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3.1 Materials 

3.1.1 Reagents and kits  

  

3.1.2 Computational Tools and Databases  

Molecular reagents or kits Manufacturer Purpose 

cDNA synthesis kit Takara Synthesis of cDNA for qPCR 

Kapa mRNA Hyperprep Kit Roche Preparation of RNAseq libraries 

Molecular grade ethanol Merck Purification and precipitation. 

Qubit quantification kit Invitrogen Quantification of RNA 

RNA isolation kit Qiagen 
Extraction of RNA from GBC and GSD 

tissue samples 

RNA later Invitrogen Preservation of RNA in biological samples 

SYBR green master mix 
Applied 

Biosystems 

Quantification of the amount of DNA in 

the qPCR 

Tools Purpose 

Basic Local Alignment Search 

Tool (BLAST) 
Identification of novel lncRNA transcripts 

ClusterProfiler & EnrichR 
Functional enrichment analysis of differentially 

expressed genes. 

Coding Potential Calculator 2 

(CPC2) 
Analysis of the coding potential of a transcript 

Cytohubba Topological analysis of PPI cluster modules 

Cytoscape Analysis and visualization of interactive networks 

DESeq2 Identification of differentially expressed genes 

Fast Quality Control (FASTQC) Quality Control analysis of NGS data 

Fast Preprocessing (FASTP) Pre-processing of FASTQ reads 

featureCounts Quantification of mapped reads  

GffCompare Filtration of the transcripts into different class codes 

Hierarchical indexing for spliced 

alignment of transcripts (HISAT2) 
Mapping of processed reads with the reference genome 

Molecular Detection Complex 

(MCODE) 
Generation of PPI cluster modules 
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3.1.3 In-house Computational Pipelines 

Pipeline Link to Repository 

End-To-End Novel LncRNA analysis 

pipeline (ETENLNC)  

https://github.com/EvolOMICS-

TU/ETENLNC 

Transcriptional Regulatory Network (TRN) 

construction and analysis pipeline (TF-TG) 
https://github.com/EvolOMICS-TU/TF-TG 

End-to-end and Beyond RNAseq analysis 

pipeline (ETENBR) 

https://github.com/EvolOMICS-TU/-

RNAseq-pipeline-Public 

 

MEME Suite 
Scanning of Cis-regulatory Modules (CRRs) for 

putative TFBS sites 

miRanda 
Prediction of lncRNA-miRNA and miRNA-mRNA 

interactions 

Regulatory Sequence Analysis 

Tool (RSAT) 
1-kb Upstream sequence retrieval of DEGs 

Stringtie Assembly of transcripts 

Weighted Gene Co-expression 

Network Analysis (WGCNA) 
Gene co-expression network analysis 

Databases Purpose 

Catalogue of Inferred Sequence 

Binding Preferences (CIS-BP) 

database 

Retrieval of TF motif PWMs 

cBioPortal database 
Visualization and analysis of large-scale cancer 

genomic datasets 

Ensembl database 
Retrieval of human reference genome and annotation 

files 

European Nucleotide Archive 

(ENA) database 
Retrieval of public RNAseq datasets 

Kyoto Encyclopedia of Genes and 

Genomes (KEGG database) 
Pathway enrichment analysis 

Molecular Signature Hallmark 

Database (MsigDB) 
Pathway enrichment analysis 

STRING 
Construction of protein-protein interaction (PPI) 

networks 

https://github.com/EvolOMICS-TU/ETENLNC
https://github.com/EvolOMICS-TU/ETENLNC
https://github.com/EvolOMICS-TU/TF-TG
https://github.com/EvolOMICS-TU/-rna-seq-pipeline-Public
https://github.com/EvolOMICS-TU/-rna-seq-pipeline-Public
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3.2 Methodology 

The overall methodology of the study includes the integration of clinical, experimental, and 

computational approaches to generate transcriptomic datasets from GBC and GSD clinical 

tissue samples to identify crucial molecular signatures associated with GBC development. The 

workflow of the methodology is presented in Figure 3.1. 

 

Figure 3.1: Illustrative representation of the overall methodologies employed to identify 

molecular signatures associated with GBC pathogenesis. 
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A. CLINICAL APPROACH 

3.2.1 Study design and participants  

The current experiment was planned as a hospital-based case-control study in Assam. A total 

of 14 tissue samples were collected, consisting of   GBC tissues (n=8) and GSD (n=6) tissues. 

The GBC tissues were collected through surgical resection and ultrasonography (USG) guided 

biopsy from patients admitted at Dr. B. Borooah Cancer Institute (BBCI), Guwahati.  GSD 

tissues were collected from individuals, who have undergone laparoscopic cholecystectomy for 

gallstone condition at Swagat Super Speciality Surgical Hospital (SSSSH), Guwahati, Assam 

[Figure 3.2]. Here, the GSD samples were considered as control. The study was ethically 

approved vide letter- BBCI-TMC/Misc-01/MEC/254/2021 and DoRD/TUEC/PROP/2022/06. 

Clinically and histo-pathologically confirmed GBC and GSD cases were included in the study 

and all the participants voluntarily participated. The following were the exclusion and inclusion 

criteria considered for the study. 

Inclusion Criteria  

• Clinically and histo-pathologically confirmed cases of GBC and GSD  

• GBC patients below the age limit of 86 years  

• Both male and female patients  

Exclusion Criteria  

• Paediatric age group patients with GBC 

• Patients who underwent radiation and chemotherapeutic treatment or any surgical 

interventions before cholecystectomy.  

• Patients who were not willing to give consent. 

 

 

 

 

 

 

 

 

 

Figure 3.2: Collection of GBC and GSD clinical tissue samples from the population of Assam. 
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B. EXPERIMENTAL APPROACH 

3.2.2 Transcriptome sequencing 

Total RNA was isolated from approximately 25-30mg tissue samples collected from GBC 

patients and individuals who had GSD using RNA Easy Mini kit (Qiagen), according to the 

manufacturer’s instructions. The quality of total RNA was checked using Agilent RNA 6000 

Nano chip in 2100 Bioanalyzer (Agilent) and quantitation was performed by NanoDrop 

spectrophotometer (Thermo Scientific) followed by the fluorometric method in Qubit 

fluorometer (Invitrogen). Total RNA samples with high RNA integrity number (RIN) were 

selected for library preparation using Kapa mRNA Hyperprep Kit (Roche). The quality of 

RNAseq libraries was checked using high-sensitivity D1000 ScreenTape in Agilent 2200 

TapeStation system (Agilent) and final library quantification was done using Real-Time PCR 

(QuantStudio 7 Flex). Paired-end (PE) 2 x 100 bp sequencing of these libraries was performed 

in Novaseq 6000 (Illumina).  

 

3.2.3 Validation through quantitative Real Time (qRT)-PCR analysis 

The expression of hub DEGs and DElncRNAs has been validated using SYBR green-based 

assays (Applied Biosystems, USA) on a Real-Time PCR System (Applied Biosystems, USA). 

For qRT-PCR analysis, the total RNA of the GBC+GSD, GBC-GSD, and control tissues was 

extracted using an RNA Easy Mini kit (Qiagen) and quantified using a Nanodrop 

spectrophotometer. The complementary DNA (cDNA) synthesis was done using the 

PrimeScript II 1st strand cDNA synthesis kit (Takara). The qRT-PCR was carried out in 20 µL 

of reaction volume consisting of 1X SYBR green PCR master mix, 0.4 µM of forward (F) and 

reverse (R) primer, 100ng of cDNA, and water to adjust the reaction volume. The cycling 

condition considered for the qRT-PCR is provided in Table 3.1. The RN18S1 was used as an 

internal control for the normalization of expression levels. All the primer sequences used in the 

qRT-PCR reaction are listed in Table 3.2. The ∆𝑐𝑡 and 2∆∆𝑐𝑡 methods were used to analyze the 

qRT-PCR data, where ∆𝑐𝑡 and 2∆∆𝑐𝑡 represent the sample’s expression and relative expression 

of the target genes respectively 

 

 

.  
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Table 3.1: Cycling conditions for Real-Time PCR. 

Steps Temperature Time Cycles 

Uracil-DNA-Glycosylase (UDG) activation 50◦C 2 minutes 

1 
Activation of DNA polymerase 95◦C 2 minutes 

Denaturation 95◦C 15 seconds 

40 Annealing variable 30 seconds 

Extension 72◦C 1 minute 

 

Table 3.2: List of primer sequences of the hub DEGs and DElncRNA used in qRT-PCR. 

Genes Tm Sequences (5´-3´) 

LMOD1 
Forward- 58.5,  

Reverse- 60.1 

Forward: GAAGAACTCCCGTGACCAGCTA 

Reverse: AGCCTGGTCCTACTGAAGCAGT 

KLF15 
Forward- 57.2,  

Reverse-55.6 

Forward: TATCACATGCTGCCCTCACC 

Reverse: GAAGTCCAAGATGCTGTCCTG 

DIO3OS 
Forward- 58.9,  

Reverse- 56.3 

Forward: AGGCCCAGCCCAATAGGAA 

Reverse: GGCCCAAGAAACAGCAACA 

SMAD4 
Forward- 58.5,  

Reverse- 56.3 

Forward: TGCCTCACCACCAAAACGG 

Reverse: CCAAACAAAAGCGATCTCCTCC 

MECOM 
Forward- 54.8, 

Reverse- 58.1 

Forward: TATCCACGAAGAACGGCAATATC 

Reverse: CATGGAAACTTTTGGTGATCTGC 

LINC00852  
Forward- 57.0, 

Reverse- 55.3 

Forward: CGTTGCCTACAGTCAAGTCAGT 

Reverse: GCCATGGTTCCCTTACTGATAC 

MSTRG.16633.1 
Forward- 56.1, 

Reverse- 56.3 

Forward: TGTTTTGAAAGGAGCTGGGC 

Reward: CCTCATCGTCAGCTACACCT 

MSTRG.53675.1 
Forward- 55.6, 

Reverse-56.2 

Forward: CTTTTCATCCAGCAGCACCT 

Reverse: CCAAATCTGCCTTCACCTGG 

RN18S1 
Forward- 55.3, 

Reverse- 56.0 

Forward: GGAGTATGGTTGCAAAGCTGA 

Reverse: ATCTGTCAATCCTGTCCGTGT 

 



CHAPTER III                                                              MATERIALS & METHODOLOGY 

                                                                                                                                                  54 

C. COMPUTATIONAL APPROACHES 

3.2.4 Retrieval of publicly available transcriptomic datasets 

To obtain the relevant publicly available transcriptome datasets on GBC, GSD, Hepatocellular 

carcinoma (HCC), and intrahepatic cholangiocarcinoma (ICC), a comprehensive search was 

conducted on the ENA database [1] using the following criteria: 

1. Study type: RNA Expression profiling by high throughput sequencing,  

2. Attribute name: Tissue, and  

3. Organism: Homo sapiens 

The datasets containing (i) paired-end data, (ii) both case-control samples, (iii) sample size ≥ 

20, and (iv) information about the sequencing platform used as well as the experimental 

protocol were considered for transcriptomic data analysis.  

3.2.5 Transcriptome data analysis and generation of raw expression counts 

of transcribed genes. 

Transcriptome/RNAseq data analysis involves four major steps:  

1. Quality check of raw FastQ reads,  

2. Pre-processing of reads,  

3. Mapping of reads to the reference genome, and finally  

4. Quantification of aligned reads.  

The quality check (QC) of raw reads was performed using the FASTQC tool and the pre-

processing of the reads was carried out using FASTP [2]. The pre-processing of reads using 

FASTP is based on the following criteria: (1) removal of adapters, (2) removal of bad quality 

reads with phred score threshold of 32, (3) removal of reads shorter than 10bp, and (4) filtration 

of reads with overall and per nucleotide phred thresholds. To eliminate reads that are less than 

10 nucleotides, the default value for "read length" was set to 10, while the "phred quality" score 

threshold was set to "32" for bases. After that, another round of QC using FASTQC was carried 

out to identify and report any anomalous or nonconforming regions in the processed reads. The 

processed reads were aligned with the ensemble [3] reference human genome Homo sapiens 

(GRCh38) using Hisat2 [4]. The aligned or mapped reads were then quantified using the 
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featureCounts tool [5] to obtain the gene expression profile of each sample as a single count 

matrix file. 

3.2.5.1 Identification of annotated and novel lncRNAs using in-house developed end-to-

end novel lncRNA (ETENLNC) identification pipeline. 

For the identification of novel lncRNAs, the generated mapped reads after pre-processing (as 

referred to in 3.2.4) were assembled using the Stringtie tool [6]. Assembly of mapped reads is 

performed in two steps: (i) The first step takes in BAM files to assemble full-length transcripts 

from several splice variants and generates a GTF file containing assembled transcripts, and (ii) 

The second step takes the transcripts that have been assembled from each of the GTF files and 

combines them into a single, non-redundant GTF file. The novel transcripts, by default, are 

labeled with a ‘MSTRG’ ID. To identify annotated and novel lncRNA from RNAseq datasets, 

genomic location-based filtration, and specific lncRNA sequence filtration steps were applied 

to obtain novel lncRNAs [Table 3.3].  

Table 3.3: Filtration steps to identify novel lncRNAs from RNAseq datasets 

(i) Genomic filtration  

Genomic-based filtration has been carried out through the isolation of putative classes of 

lncRNA transcripts using the GFFCompare tool [7]. To categorize the assembled transcripts 

according to their genomic locations, they are compared to a reference GTF. Class codes are 

assigned to the transcripts based on the coordinates of their genomic locations. Four classes 

of putative lncRNAs were selected, which include: 

Class code ‘i’ It comprises fully intronic transcripts that arise from the intron 

sequences of the genome.  

Class code ‘o’ Class code ‘o’ includes overlapping transcripts arising from exonic-

intronic overlaps.  

Class code ‘x’ It contains Natural Antisense Transcripts (NATs) arising from the 

exonic overlaps on the opposite strand 

Class code ‘u’ It comprises unknown transcripts, not found in the reference 

annotation provided to GFFCompare, and may contain novel 

unannotated transcripts and intergenic transcripts. 

(ii) Advanced filtration 
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The ‘advanced filtration’ of transcripts based on lncRNA properties was performed using 

customized scripts that carry out the following sub-filters. 

Length filter RNA transcripts with sizes greater than 200 nucleotides are considered 

as lncRNAs. Using this filter, transcripts with sequence lengths greater 

than 200 nucleotides were selected.  

Exon filter The length-filtered transcripts were then filtered based on their exon 

number. Transcripts having an exon number greater than 2 were 

selected for further filtering. 

ORF filter LncRNA transcripts do not code for proteins and therefore have a 

smaller ORF, reported up to 300bps. ORF filter selects transcripts 

having ORFs below 300bps. 

 

3.2.5.2 Coding Potential Analysis (CPA) 

Filtered transcripts are further analyzed to determine their coding potential using CPC2 [8]. 

CPA calculates the coding potential of the identified filtered transcripts using a classifier based 

on Support Vector Machines (SVM). CPC2 classifies the transcripts as either coding or 

noncoding based on sequence properties like the isoelectric point (pI), FICKETT score, and 

ORF features. Transcripts labeled as "noncoding" are chosen for additional filtering. 

3.2.5.3 BLASTn analysis 

To identify novel lncRNA transcripts, the annotated or existing lncRNA transcripts had to be 

removed from the obtained set. This was done using a nucleotide BLAST (Basic Local 

Alignment Search Tool) search against known/annotated lncRNAs using the NCBI BLAST 

toolkit [9,10]. The parameters "-e-value" and "-word_size" are set to 0.001 and 7, respectively, 

to minimize errors and limit the match threshold of hits to seven nucleotides while running 

BLASTn. Transcripts with a BLAST score of greater than 95% were eliminated from the 

filtered transcripts. The filtered lncRNAs obtained after the BLASTn run were subjected to 

DEA for the identification of known and novel DElncRNAs. The overall methodology for the 

identification of novel lncRNAs from the transcriptomic dataset is presented in Figure 3.3. 
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Figure 3.3: Schematic workflow for identification of predicted novel lncRNAs from the 

transcriptomic dataset. 

3.2.6 Identification of significant differentially expressed genes and lncRNA 

from transcriptomic datasets.  

The differential analysis of raw count data obtained through RNAseq, for evidence of 

expression changes across experimental conditions, is an important step in comparative high-

throughput sequencing studies. The pre-processing steps such as low read count removal, 

normalization, and transformation of the raw count data are essential for downstream analysis 

because the technical variability or differences in the RNAseq library size and library 

composition can falsely reflect on differential gene expression [11]. Here, the DESeq2 [12] 

method was used to generate differentially expressed genes (DEGs) in GBC samples as 

compared to the control samples, and the consensus of both DESeq2 and EdgeR is used for 

case study 1. The DESeq2 method calculates the ratio of each read count to the geometric 

(logarithmic) mean of all read counts for a given gene across all samples. The Trimmed Mean 

of M-values chooses a reference sample and calculates fold changes and absolute expression 

levels relative to that sample. A count matrix K, comprising one row for each gene i and one 

column for each sample j, serves as the starting point for a DESeq2 analysis. The number of 

sequencing reads that have been conclusively mapped to a gene in a sample is indicated by the 

matrix entries Kij. For each gene, a generalized linear model (GLM) [13] with a logarithmic 

link is used. The log2 fold change represents the estimated effect size, indicating the apparent 

alteration in gene or transcript expression between comparison and control groups. This value, 

expressed on a logarithmic scale with a base of 2, indicates increased expression (upregulation) 

with positive values and decreased expression (downregulation) with negative values. An 

absolute cut-off value >10 across all the samples for each gene was used for obtaining DEGs. 
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Applying p-adjusted value (padj) ≤ 0.05, the list of significant DEGs was obtained from 

DESeq2 and was considered for downstream analysis.  

3.2.7 Functional enrichment and pathway analysis 

To identify underlying biological processes and pathways associated with DEGs obtained 

through transcriptomic data analysis, functional enrichment analysis was performed. It is a 

widely used method of identifying biological functions that are over-represented or under-

represented among a list of genes with respect to reference background. Functional enrichment 

analysis uses statistical methods such as Fisher’s Exact Test to identify significantly enriched 

biological processes and pathways. Functional enrichment and pathway analysis were carried 

out using clusterProfiler [14] and enrichR [15] (R packages). Kyoto Encyclopedia of Genes 

and Genomes (KEGG) [16] and Molecular Signature Database (MsigDB) [17] were used to 

identify significant biological pathways associated with identified DEGs. A count number > 2 

and p-value threshold < 0.05 were considered as selection criteria for enriched biological 

processes and pathways associated with GBC. 

3.2.8 Gene coexpression network (GCN) analysis 

Gene-gene correlation networks are being used increasingly in bioinformatic studies. 

Correlation networks facilitate network-based gene screening methods that can be used to 

identify putative biomarkers or therapeutic targets. For instance, WGCNA is a systems biology 

approach that describes the patterns of gene correlation obtained in RNAseq/microarray 

samples. WGCNA has been successfully applied in several biological studies, including the 

study of brain imaging data, cancer, yeast genetics, and mice genetics. For this study, the 

expression values of the significant DEGs identified through DEA were used as input to build 

the gene co-expression network using the WGCNA (R package) [18].  

The main steps of WGCNA include – (i) Calculation of pairwise gene similarity using 

Pearson’s correlations to create an adjacency matrix (Adjij), (ii) construction of a scale-free co-

expression network from the adjacency matrix by taking the β value (soft thresholding 

parameter) into consideration, (iii) identifying the modules by deriving Topological Overlap 

Matrix (TOM) from adjacency matrix, (iv) identification of non-preserved modules using Z-

summary and medianRank statistics and (v) intramodular connectivity analysis of the non-

preserved modules to identify hub genes. 

3.2.8.1 Pearson’s correlations analysis for identification of co-expressed gene modules 
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Pearson's correlations analysis for each gene pair was calculated using the adjacency function 

of the WGCNA package to construct the adjacency matrix. Then, the adjacency matrix was 

used to create a scale-free co-expression network based on a soft-thresholding parameter βeta 

(β) to enrich strong correlations between gene pairs [19]. The function TOMsimilarity was 

utilized to transform the adjacency matrix that was computed into a TOM. Then, using the 

flashClust function for module identification, hierarchical clustering was carried out using this 

topological overlap matrix as an input. Finally, using the R package dynamicTreeCut, the 

network modules for the cancer and control samples were found, with a minimum module size 

(minClusterSize) = 30 and a minimum sensitivity (deepSplit) = 2 for the gene dendrogram. 

 

3.2.8.2 Module Preservation Analysis 

Module preservation was carried out to identify the non-preserved module between the cancer 

and the control network. The statistics behind module preservation is to calculate gene 

preservation within a module by comparing a reference network (control) with a test network 

(cancer) [18]. It was assumed that the genes found in non-preserved modules of the cancer 

network might be involved in the pathological process as compared to the control network. The 

module preservation analysis was performed using the WGCNA function module to determine 

the weight and connectivity of genes within the module of the cancer and control network. 

Based on degree and connectivity, the preservation analysis statistics- Z-

summary and medianRank gave the overall significance of the preservation of a module. The 

Z-summary preservation < 2 indicates no preservation, 2 ≤ Z-summary ≤ 10 suggests weak to 

moderate preservation, and Z-summary preservation > 10 implies strong preservation [20]. 

 

3.2.8.3 Intramodular Connectivity Analysis 

In network biology, the connectivity between nodes (genes) is generally considered a degree.  

In this study, the intramodular connectivity approach was used for the screening of hub genes 

within non-preserved modules. The intramodular connectivity measures the degree of each 

gene within a module. The criteria used for this study were to calculate the connectivity from 

the whole network (kTotal) and the connectivity within modules (kWithin). This measure of 

connectivity is useful to determine the biologically significant modules by calculating the 

degree of nodes within modules. The intramodular connectivity approach helps in screening 

regulatory changes in gene expressions [19,20]. 
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3.2.9 PPI network analysis 

The STRING database [21] was used to construct the PPI networks with the significant DEGs 

identified in each case study. DEGs in the PPI networks were represented as nodes and the 

interactions between the DEGs were represented by edges. The PPI interactions from STRING 

comprise both direct (physical) and indirect (functional) interactions. To quantify the 

interaction confidence, a score is assigned to each edge in the network. The PPI networks were 

analyzed using Cytoscape version 3.9 [22] 

For the identification of significant module clusters from the whole PPI networks, the MCODE 

tool [23] was used. The local density of each node in the network was taken into consideration 

to compute the module cluster score. For every cluster network, MCODE parameters included 

Node Score Cutoff = 0.2, K-Core = 2, and Threshold = 2. The MCODE cluster scores ≥ 4 and 

the number of nodes > 4 were set as cutoff criteria for obtaining significant PPI network 

modules. 

Furthermore, Cytohubba [24], a Cytoscape plugin was used for the identification of hub 

DEGs from the PPI module obtained through MCODE. Each node ranking method is 

associated with function F which assigns a numerical value to each node v. The ranking of a 

node u is greater than that of another node v if the score of u (i.e. F(u)) is greater than that 

of v (i.e. F(v)). Cytohubba implements 11 node ranking methods which are divided into two 

classes: global and local node ranking methods. A local rank method only takes into account 

the relationship between a node and its immediate neighbours when calculating its score within 

a network; in contrast, the global method looks at the relationship between the node and the 

entire network. In this study, three local node ranking methods- degree, maximal clique 

centrality (MCC), and maximum neighbourhood component (MNC) and two global node 

ranking methods- betweenness and closeness were used. The predicted hub DEGs identified 

from each of the node ranking methods were further intersected for the identification of 

consensus-significant hub DEGs from the PPI modules [24]. 

3.2.10 ceRNA regulatory network analysis 

The mRNA–miRNA–lncRNA regulatory relationship was predicted based on the ceRNA 

theory, i.e., mRNAs, and lncRNAs compete with each other for binding with MREs to regulate 

gene expression [25]. To identify potential ceRNA interactions between known/novel 

DElncRNAs, DEmRNAs and, all human miRNAs were used for the prediction. Putative 
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DElncRNA-miRNA and DEG-miRNA interactions were predicted using miRanda [26,27]. The 

miRanda algorithm is comparable to the Smith-Waterman algorithm [28]. However; the 

miRanda algorithm scores are based on complementarity of nucleotides (A=U or GC) rather 

than building alignments based on matching nucleotides (A-A or U-U, for example). 

Importantly, the scoring matrix used for this analysis allows G=U 'wobble' pairs, which are 

important for the accurate detection of RNA: RNA duplexes [29]. Complementarity parameters 

at individual alignment positions are +5 for G≡C, +5 for A=U, +2 for G=U, and -3 for all other 

nucleotide pairs. The ceRNA regulatory network was constructed based on the hub 

DElncRNAs and DEnLncRNAs identified through coexpression analysis in two GBC groups. 

The ceRNA network was visualized using Cytoscape version 3.9 software.  

3.2.11 Prediction of RNA secondary structures 

The secondary structures of the novel lncRNA were predicted using RNAfold. This tool uses a 

thermodynamic energy-based principle to predict the RNA secondary structure by taking the 

novel RNA sequences as an input. It determines the stability of RNA structures by computing 

their minimum free energy (MFE) and selecting the predicted RNA structure with the lowest 

free energy [30]. 

3.2.12 Transcriptional Regulatory Network (TRN) analysis for identification 

of potential regulatory TFs in GBC 

Transcription factors (TFs) are known to be crucial regulators in the transcription process 

which regulates the overall gene expression by binding to the start site of the promoter region 

[31]. Transcriptional regulatory networks are real-world biological networks. This is because 

real-world networks exhibit scale-free properties and functional relevance. Scale-free networks 

are characterized by a few highly connected nodes (hubs) and many nodes with relatively few 

connections [32]. To construct the TF-TG regulatory networks, the 1-kb upstream FASTA 

sequence of the significant DEGs and DElncRNAs identified in case study 2 and case study 4 

were extracted from RSAT [33]. The experimentally determined position weight matrix (PWM) 

of the identified DE-TFs was obtained from the cisBP database [34]. A PWM is a mathematical 

model that gives the binding specificity of a TF and is used to scan the upstream sequences of 

DEGs for determining the TF-TG interactions [Figure 3.4] [35]. This approach focuses on 

analyzing the cis-regulatory targets and will identify only the DEGs and DElncRNAs regulated 

directly by TFs through the transcription factor binding site (TFBS). The PWM scanning was 
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carried out using the FIMO tool of the MEME suite [36]. A p-value threshold of 10-4 was 

considered to obtain the significant TF-TG interactions. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: Schematic representation of the TF binding to target gene through PWM scanning. 

It is a scoring matrix for representing TF binding motifs. It represents a matrix of N rows and 

four columns, in which the matrix score of each base at each position is described.  

Furthermore; the expression correlation analysis of DEGs and differentially expressed 

transcription factors (DETF) and the DElncRNAs and DETFs was performed to identify the 

significant DETFs-DEGs and DETFs-DElncRNAs correlated pairs. The Pearson's correlation 

coefficient (PCC) was estimated using a customized R-script and pairs exhibiting PCC of 0.9 

(positive correlation) and -0.9 (negative correlation) with p-values less than 0.01 were selected. 

The final TF-TG and TF-lncRNA interaction network was constructed by taking the consensus 

of the common pairs identified through correlation analysis and PWM-scanning analysis. 

Finally, TRNs were constructed and visualized in the form of an interactive network using 

Cytoscape. Based on the degree centrality, the top ten significant TFs were identified as hubs 

for further analysis. 
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3.2.13 Calculation of EMT scores 

Epithelial-mesenchymal transitions (EMTs) are complex cellular processes that play crucial 

roles in cancer metastasis and are largely associated with poor survival of cancer patients. The 

large-scale transcriptomic data associated with EMT has enabled the development of different 

EMT scoring metrics that calculate the extent of EMT in cancer [39]. For our study, three 

different scoring metrics – 76Gs, MLR, and KS were used to quantify EMT scores for each 

sample separately. 

3.2.14 Cross-validation of the expression of DEGs and lncRNA identified 

through transcriptomic data analysis. 

The TNM plotter tool was used for validation of the expression of hub genes in TCGA datasets 

identified from public and in-house generated transcriptomic datasets. TNM plotter is a web 

server that gives a customizable interactive analysis of the gene expression based on TCGA 

datasets [37]. For the validation of hub genes, the fold change value > 2 was considered. 

Furthermore; the genetic alterations such as mutations and copy number alterations linked with 

the potential hub genes were identified using the cBioPortal database [38] 

(https://www.cbioportal.org/). The results generated from cBioPortal were visualized as 

OncoPrint. 
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