:

(uhtt7 ¢h) = —va (uht7 ¢h) —c™ (uht7 ug, ¢h) - CUh(uha Ug¢, d)h)
- CUH(thv Uy, ¢h) - CuH(uH7 Upg, ¢h) + CUH(tha ug, ¢h)

+ " (am, um, @) + (£, @), Vo, € Vi
Using estimate (1.14), (2.55) and Lemma 1.7, we obtain
Faneelly < C (llanellZ + el 212 + w2 a2 + Tl Tl + 1))

Multiply the above inequality by €?** and integrate from 0 to ¢. Then again multiply
by e=2 use (5.13), (5.49), (5.53) and Lemma 5.1 to complete the rest of the proof. [

Below in Lemma 5.8, we state a priori bounds of the Step 1 fully discrete solution

UY,. For a proof, one may refer to Lemma 2.15 of Chapter 2.

Lemma 5.8. Suppose the assumption (A1) is satisfied and 0 < o < ’;IC{; Further, let

U}, = Pyuy. Then, there exists a constant C' > 0, such that, the solution { U }p>1
of (5.47) satisfies the following a priori bounds:

M
H UrlilHZ + 6—2atM At Z 620&"”(]}1{”? < 07 n=1,---, M’

n=1

Now, we provide a proof of a priori estimates of the solution U} of (5.48).

Lemma 5.9. Let the assumption (A1) be satisfied , choose ko small so that 0 < At <

vKq
2C5 °

that depends on T, such that, the solution { Uy },>1 of (5.48) satisfies the following a

ko and 0 < v < Further, let U) = Pyuy. Then, there exists a constant Kr > 0,

priori bounds:

M
HUZ”2 + €—2atM At Z 62athUnth < KT; n = 1’ cee M.

n=1
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Proof. First of all, we choose ¢, = U}, in (5.48). Note that

1

(007, U7) =

> (IO~ U3 P) = S 0p 2,

and from (1.19) and the coercivity property in Lemma 1.6, we obtain

O UL + 2v KA |[UR 12 < 20| [UR]] + 2|cVE (U}, Uy, Up)| + 2]V (U, Uy, Uy)|.

(5.54)
A use of (2.55) and (2.57) yield
217 (U, Uy, Up)| + 2|V (U, Uy, Up))
<C(IGL 12U ORI + 0% 21107 l.) (5.55)

Observe that

m
ZAteQat"aﬂU 2= e (Jupl® - [[up)
n=1
m—1
_ eQathUZLH2 _ Z€2atn<€2aAt )”U H2 2aAt||U2H2.
n=1

Multiply (5.54) by Ate?**» sum over n = 1 to m, and using (1.14) and Young’s

inequality, we have

€2atm||U;Ln”2+ (l/Kl _02(62aAt Atz 2atn||Un||2 < 6QaAtHIJ ||2

n=1

+0Atzem” ICRIPIO% 2 + ORI + 1£17). (5.56)

n=1

Choose « in such a way that

v, 20At
1+ —— > e
Cy —

Also, with an application of (5.13) and Lemma 5.10, we have [|[U%||. < C. Using
discrete Gronwall’s inequality and multiplying the resulting inequality through out by

e~2%tm e establish our desired estimate. O

Using (1.19) and Lemmas 1.6, 1.8, 5.9, the existence and uniqueness of the discrete
solutions to the discrete problem (5.46) (or (5.48)) in Step 2 can be achieved following

similar steps as in [72].
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5.4.2 Fully Discrete Step 2 Error Estimates

Next, the error estimates of backward Euler method are discussed. Considering the
semi-discrete scheme (5.6)-(5.7) at t = t,, and subtracting from (5.47)-(5.48), we arrive
at

Step 1. Set e}, = U}, —uy(t,) = U}y —u}y, for fixed n € N, 1 < n < M. Then, for
all p; € Vi

(aterlfla ¢H) + Va(e?[a ¢H) + CUTIL{<U?D U?{a ¢H> - Cu%(“?[? Ll?;[, q,)H)
= (ufy, o) — (O, ). (5.57)

Step 2. Set e} = U} —uy(t,) = U) —u}, for fixed n € N, 1 <n < M. Then, for all
@5, € Vi

(Orep,, &p) +valey, ¢p) + CUZ’( T e, On) = (upy, &) — (Oruy, @) — CUZ(eZ’ ey, ép)

_CUZ(U;LL’ e?b ¢h) - CUZ(ezL’ uTIl{a ¢h) - CUz(e%v u;LL’ ¢h) + CU%(e?Jv er’IL{7 ¢h)

+CUE{ (e?{’ 117;], ¢h) + CU?I (ll?], e%a ¢h) + (Cuﬁ(u;zlv u%a ¢h) - CUZ(UZ’ ll?], ¢h))

+(cu2[ (unH7 UZ, ¢h) - CU}LI (uT}LD UZ, ¢h)) + (CU}LI (u?b unHa d)h) - cu?l (urlfh u?:[a ¢h))
(5.58)

The following lemma provides us bounds for the Step 1 fully discrete error e%;.

Lemma 5.10. Suppose the assumptions of Lemma 5.8 hold true. Then, there exists

a constant K > 0, such that, the following estimates hold true:

M
e || + e ALY ™|y ||2 < Kr At (5.59)
n=1
—2atm - 2aty, n |12 m||2
e ALY e[oey|” + [lefll? < KrAt. (5.60)

n=1
Proof. The first estimate is similar to Lemma 2.17 of Chapter 2. The only difference in
the estimates of the nonlinear terms. For that, we set ¢, = €}, in (5.57) and rewrite

the nonlinear terms to find

(6,567;],67}_1) + Va(e?lae?l) + Vi (U?he?;heﬁl) = (UZme?}—I) - (aturllfverll{)
+CU}; (eyllfv u” — ll%, e?{) - CU?I (eql’ih un) eTIl{) + lu?l (u?Ia 11?{, e?{) - lUTFLI (U?], u?{a e?{)

(5.61)

With a similar technique as in the proof of Lemma 2.17 of Chapter 2 and using Lemma

1.3, we can obtain

[V (e, u" — wfy, efy)| + [V (e, u”, efy)| < Cllef [l ef |-
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Since u” is continuous, apply (2.60), Theorem 5.2, inequalities (1.35), (1.38) and (1.14)

to arrive at

1% (ufy, ufy, efy) — 1V (ufy, ufy, ef )|

= |1 (ufy, u" — ufy, efy) — 15 (uf, u" — uf, )]

< Clleglliaollu —ufllef | e < Cllek|llla—ugllleklle < Cllekllllek|..
Now, proceed similar to Lemma 2.17 of Chapter 2 will follow the estimate (5.59).

To derive the estimate (5.60), we again rewrite the nonlinear terms of (5.57) and set

¢y = 0}y to find

(8te7lflﬂatenH) + Va(enH7 ate?[) = (uylfltﬂ d)H) - (atunHv ¢H) + CU}LI (un - u?]a e?]a aterlfl)
— Yl (u", ey, efy) + Vi (e, ut — ufy, efy) — Vi (e, u”, drely)
— Yk (el el 0ety) + 1V (uly, uly, 0ely) — 197 (uly, uly, 0ely). (5.62)
Following similar steps as in Lemma 2.18 of Chapter 2, we obtain
Vi (0" — ufy, ey, O] + [V (u”, ey, Defy)| + [V (e, u — uly, drely)]

+[cVi(efy, u", el )| < Cllefy -]l 0wl (5.63)
A use of estimate (2.55) and Young’s inequality implies

» C C _
[ (et el drefy)| < Cllegy 2|0 lle < llefy 12 + e 12Clek 12 + llek " 12)-

(5.64)
Similar to the bound of I(+;-, -, -), one can find
1% (uy, wfy, drefy) — 1V (uy, ufy, Defy))|
= |1V (uy, u" — uy, Oey) — Vi (u, u" — uly, 0,e)|
< Cllef|cllu — ugl[| Okl < Cllef|l[|Oek |- (5.65)

Substitute (5.63)-(5.65) in (5.62) and following Lemma 2.18 of Chapter 2, we arrive
at the estimate (5.60). This completes the rest of the proof. O

The next lemma establishes the bounds for the Step 2 fully discrete error ej}.

Lemma 5.11. Suppose the assumptions of Theorem 5.2 and Lemma 5.8 hold true and
choose ko small so that 0 < At < kg. Then, there exists a constant Kt > 0, such that,

the following estimates hold true:

M
el +e 2 ALY e e < KA

n=1
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Proof. We put ¢, = e} in error equation (5.58). With the observation
n o .n 1 n|2
(Orey;, ef) = §5t||eh|| ;
and a use of Lemma 1.6 and (1.19) yields

allef > + 26 v llef2 < 2((ufy, ef) — (9, ef) — Y (ef, e, ef)
— Vi (ug, ey, ) — V(e i, f) — (e, uf, ef) + Vh (e, e, €f)
Ve, why, ) + eVl efy, )+ (1w, wh, ef) — 1V (uf, i, €f)
(g, g, ef) — 1V gy, w ef) + (10 (uy, i ef) — 1 (uy, iy, ef)

A use of (2.55), the Cauchy-Schwarz and Young’s inequalities leads to the following
bound:

\ I3+ |15 + | 1s| + |17] + |Is]

<C(lugllllerll-llexlle + llekZllerlle + ek <kl llehll-)
K1V

< 51 lenllz + Carllz + lleg 12 + g 12) lef |12 (5.67)

The terms I, and I, are bounded using the same technique as in Lemma 5.5 for es-
timating ¢ (Pre,uy, Pre). An application of the Cauchy-Schwarz inequality, Young

inequality and 2.57 leads to

[Lo| + |La| < ClleplI"2 (el + luf ) leh ]I

I(ly n n n n
< < lerllz + CllerlP (llef 2 + luzl2)- (5.68)

Use a result in (2.60), Lemma 2.6 and estimate (1.14), we find that

n n n KlV n n n

[Io] < Cllen o v llllerlls < = lenllZ + C llenl* a2 (5.69)
n n n Kly ni|2 n |12 n||2

110l < Cllefllza@luzllcllehlle < = llenlls + C llellluzll: (5.70)
n n n KlV n||2 n |12 n |12

[Tu] < Cllegllswluglllerlle < 7 =llexllz + C ekl lullz. (5.71)

From (2.138), the Cauchy-Schwarz and Young’s inequalities, we have

tn 1/2
unscAH”(/ |mm@maﬁw) ez

tn—1
K11/

<
- 64

tn
wm§+cuﬁ/ s ()12 . (5.72)
tn—1
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Combine (5.67)-(5.72), multiply (5.66) by Ate?*™2! sum the resulting inequality from
n=1tom (< M) and obtain

m m—1
e2amAtHean2 + Kll/AtZeQanAtHeZHg < Z eZomAt(eQaAt _ 1)HeZH2
n=1

n=1

m
+ ALY A lep ] (llef 12 + llukll2)

n=1

m
FOALY (a2 + lleflI2 + [lufy12) e 12

n=1

m tn
L oARY grma / ()P ds.  (5.73)
tn—1

n=1

We bound the terms involving u, using Lemma 5.7. Observe that

m tn m tn
CARY cama /t [ss(5)][21 ds = CALS /t 209205, ()| 5 ds
n=1 n—1 n=1"Ytn-1
tm
< CAPE / 2 Wy (5)|[2 1 ds < CAFE2MHDAL (5.74)
0

Applying (5.74), (5.13), and Lemmas 5.7 and 5.10 in (5.73) and using the fact ¢?*2! —
1 < C(a)At, we obtain

m m
GQQmAtHe;HF + KIVAtZe2anAt||eZH§ SoAtZ€2anAt||eZ||2 + OAt262amAt

n=1 n=1

+ CAt2€2a(m+1)At.
Now the desired result is achieved by employing discrete Gronwall’s lemma. [

Lemma 5.12. Suppose the assumptions of Lemma 5.11 hold true. Then, the fully

discrete velocity error e} = Uj — ! satisfies

e P ALY | over | + v K |lef2 < K At

n=1

Proof. In (5.58), we choose ¢, = e}l and rewrite the nonlinear terms to obtain

|OreR||* + v a(eh, dref;) = (ujy, dreh) — (O, dheh) — eV (efy, €}, Dref)

— Vit (ujy, e, drey) — Vi (e, e, dref) — Uk (uf, efy, dreh) — eV (ef, ufy, Orep)

= cir(efy, uj, req) + Vit (efy, efy, dref) + Vi (efy, iy, dreh) + Vi (uy, ey, D)
+ (1% (uf, ufy, dref) — 10 (up, ufy, repy)) + (1" (ufy, uy, dref) — 1V (uy, ujl, drept))

+ (ZU?I(u?[, uy, oey) — l“?I(u?I, u'y, GteZ)). (5.75)
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From (2.138), we have

tn 1/2
(W hel) — (D, dhef)) < CAL? ( / |ruhss<s>|r%1,hds) 9repl.
o
fn 1 C 1112
<C [ lmal)P s+ e - e (570
tn—1

The remaining terms on the right hand side of (5.75) can be bounded above similar to

Lemma 5.11 by

c ., . . C
E(Ilehllfﬂleh H2)+ At(llehll lef |12 + [lup 2l ek 12 + lleqlZ]lug |12

+llef Iz + llek 2] ) (5.77)

Since af(-, -) is symmetric, one can obtain

1/ 1 1
a(ey, drey) = 3 <Ea(eﬁa ey) — Ea(eﬁﬂe’é*) + Ata(Oe), ateZ))' (5.78)

Again, we have

m

m—1
Zem<a<e2,em—a(ez—l,ez—1>)—ehtm aleffseff) = D (24 — Da(ef; ef).
n=1

n=1
(5.79)
Combining (5.76)-(5.79), multiply (5.75) by Ate***» sum over n =1 to m (< M) and

using Lemmas 1.6, 1.7, we obtain

m
Aty |[oep|? + viGe e 2

n=1
m—1 C m
SCALY e lef2 + ALY e (e + lleg 1)
n=1 n=1

C
+ g At Z e (lleplZllef 12 + [[uplZllef 12 + ek 2] |12

e+ e ) + oAt S e / lnas(s) 21 ds. (5.80)

n=1

Finally, a use of (5.13), Lemmas 5.7, 5.10 and 5.11 give us the desired estimate. This
completes the proof. O

Now, from Theorem 5.1, Lemmas 5.11 and 5.12, we conclude the Step 2 fully discrete

energy norm estimate for velocity:
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Theorem 5.3. Suppose the assumptions of Theorem 5.1 and Lemma 5.11 are satisfied.
Then, for 1 < m < M, the following estimates hold true:

eanthtZ e2athun . Unh”? <Krp (h2r + h2T/(T+1)H2T + 22

n=1

+ h—1H2r(h27" + h27‘/(7”+1)H27‘ + H27‘+2) + Atg),
Ut — U™ 2 <Kr B2 + h?r/(r—i—l)HQr + 22
h lle
+ h—lHQT(hQ'r + h2fr/(7‘+1)H2r + H2r+2) + At)

Lemma 5.13. Suppose the assumptions of Lemma 5.11 hold true. Then, the fully

discrete velocity error ef = U — wy satisfies
HatBZH,l’h S KT Atl/z.
Proof. Rewrite the nonlinear terms of (5.58) to obtain
(ateZ7 ¢h> = (uZta ¢h) o (atu27 ¢h) o Va’(eZv d)h) - CU}LI (enH? eZ? ¢h)
o CUZ{ (u?I? eZ? ¢h) - CUZ(e27 e?[? ¢h> - CUZ (uZ7 e?{v ¢h) - cUg(e;; u?{a ¢h)
- CU?I <GZ7 uZa (bh) + CUZ{ (eTIEb e?[? ¢h> + CUZ (e?fa unH7 ¢h) + CUZ{ (u?h e?]a ¢h)
+ (lu}f (LIZ, u% d)h) - ZUZ <u27 11?_[, ¢h)) + (luz{(uzh uZa ¢h) - lU?{ (urlz(a uZa ¢h))

+ (1Y (ufy, ufy, @) — 19 (ufy, ufy, @) (5.81)

Similar to Lemma 5.11 and apply Lemma 5.7 to arrive at

tn 1/2
(i)~ O < O ([ (ol ) Tl < Ao, .
tn—1
An application of Lemma 1.7 implies

via(er, @)l < llegllellnll.-

Other terms on the right hand side of (5.81) is bounded similar to Lemma 5.11 by

C(llehlllef e + l[uplllef I + llerll-luf e + llek 2 + llefll-uglle) [l

Combining the above bounds in (5.81), and applying the definition of || - ||_1 4, (5.13),

Lemmas 5.7, 5.10 and 5.12, we arrive at the desired estimate. O

Lemma 5.14. Suppose the hypotheses of Lemma 5.11 be satsified. Then, there exists
a constant C' = C(v,a, K1,Cy, A\, My) > 0, such that, the following estimates hold

true:

1P —pp|| < KpAtY2 1 <n <M.
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Proof. Subtract (5.5) from (5.46) to find

b(@n, Py — pi) = —(Oey, @) — valey, ¢,) + (up, @) — (O, &y,)

— cVi(Uy, e, ¢,,) — cVileq, ey, ¢p,) — cVi(uf, efy, @) — cVi(ef, ufy, ¢y)

— cVir(ely, uy, ¢y,) + cVii (e, ey, @) + Vi (efy, uly, by) + <Vl (uf, €, ¢y)
+ (1% (uy, ufy, @) — 195 (g, ugy, @) + (1M (ufy, up, @) — Vi (ufy, up, @)

+ (lU?I (u?b u?]v d)h) - lu;} (urllia uTIZ{7 ¢h)) (582)

Using Lemma 1.8 and bounding the terms on the right hand side of (5.82) following

the steps involved in the proof of Lemma 5.11, we arrive at
1P = pill < Cllowehll -1 + Clleq]le + CAL.
An application of Lemmas 5.12 and 5.13 completes the proof of this lemma. ]

Combining Theorem 5.2 and Lemma 5.14, we arrive at the Step 2 fully discrete

pressure error estimate:

Theorem 5.4. Suppose the assumptions of Theorem 5.2 and Lemma 5.14 are satisfied.
Then, for 1 <n < M, the following estimates hold true:

||pn _ P}?”? SKT(hzr + h2r/(r+1)H2r + H2r+2
+ h—1H2r(h27‘ + h2r/(7‘+1)H2r + H2r+2) + At)

Remark 5.3. In this chapter, we have obtained optimal estimates in energy norm
for welocity error and in L*-norm for pressure error, by employing two-step two-grid
scheme, in the DG framework. However, this is not sufficient to obtain optimal L>-
norm error estimate for velocity, and an additional correction step is needed. Such a
result is available in the context of CG, see [16]. A correction step would be employed
in the next two chapters for the two linear viscoelastic models, as these models have

been our main focus to develop these DG schemes.

5.5 Numerical Experiments

In this section, a few numerical experiments are performed and the theoretical findings
are confirmed. For space discretization P, — P,_;, » = 1,2, DG finite elements are
employed and for time discretization, backward Euler method is applied. We choose

the domain ©Q = [0,1]2. We have considered here three examples, where the first
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two are computed on the time interval [0, 1] with the final time T' = 1, the time step
r+1

At = O(h™) and h = O(H ). And the third example is analyzed on the time interval
[0,100] with final time 7" = 100.

Example 5.1. Consider the transient NSEs with ezact solution (u,p) = ((u1 (x,y,1),
us(2,y, 1)), p(a,y. 1)) as

ui(z,y,t) =102°(x — 1)*y(y — 1)(2y — 1) cos(t),

ug(z,y,t) = — 10y (y — 1)*z(z — 1)(22 — 1) cos(t)

p(z,y,t) =10 cos(t)(3y* — 1).

In Tables 5.1 and 5.2, we represent the computational errors and orders of con-
vergence for the two-grid DG solution of (5.45)-(5.46) for » = 1 and 2 with viscositiy
v = 1, respectively. Further, Tables 5.3 and 5.4 represent numerical errors and orders
of convergence for r = 1 and 2, respectively, with v = 1/100. We set the penalty
parameter o, = 20 and 40 for r = 1 and 2, respectively. We notice that the numerical
outcomes of Tables 5.1-5.4 confirm the theoretically derived convergence orders, which

is of O(h") in energy and L*-norms for velocity and pressure, respectively.

Table 5.1: Errors for two-grid DG approximations and order of convergence for Ex-

ample 5.1 with r =1 and v = 1.

b | llutta) = UV | Rate [ p(tar) = P [ Rate

1/4 0.253901 0.192905

1/8 0.110618 1.1986 0.092012 1.0679
1/16 0.049209 1.1685 0.048684 0.9183
1/32 0.022671 1.1180 0.025302 0.9441

1/64 0.010805 1.0691 0.012949 0.9664

Table 5.2: Errors for two-grid DG approximations and order of convergence for Ex-

ample 5.1 with r =2 and v = 1.

B | ulta) — UYL | Rate | p(tar) — Y|l | Rate
1/4 0.020730 0.172635
1/8 0.004967 2.0612 0.043092 2.0022
1/16 0.001197 2.0524 0.010762 2.0014
1/32 0.000295 2.0203 0.002689 2.0007
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Table 5.3: Errors for two-grid DG approximations and order of convergence for Ex-

ample 5.1 with » =1 and v = 1/100.

h lu(tar) — UMl | Rate | |[p(tar) — PM|| | Rate
1/4 4.074005 0.991889
1/8 1.329392 1.6156 0.110527 3.1657
1/16 0.565533 1.2330 0.046946 1.2353
1/32 0.259262 1.1251 0.023482 0.9994
1/64 0.122572 1.0807 0.011924 0.9776

Table 5.4: Errors for two-grid DG approximations and order of convergence for Ex-

ample 5.1 with r = 2 and v = 1/100.

h | lu(ta) = UV | Rate [ fp(tar) = B [ Rate
1/4 1.400594 0.181643
1/8 0.300850 2.2189 0.042907 2.0818
1/16 0.047228 2.6713 0.010640 2.0117
1/32 0.011684 2.0150 0.002657 2.0013

Example 5.2. In this example, the choice of right-hand side source function £ is made
in such a manner that the exact solution (u, p) = ((ul(a:,y,t), us(z,y,t)), p(x,y,t))
takes the following form:

u (z,y,t) =te™ sin(2my)(1 — cos(2rx)),
us(x,y,t) =te " sin(2mrz)(cos(2my) — 1),
p(z,y,t) =27 te *(cos(2my) — cos(27z)).

Tables 5.5 and 5.8 depict the error and convergence orders of the two-grid DG
scheme for r = 1 and 2, respectively, with ¥ = 1/10. The penalty parameter o, is
chosen same as in Example 5.1. These results verify the derived theoretical results.
Additionally, we compute the approximate solutions by the standard direct DG scheme
to better assess the performance of our two-grid DG scheme with the same fine mesh, o,
and At. Tables 5.6 and 5.9 represent the numerical error and convergence orders for r =
1 and 2, respectively, employed in the direct DG scheme. By comparing Table 5.5 with
Table 5.6 and Table 5.8 with Table 5.9, we observe that the accuracy of the numerical
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solutions by the proposed two-grid DG method is quite close to that of the direct DG
method. In Tables 5.7 and 5.10, we compare the computational times taken to compute
the two-grid DG solution and the direct DG solution corresponding to r = 1 and 2,
respectively. The tables demonstrate that the proposed two-grid DG method requires
significantly less computational time than the direct DG method. Additionally, as we
refine the mesh more and more, the computational time gap increases between both

solutions, namely the two-grid DG solution and the direct DG solution.

Table 5.5: Errors for two-grid DG approximations and order of convergence for Ex-

ample 5.2 with »r =1 and v = 1/10.

b | la(ta) - UV | Rate [ fp(tar) = P [ Rate
1/4 1.380453 0.375059
1/8 0.815307 0.7597 0.262572 0.5144
1/16 0.380265 1.1003 0.187638 0.4847
1/32 0.159587 1.2526 0.108098 0.7956
1/64 0.072591 1.1364 0.056563 0.9343

Table 5.6: Errors for direct DG approximations and order of convergence for Example

5.2 with r = 1 and v = 1/10.

h | lu(tsr) = Upgyll | Rate | [Ip(tar) — Bl | Rate

1/4 1.391405 0.377845

1/8 0.815558 0.7706 0.257370 0.5539
1/16 0.381141 1.0974 0.179631 0.5188
1/32 0.160671 1.2462 0.105951 0.7616

1/64 0.072459 1.1488 0.056166 0.9156
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Table 5.7: Comparison of computational time between “direct DG solution” and the

solution obtained by the ”"two-grid DG method” for Example 5.2 with r = 1.

h | Two-grid DG solution (in Seconds) | Direct DG solution (in Seconds)
1/4 0.38 0.56
1/8 2.82 6.89
1/16 28.53 104.45
1/32 386.42 1705.05
1/64 5989.01 28981.81

Table 5.8: Errors for two-grid DG approximations and order of convergence for Ex-

ample 5.2 with 7 = 2 and v = 1/10.

h | llu(ta) = UV | Rate | [p(tar) = P [ Rate
1/4 0.434541 0.462235
1/8 0.104623 2.0542 0.121759 1.9245
1/16 0.023376 2.1620 0.030648 1.9901
1/32 0.005668 2.0439 0.007680 1.9965

Table 5.9: Errors for direct DG approximations and order of convergence for Example

5.2 with r = 2 and v = 1/10.

h | u(ty) — Upgall | Rate | |Ip(tar) — Pheyll | Rate

1/4 0.429612 0.459927
1/8 0.102943 2.0611 0.121039 1.9259
1/16 0.023159 2.1521 0.030522 1.9875

1/32 0.005511 2.0710 0.007642 1.9977
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Table 5.10: Comparison of computational time between “direct DG solution” and the

solution obtained by the ”"two-grid DG method” for Example 5.2 with r = 2.

h | Two-grid DG solution (in Seconds) | Direct DG solution (in Seconds)
1/4 8.00 9.25
1/8 51.46 04.88
1/16 564.98 1358.13
1/32 7560.98 22140.62

Example 5.3 (Benchmark Problem). In this case, the lid-driven cavity flow on the
computational domain [0,1]% is ezamined. The velocity at the top of the boundary
u = (1,0), is what majorly drives the flow of fluid. Other portions of the cavity
boundaries are subject to the no-slip boundary conditions. On the body, no forces are

acting i.e., £ = (0,0).

We perform a comparison along (z,0.5) and (0.5, y) lines for velocity components
for both two-grid DG and direct DG schemes against the data presented by Ghia et al.
in [66] with = 1. For the time discretization backward Euler method is employed with
At = 0.01 and final time 7" = 100. For the sake of simplicity, numerical simulations of
the direct DG and two-grid DG methods are conducted with the uniform mesh sizes
h =1/64 and H = 1/32 (only for two-grid DG) to present the stability and accuracy
of our method. For this test case, we choose different v = {1/100, 1/400, 1/1000},
and the penalty parameter is o, = 40.

The comparisons of the horizontal velocity component at x = 0.5 and the vertical
velocity component at y = 0.5 are shown in Figure 5.1 to indicate that the direct DG
and two-grid DG methods produce similar numerical solutions that can be compared
with those presented in [66].

At last, the velocity streamlines of NSEs utilising the two-grid DG scheme are shown in
Figure 5.2, and they coincide well with the experimental results in [66]. As v reduces,
we can observe that the primary vortex shifts toward the cavity’s center. A second
vortex may also develop in the cavity’s right bottom corner, and a third vortex may
form in its left bottom corner. A good agreement with the results in [66] is obtained

in all the cases.
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(a) First velocity component along x = 0.5

(c) First velocity component along z = 0.5 (d) Second velocity component along y = 0.5
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(b) Second velocity component along y = 0.5
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(e) First velocity component along z = 0.5 (f) Second velocity component along y = 0.5

Figure 5.1: Comparison of velocity components for lid driven cavity flow with v =

1/100 (first row), v = 1/400 (second row) and v = 1/1000 (third row).
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(¢) Streamlines for v = 1/1000.

Figure 5.2: Streamlines for NSEs of the two-grid DG scheme with v» = 1/100, 1/400,
1/1000.

5.6 Conclusion

This chapter applies a two-grid scheme to the DG model of time-dependent NSEs.
Optimal semi-discrete two-grid DG error estimates for velocity and pressure approxi-
mations in energy and L°°(L?)-norms, respectively, are established for an appropriate
choice of coarse and fine mesh parameters. And under smallness condition on data,
these estimates are shown uniformly with time. A full discretization of the semi-
discrete two-grid model is achieved by applying a backward Euler method in the time
direction. Fully discrete error estimates are derived. Finally, numerical results are

depicted to show the effectiveness of the scheme.



200



	09_chapter 5

