Dedicated to my beloved parents

I hereby declare that the thesis "Integrative systems biology approaches to identify molecular signatures in gallbladder carcinoma" being submitted to the Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam in partial fulfillment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology, has previously not formed the basis for the award of any degree, diploma, associateship, fellowship or any other similar title or recognition.

Date: 25.04, 2024. Place: Tezpur

Nabamla toy (Nabanita Roy)

School: School of Sciences Department: Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028

TEZPUR UNIVERSITY

CERTIFICATE OF SUPERVISOR

This is to certify that the thesis entitled "Integrative systems biology approaches to identify molecular signatures in gallbladder carcinoma" submitted to the School of Sciences, Tezpur University in requirement of partial fulfillment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology is a record of research work carried out by Ms. Nabanita Roy under my supervision and guidance. All help received by her from various sources has been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Date: 25 · 04 · 2024 Place: Tezpur

mener

(Dr. Pankaj Barah)
Designation: Assistant Professor
School: School of Sciences
Department: Molecular Biology and Biotechnology,
Tezpur University, Tezpur 784028

Acknowledgment

First and foremost, I bow before the Almighty, expressing my deepest gratitude for granting me the strength and courage to make a humble contribution to society through my research work.

I express my sincere gratitude to my supervisor, Dr. Pankaj Barah for giving me the opportunity to pursue Ph.D. under his guidance. His insightful advice, encouragement, constant vigilance, and constructive criticism during my Ph.D. tenure have enabled me to perform better and develop good research practices. I am extremely grateful for his dedicated support, which has played a crucial role in my academic development and successful completion of my doctoral thesis.

I offer my gratitude to Prof. V. K Jain and Prof. Shambhu Nath Singh, the former and present Vice Chancellor of Tezpur University, respectively for granting me the opportunity to work in this esteemed institution. I always feel fortunate to be a part of this University which has an excellent environment for research among the students.

I deeply acknowledge the Department Heads of Molecular Biology and Biotechnology, Tezpur University for extending all possible facilities for carrying out my research work. I am also thankful to my Doctoral Committee members- Prof. Dhruba Kumar Bhattacharyya, Prof. Robin Doley, Dr. Rupak Mukhopadhyay, and Prof. (Dr.) Anupam Sarma as well as all the faculty members of the Department of Molecular Biology and Biotechnology for their valuable suggestions throughout my Ph.D. tenure.

I want to express my sincere gratitude to Prof. (Dr.) Anupam Sarma, Professor and Head of the Department of Oncopathology, and Dr. Avdhesh Rai, Scientific Officer at Dr. B. Borooah Cancer Institute (BBCI), Guwahati, for the generous support during my visit for sample collection and qRT-PCR analysis. I would also like to acknowledge Prof. (Dr.) Subhash Khanna, CEO of Swagat Super Speciality Surgical Hospital (SSSSH), Guwahati for his dedicated support in the collection of surgically resected gallbladder tissue samples. I am thankful to all the nursing staff, lab technicians, and project staffs of BBCI and SSSSH for their help and cooperation. I would also like to acknowledge Dr. Mohit Kumar Jolly, Assistant Professor at IISC Bangalore and his group for extending his support in performing the EMT analysis.

I extend my sincere gratitude to the patients who graciously provided their consent for the collection of samples crucial to my Ph.D. work. Their willingness to participate has been invaluable to the success of my research, and their contribution is deeply appreciated.

I also take this opportunity to thank Dr. K. K. Hazarika, Dr. N. K. Bordoloi, Mr. P. Mudoi, Mrs. Pranita S. Talukdar, Mr. Bijoy Mech, Mr. Guna Das, and all the non-teaching staff for all the help they have provided me during my Ph.D. tenure.

I sincerely thank all the past and present members of the EvolOMICs lab-Ankur, Mithil, Drishtee, Chiranjeev, Ria, Barasha, Akash, Cinmoyee, and Prangan for their immense help and support during my Ph.D. journey. I thank all my seniors and juniors of the MBBT department for helping me in some way or the other.

There are no words to express the boundless sacrifice and hard work that my parents put forth for me to achieve my current position. I want to express my deepest sense of gratitude to my Maa, Swati Roy, and Baba, Nishit Ranjan Roy for the emotional, financial, and moral support to achieve all my pursuits. I extend my heartfelt gratitude to my late grandfather, Dr. Samarendra Kumar Roy, and grandmother, Bithika Roy, for their blessings, which have been a source of support for my well-being and success. Special thanks to my litter sister, Nabarati for always motivating me. I also express my gratitude to my in-laws for silently supporting me in my Ph.D. journey and letting me be the person I am. Last but not least; I express my heartfelt appreciation to my husband, Mrinmoy Purkayastha, for providing me the strength and moral support. I am grateful for his belief in my capabilities and the encouragement he provided throughout my Ph.D. journey.

Finally, I would like to thank all the people, whose direct and indirect support has helped me complete my research work.

Date: 25/04/2024 Place: Tezpur

(Nabanita Roy)

LIST OF FIGURES

Figure No.	Figure captions	Page No.
	CHAPTER- I	1
1.1	The anatomical position of the gallbladder in the hepatobiliary	2
	system	
1.2	Histological representation of the gallbladder wall with the	5
	corresponding pathological stages of GBC.	
	CHAPTER- II	<u> </u>
2.1	Estimated age-standardized global incidence (A) and mortality	11
	(B) rates of GBC patients in both sexes. (The countries with the	
	highest GBC incidence and mortality rates are highlighted).	
	Figure generated from GLOBOCAN 2020 (https://gco.iarc.fr/).	
2.2	Incidence of GBC in India. (A) States with high incidence rates	12
	are indicated in red dots. (B) The gender-specific burden of GBC	
	cases in India from 2020-2040.	
2.3	Mechanistic diagram showing the progression of GSD to GBC	14
	through different pathological spectra resulting in multiple	
	genomic changes/dysregulations and finally leading to invasive	
	GBC progression.	
2.4	The roadmap of development of RNA-sequencing technologies.	29
	CHAPTER- III	1
3.1	Illustrative representation of the overall methodologies	50
	employed to identify molecular signatures associated with GBC	
	pathogenesis.	
3.2	Collection of GBC and GSD clinical tissue samples from the	51
	population of Assam.	
3.3	Schematic workflow for identification of predicted novel	57
	lncRNAs from the transcriptomic dataset.	
3.4	Schematic representation of the TF binding to target gene	62
	through PWM scanning. It is a scoring matrix for representing	
	TF binding motifs. It represents a matrix of N rows and four	

	columns, in which the matrix score of each base at each position	
	is described.	
	CHAPTER- IV	1
4.1	Schematic representation of the details of four different case	68
	studies performed to identify molecular signatures and pathways	
	in GBC.	
4.2	Outline of the workflow for identification of potential	70
	overlapping and unique DEGs in three aggressive cancers of the	
	hepatobiliary system (GBC, HCC, and ICC).	
4.3	Identification of overlapping gene expression signatures among	72
	GBC, HCC, and ICC. (A) Volcano plot representing the	
	identification of significant DEGs in GBC, HCC, and ICC. (B)	
	Upset plot showing the number of shared and unique DEGs in	
	GBC, HCC, and ICC. (C) The heatmap depicts the hierarchical	
	clustering of the 256 shared DEGs between the three cancers of	
	HBCs. (D) Bar plot representing the top ten significant biological	
	processes associated with the shared DEGs between GBC, HCC,	
	and ICC.	
4.4	Identification of unique gene expression profiles in GBC, HCC,	73
	and ICC. (A) Bar plot showing the number of unique DEGs	
	identified in each cancer type. (B) Complete linkage hierarchical	
	clustering analysis of the expression profile of the top 500 unique	
	DEGs identified in GBC, HCC, and ICC.	
4.5	Construction of gene co-expression networks and identification	74-75
	of nonpreserved modules. Clustering dendrogram (left) of genes	
	based on distances between gene pairs that are subsequently	
	grouped into modules (minClusterSize=30), designated by	
	different colors based on the similarity of the magnitude of gene	
	expression. Preservation analysis (right) of modules was done	
	based on Z-summary and medianRank. Modules whose	
	topological properties changed in a cancer network compared to	
	normal networks are termed non-preserved modules. The black,	

hnorry and lightrallow as dular and identified and and 1	
Construction of PPI networks with gene sets identified from	78
nonpreserved modules of GBC, HCC, and ICC. The large brown,	
black, and yellow nodes represent the hub DEGs in GBC, HCC,	
and ICC respectively based on degree centrality. Significant PPIs	
were filtered using a combined score > 0.70 .	
Outline of the workflow for identification of potential DEGs in	81
GBC compared to normal.	
Differential gene expression in GBC as compared to control. (A)	82
Gene-wise complete linkage hierarchical clustering heatmap of	
DEGs identified in GBC compared to control. (B) Identification	
of the top ten enriched biological processes associated with the	
significant DEGs. The x-axis represents the enrichment ratio	
between the number of DEGs and all UniGenes enriched in	
particular GO terms. The size of the dot represents the number	
of DEGs assigned to the particular GO term and the color of the	
dot represents the Padj. The left panel of the dot plot represents	
terms/pathways upregulated in GBC and the right panel	
represents terms downregulated in GBC as compared to the	
control.	
Construction of differential gene co-expression networks in	83
GBC and control samples. (A) Hierarchical clustering	
dendogram of DEGs based on dissimilarity measure (the 1-	
TOM) matrix. The co-expressed modules identified in the GBC	
and control network are represented by different colors. (B)	
Clustering network heatmaps of co-expressed modules identified	
in GBC and control co-expression networks.	
Identification of nonpreserved modules from GBC and control	84-85
networks based on <i>Z</i> -summary and medianRank. (A)	
Identification of nonpreserved modules in the control condition.	
Identification of nonpreserved modules in the control condition. The modules in midnightblue and royalblue colors are identified	
	 black, and yellow nodes represent the hub DEGs in GBC, HCC, and ICC respectively based on degree centrality. Significant PPIs were filtered using a combined score > 0.70. Outline of the workflow for identification of potential DEGs in GBC compared to normal. Differential gene expression in GBC as compared to control. (A) Gene-wise complete linkage hierarchical clustering heatmap of DEGs identified in GBC compared to control. (B) Identification of the top ten enriched biological processes associated with the significant DEGs. The x-axis represents the enrichment ratio between the number of DEGs and all UniGenes enriched in particular GO terms. The size of the dot represents the number of DEGs assigned to the particular GO term and the color of the dot represents the <i>Padj</i>. The left panel of the dot plot represents terms/pathways upregulated in GBC and the right panel represents terms downregulated in GBC as compared to the control. Construction of differential gene co-expression networks in GBC and control samples. (A) Hierarchical clustering dendogram of DEGs based on dissimilarity measure (the 1-TOM) matrix. The co-expressed modules identified in the GBC and control network are represented by different colors. (B) Clustering network heatmaps of co-expressed modules identified in GBC and control co-expression networks.

	condition, where the modules in tan, salmon, and grey60 color	
	are identified as non-preserved.	
4.11	PPI network analysis of the significant non-preserved modules	88
	identified in GBC and control gene co-expression networks.	
	Construction of the PPI networks with the DEGs identified from	
	the non-preserved modules of the control network (midnightblue	
	and royal blue modules) and GBC network (salmon, tan, and	
	grey60 modules). The small blue circles represent the proteins	
	and the large red node represents the genes in the modules.	
4.12	Outline of the workflow for identification of potential DEGs in	92
	GBC compared to GSD with three different follow-up periods.	
4.13	Identification of differential gene expression and pathways in	93-94
	GBC compared to normal. (A) Bar plot showing the number of	
	total, upregulated, and downregulated DEGs identified in GBC	
	as compared to adjacent normal samples. (B) Gene-wise	
	hierarchical clustering of significant DEGs identified in GBC	
	samples as compared to control samples. (C) Dot plot showing	
	top ten significantly enriched pathways associated with DEGs	
	identified in GBC vs. Normal.	
4.14	Identification of shared and unique differential gene expression	95
	profiles in GBC compared to GSD with three different follow-up	
	periods. (A) Venn diagram showing the overlapping DEGs	
	between GBC vs. GSD with 3 different follow-up periods. (B)	
	Top 10 enriched pathways associated with the overlapping	
	DEGs. (C) Complete linkage gene-wise hierarchical clustering	
	of unique DEGs identified in GBC compared to GSD with 3	
	different follow-up periods.	
4.15	Signaling network showing the key signaling pathways and	97
	complexes associated with the hub DEGs identified in GBC. The	
	green node represents associated proteins; light blue nodes	
	indicate signaling pathways; circled blue nodes represent hub	
	genes; squared blue nodes represent signaling complex and the	
	yellow nodes indicate protein families.	

4.16	Validation of the expression and genetic alteration of the	98-99
-T+ I V	potential DEGs identified from case studies involving analysis	JU-JJ
	of public transcriptomic datasets (case studies 1, 2, and 3). (A)	
	The genetic alteration associated with hub DEGs identified in	
	GBC. (B) Boxplot showing the gene expression level of the	
	selected hub DEGs in tumor samples compared to normal from	
	four TCGA gastrointestinal cancer datasets. The red and green	
	boxes represent tumor and normal samples respectively,	
	whereas; the black line represents metastatic samples.	
4.17	Schematic outline of the overall workflow carried out for	101
	identification of crucial molecular signatures in GBC from in-	
	house generated GBC and GSD transcriptomic dataset.	
4.18	Visualization of the RNA-seq libraries prepared from each	103
	sample in the TapeStation system.	
4.19	Identification of significant DEGs in GBC and GBC+GS group	105
	as compared to control. (A) Bar plot showing the number of	
	DEGs identified in GBC+GS and GBC groups. (B) Hierarchical	
	clustering analysis showing the expression profile of DEGs	
	identified in the GBC and GBC+GS group compared to control	
	(GSD).	
4.20	Identification of shared DEGs and pathways between GBC and	106
	GBC+GS groups. (A) The Venn diagram represents 188 shared	
	DEGs between the two GBC groups. (B) Hierarchical clustering	
	analysis showing heatmap of the expression level of the shared	
	DEGs. (C) Bar plot representing the top ten significant pathways	
	(Padj < 0.05) associated with the shared DEGs.	
4.21	Functional enrichment of significant DEmRNAs. Bar plots	108-109
4.21		106-109
	representing the top ten significantly enriched biological	
	processes and pathways associated with the upregulated	
	(activated) and downregulated (suppressed) DEmRNAs in	
	GBC+GS (A) and GBC (B) groups. The x-axis and y-axis	
	represent the significantly enriched processes and pathways and	
	p-values (log10 transformed) respectively.	

	1	ı
4.22	Construction of PPI networks and identification of significant	110
	module clusters from the whole PPI network. The color scale	
	represents the degree centrality of the interconnected nodes.	
4.23	Bar plot showing the top five enriched pathways from KEGG,	113
	MsigDB, and Reactome database in (A) GBC+GS and (B) GBC	
	group. The X-axis and Y-axis represent the significant pathways	
	and gene ratio respectively.	
4.24	qRT-PCR validation of the hub DEGs identified in the GBC and	114
	GBC+GS group. (A) Bar plot representing the relative	
	expression of LMOD1 and SMAD4 identified using qRT-PCR	
	data analysis in GBC compared to control. (B) Bar plot showing	
	the gene expression level (log2FoldChange) of LMOD1 and	
	SMAD4 identified through RNA-seq and qRT-PCR.	
4.25	Schematic diagram showing gallstone-dependent and gallstone-	119
	independent GBC development progresses through distinct	
	molecular pathogenesis involving distinct gene sets and diverse	
	biological pathways. The upregulated and downregulated genes	
	are highlighted in red and green font respectively.	
	CHAPTER- V	
5.1	Overall schematic workflow for identification of crucial	125
	lncRNAs involved in GBC pathogenesis.	
5.2	Identification of differential expression profile of lncRNA in	126-127
	GBC and GBC+GS group. (A) Bar graph showing the total, up	
	and down-regulated DElncRNA and DEnlncRNA identified in	
	GBC and GBC+GS groups. (B) Pie chart representing the	
	percentage of novel lncRNAs classified under various categories	
	based on their genomic positions. C. Hierarchical clustering	
	pattern of DElncRNA and DEnlncRNA expression profile in	
	GBC and GBC+GS cases compared to control.	
5.3	Identification of overlapping DE-lncRNAs and DE-nlncRNA	128
	between GBC & GBC+GS group. Heatmap representing	
	hierarchical clustering of 36 common DElncRNAs (A) and 6	
	common DEnlncRNAs (B) between two GBC groups. (C) Pie	

	chart representing the experimentally validated common DE-	
	lncRNAs and their associated cancer functional state in GBC.	
5.4	IncRNA-mRNA expression correlation network. Construction of	130
	DElncRNA-DEmRNA and DEnlncRNA-DEmRNA expression	
	correlation networks in GBC and GBC+GS groups respectively.	
	The blue and red nodes indicate DEmRNAs and DElncRNAs	
	respectively. The bar plots representing the top ten hub	
	DElncRNAs and DEnlncRNAs determined through correlation	
	networks based on degree centrality in GBC and GBC+GS	
	groups respectively. The blue bars represent downregulation and	
	the yellow bars indicate upregulation.	
5.5	Construction of CeRNA networks. (A-B) CeRNA regulatory	134
	networks showing the highly connected miRNAs and their target	
	DElncRNAs and DEmRNAs in GBC and GBC+GS groups	
	respectively. (C-D) CeRNA regulatory networks showing the	
	highly connected miRNAs and their target DEnlncRNAs and	
	DEmRNAs in GBC and GBC+GS groups respectively	
	DEmRNAs, DElncRNAs, and miRNAs are represented by blue	
	octagon shapes, red diamonds, and green rectangles respectively.	
5.6	Pathway analysis of the interacting mRNAs in the ceRNA	136
	networks. (A-B) The bar plot represents the top five significantly	
	enriched pathways linked to interacting DEmRNAs in respective	
	GBC and GBC+GS ceRNA networks constructed with	
	DElncRNAs. (C-D) The bar plot represents the top five	
	significantly enriched pathways linked to interacting DEmRNAs	
	in respective GBC and GBC+GS ceRNA networks constructed	
	with DEnlncRNA	
5.7	ceRNA network clusters involving the hub DElncRNAs and	138
	DEnlncRNAs targeting multiple hub miRNAs in GBC and	
	GBC+GS groups. (A-B) ceRNA network clusters involving hub	
	DE-lncRNA in GBC and GBC+GS groups respectively. (C-D)	
	ceRNA network clusters involving hub DE- novel lncRNA and	
	in GBC and GBC+GS groups respectively.	

5.8	Cross-validation of the hub lncRNAs with independent public datasets. (A) Boxplot representing the log2foldchange expression of the hub lncRNAs in TCGA-CHOL, TCGA-LIHC, and TCGA-PAAD datasets. (B) Venn diagram showing the shared DElncRNAs identified between public and in-house datasets. The corresponding heatmaps showing the expression patterns of the common DE-lncRNAs identified.	139-140
5.9	qRT-PCR validation of the hub lncRNAs identified in the GBC and GBC+GS group. (A) Bar plot representing the relative expression of lncRNAs identified using qRT-PCR data analysis in GBC compared to control. (B) Bar plot showing the gene expression level (log2FoldChange) of lncRNAs identified through RNA-seq and qRT-PCR.	141
5.10	Predicted secondary structures of MSTRG.16633.1 and MSTRG.53675.1 identified in the GBC and GBC+GS groups respectively.	142
5.11	Mechanistic illustration of the action of hub DElncRNA and DEnlncRNA in GBC and GBC+GS pathogenesis. (A) Dysregulated lncRNAs (LINC00852 and MSTRG.53675) identified in the gallstone-associated GBC group show that the hub lncRNAs were found to interact with potential hub DEmRNAs involved in FoxO signaling pathways which induce pro-tumorigenic effects by modulating crucial regulatory pathways and promote tumorigenesis in gallbladder with gallstones. (B) In the GBC group, the lncRNAs (DIO3OS and MSTRG.16633) identified indirectly interact with the cell- adhesion molecules and contribute to tumor invasion through EMT and tumor-microenvironment interaction, which ultimately leads to increased cell proliferation and metastatic gallbladder carcinogenesis.	147

	CHAPTER VI	
6.1	The overall schematic workflow of transcriptional regulatory	154
	network analysis and identification of potential TFs in GBC	
	pathogenesis.	
6.2	Identification of differentially expressed TFs. (A) Venn diagram	155
	representing the number of DETFs identified in GBC and	
	GBC+GS cases respectively. (B) Expression heatmap of the	
	DETFs identified in GBC and GBC+GS cases compared to	
	controls. The heatmaps were plotted using the Zscore.	
6.3	Identification of significant pathways involved with DETFs	157
	identified in GBC and GBC+GS groups. Bar plot showing the	
	top five significantly enriched KEGG and hallmark pathways	
	associated with DETFs identified in GBC (A-B) and GBC+GS	
	(C-D) groups respectively. The x-axis and y-axis represents the	
	p-values and the significant KEGG and molecular signature	
	hallmark pathways respectively.	
6.4	Transcriptional regulatory networks construction and	159
	identification of hub TFs. (A-B) Construction of TF-TG	
	regulatory network and identification of hub TFs in GBC and	
	GBC+GS group respectively. (C-D) Construction of TF-lncRNA	
	regulatory network and identification of hub TFs in GBC and	
	GBC+GS group respectively. The blue triangular nodes	
	represent the hub TFs identified using the highest degree of	
	centrality. The red triangles and V-shaped nodes represent the	
	DETFs and DE-IncRNAs respectively.	
6.5	Pathway enrichment of the target genes identified in TF-TG	162
	regulatory networks. The bar plot (right panel) represents the top	
	five identified significant (p-value < 0.05) KEGG pathways	
	associated with hub DETFs identified from (A) GBC and (B)	
	GBC+GS regulatory networks (left panel).	
6.6	Enriched cancer hallmark processes associated with DElncRNAs	163
	identified in TF-IncRNA networks. The pie chart showing the	

	enriched cancer hallmarks linked to DE-lncRNA targeted by hub	
	TFs identified in the GBC (A) and GBC+GS (B) networks.	
6.7	Construction of a transcriptional regulatory network of DETFs	164
	identified in GBC compared to normal. (A) Identification of hub	
	TFs in GBC based on degree centrality. The red node represents	
	the top hub TFs and the small blue nodes represent target genes.	
	(B) Pairwise correlation of EMT score of hub TFs identified	
	through TF-TG interactions. The significance of each hub TF is	
	represented with a symbol- p -value < 0.001 (***); p -value < 0.01	
	(**) and <i>p</i> -value < 0.05 (*).	
6.8	Validation of <i>KLF15</i> and <i>MECOM</i> expression in TCGA datasets.	165-166
	(A) Box plot showing the expression level (log2foldchange) of	
	KLF15 and MECOM in four different TCGA datasets of	
	gastrointestinal cancers. (B) Bar plot representing the mutational	
	profile of KLF15 and MECOM in five different cancers of the	
	gastrointestinal tract.	
6.9	qRT-PCR validation of the hub lncRNAs identified in the GBC	167
	and GBC+GS group. (A) Bar plot representing the relative	
	expression of KLF15 and MECOM TFs identified using qRT-	
	PCR data analysis in GBC and GBC+GS group compared to	
	control. (B) Bar plot showing the gene expression level	
	(log2FoldChange) of KLF15 and MECOM identified through	
	RNA-seq and qRT-PCR.	
	I	

Table. No.	Table legends	Page No.	
	Chapter II		
2.1	List of reported key genes dysregulated in GBC patients.	17	
2.2	List of reported altered tumor suppressors and oncogenic	20	
	miRNA identified in GBC.		
2.3	List of OMICs scale GBC datasets available at NCBI and	30	
	ENA databases.		
	Chapter III	I	
3.1	Cycling conditions for Real-Time PCR.	53	
3.2	List of primer sequences of the hub DEGs and DE-IncRNA	53	
	used in qRT-PCR.		
3.3	Filtration steps to identify novel lncRNAs from RNA-Seq	55-56	
	datasets.		
	Chapter IV	I	
4.1	The sample information of the RNA-seq datasets selected	71	
	for Case Study 1.		
4.2	The Zsummary and medianRank preservation (pres) values	76	
	of the significant nonpreserved modules identified in GBC,		
	HCC, and ICC networks.		
4.3	The top five significantly enriched KEGG pathways	77	
	associated with nonpreserved modules identified from the		
	GBC, HCC, and ICC networks.		
4.4	List of top five hub DEGs identified from nonpreserved	78	
	modules of GBC, HCC, and ICC through intramodular		
	connectivity analysis.		
4.5	List of top five hub DEGs identified from nonpreserved	79	
	modules of GBC, HCC, and ICC through PPI network		
	analysis.		
	1	1	

4.6	The Top five significant biological processes associated	86
	with DEGs identified from nonpreserved modules of GBC	
	and control networks.	
4.7	The Top five significant KEGG pathways associated with	87
	DEGs identified from nonpreserved modules of GBC and	
	control networks.	
4.8	List of top five hub DEGs identified in GBC from	88
	nonpreserved modules using intra-modular connectivity	
	analysis. The DEGs with the highest interaction (weight)	
	with the other DEGs in the modules are considered as hubs.	
4.9	List of top five hub DEGs identified in GBC from	89
	nonpreserved modules using PPI network analysis.	
4.10	List of significant hub DEGs identified in GBC compared	96-97
	to GSD with three different follow-up periods through PPI	
	network analysis.	
4.11	Clinical information on the GBC and GSD tissue samples	102
	collected through surgical resection and USG-guided	
	biopsy	
4.12	Summary of reads generated from GBC and GSD samples	104
	generated through transcriptomic sequencing.	
4.13	List of hub DEGs identified through PPI network analysis	111
	by taking the consensus of five network topology	
	measures.	
	Chapter V	
5.1	The statistics of correlation networks constructed with	129
	DEmRNA -DE-IncRNA pairs and DEmRNA-DE-	
	nlncRNA pairs.	
5.2	List of top five enriched pathways linked with DE-mRNAs	132
	coexpressed with hub DElncRNA identified in GBC and	
	GBC+GS group. The pathways in bold font represent	
	common enriched pathways identified between KEGG and	
	MsigDB database.	

r		· · · · · · · · · · · · · · · · · · ·		
5.3	List of top five enriched pathways linked with DEmRNAs	133		
	coexpressed with hub DEnlncRNA identified in GBC and			
	GBC+GS group. The pathways in bold font represent			
	common enriched pathways identified between the KEGG			
	and MsigDB database.			
5.4	List of hub DEnlncRNAs and their parental gene	135		
	information and genomic location.			
5.5	List of top five miRNAs identified in GBC and GBC+GS	137		
	groups through the construction of ceRNA networks. The			
	asterisk symbol represents the miRNAs conserved in all			
	the ceRNA networks.			
Chapter VI				
6.1	List of top ten hub DE-TFs identified from TF-TG and TF-	160		
	lncRNA regulatory networks in the GBC group. The			
	asterisk symbol indicates the shared DE-TFs identified in			
	both TF-TG and TF-TlncRNA networks.			
6.2	List of top ten hub DE-TFs identified from TF-TG and TF-	161		
	TlncRNA regulatory networks in the GBC+GS group. The			
	asterisk symbol indicates the shared DE-TFs identified in			
	both TF-TG and TF-TlncRNA networks.			
	1			

Abbreviations **Full form** 76GS: 76 gene signatures AAR: Age-adjusted rates AJCC: American Joint Committee on Cancer ASR: Age-standardized rates Dr. B. Borooah Cancer Institute **BBCI: BLAST:** Basic local alignment search tool **BP**: **Biological processes** BTS: Biliary tract system Cell adhesion molecules CAMs: cDNA: Complementary DNA Competitive endogenous RNA ceRNA **CHOL:** Cholangiocarcinoma **CIS-BP:** Regulatory Sequence Analysis Tool Colorectal adenocarcinoma **COAD:** CPC2: Coding potential calculator 2 **DEGs:** Differentially expressed genes **DE-IncRNA:** Differentially expressed lncRNA **DEmRNA:** Differentially expressed mRNA Differentially expressed novel lncRNA **DE-nlncRNA:** ECM: Extracellular matrix EMT: Epithelial-mesenchymal transition ENA: European nucleotide archive **EPC:** Edge percolated centrality **ETENBR:** End-to-end and Beyond RNA-Seq analysis pipeline **ETENLNC:** End-to-end Novel LncRNA analysis pipeline **FASTP:** Fast preprocessing **FASTQC:** FAST Quality Check GB: Gallbladder **GBC:** Gallbladder cancer **GBC+GS**: Gallbladder cancer with gallstones

LIST OF ABBREVIATIONS

GCN:	Gene coexpression network
GEO:	Gene expression omnibus
GLM:	Generalized linear model
GLOBOCAN:	Global cancer observatory
GS:	Gallstones
GSD:	Gallstone disease
GSD10:	GSD with a follow-up period of more than 10 years
GSD3:	GSD with a follow-up period of 1-3 years
GSD5:	GSD with a follow-up period of 3-5 years
HBCs:	Hepatobiliary cancers
HCC:	Hepatocellular carcinoma
HISAT2:	Hierarchical indexing for spliced alignment of transcripts
HSV1:	Herpes simplex virus 1
ICC:	Intra hepatic cholangiocarcinoma
KEGG:	Kyoto Encyclopedia of Genes and Genomes
KLF:	Kruppel-like factors
KS:	Kolmogorov Smirnov test
LIHC:	Liver hepatocellular carcinoma
LncRNA:	Long noncoding RNA
Log2FC:	Log2 Fold Change
LoH:	Loss of heterozygosity
MCC:	Maximum clique centrality
MCODE:	Molecular Detection Complex
MF:	Molecular functions
miRNA:	microRNA
MLR:	Multinomial logistic regression
MNC:	Maximum neighbourhood component
MRE:	miRNA response element
mRNAs:	Messenger RNAs
MSI:	Microsatellite instability
MsigDB:	Molecular Signature Hallmark Database
NATs:	Natural antisense transcript
NCBI:	National Center for Biotechnology Information

NCCN:	The National Comprehensive Cancer Network
ncRNAs:	Noncoding RNAs
NE:	North-East
NF-kB:	Nuclear factor-kappa B
NGS:	Next generation sequencing
ORF:	Open reading frame
PAAD:	Pancreatic adenocarcinoma
Padj:	P-adjusted value
pcRNAs:	Protein-coding RNAs
PDJ:	Pancreaticobiliary duct junction
PPI:	Protein-Protein Interactions
PROMPTs:	Promoter upstream transcripts
PWM:	Position weight matrix
qRT-PCR:	Quantitative Real-Time PCR
RIN:	RNA integrity number
RSAT:	Regulatory Sequence Analysis Tool
SSSSH:	Swagat Super Specialty Surgical Hospital
STAD:	Stomach adenocarcinoma
TCGA:	The Cancer Genome Atlas
TERC:	Telomerase RNA component
TFs:	Transcription factors
TF-TG:	Transcription factor-Target gene
TF-IncRNA:	Transcription factor-Target lncRNA
TGF-β:	Transforming growth factor-beta
TNF-alpha:	Tumor necrosis factor-alpha
TNM:	Tumor Node Metastasis
TOM:	Topological Overlap Matrix
TRN:	Transcriptional Regulatory network
TSG:	Tumor suppressor gene
USG:	Ultrasonography
WGCNA:	Weighted Gene Co-expression Network Analysis
XMEs:	Xenobiotic metabolism enzymes