Dedicated to Ma and Deta

For their limitless love, selfless sacrifices, and unwavering support

Declaration

I do hereby declare that the thesis titled "**Experimental Performance Analysis of an improved Solar Dryer for Drying of** *Garcinia pedunculata* **and** *Curcuma amada*" submitted to Tezpur University in part fulfillment of the requirements of the degree of Doctor of Philosophy in Mechanical Engineering under the School of Engineering is a result of my original research work on the subject. It has not been submitted in any form or part for any diploma or degree of any other institution, including this University.

Date:

(Pooja Dutta)

Place:

Registration No.: TZ155381of 2015

Declaration

I do hereby declare that the thesis titled "**Experimental Performance Analysis of an improved Solar Dryer for Drying of** *Garcinia pedunculata* and *Curcuma amada*" submitted to Tezpur University in part fulfillment of the requirements of the degree of Doctor of Philosophy in Mechanical Engineering under the School of Engineering is a result of my original research work on the subject. It has not been submitted in any form or part for any diploma or degree of any other institution, including this University.

Date: 26-05-2024

Place: Tezpur University

Pooja Dutta)

Registration No.: TZ155381of 2015

Certificate

This is to certify that the thesis entitled, *Experimental Performance Analysis of an improved Solar Dryer for Drying of Garcinia pedunculata and Curcuma amada*, submitted to the School of Engineering, Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in Mechanical Engineering is a record of research work carried out by Pooja Dutta under our supervision and guidance.

All help received by her from various sources has been duly acknowledged. No part of this thesis has been submitted elsewhere for the award of any other degree.

(Supervisor) Prof. Partha Pratim Dutta Mechanical Engineering Department Tezpur University Tezpur - 784 028, Assam, India January, 2023

(Co-Supervisor) Dr. Paragmoni Kalita Mechanical Engineering Department Tezpur University Tezpur - 784 028, Assam, India January, 2023

Certificate

This is to certify that the thesis entitled, *Experimental Performance Analysis of an improved Solar Dryer for Drying of Garcinia pedunculata and Curcuma amada*, submitted to the School of Engineering, Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in Mechanical Engineering is a record of research work carried out by Pooja Dutta under our supervision and guidance.

All help received by her from various sources has been duly acknowledged. No part of this thesis has been submitted elsewhere for the award of any other degree.

ab 105/2024 (Supervisor)

Prof. Partha Pratim Dutta Mechanical Engineering Department Tezpur University Tezpur - 784 028, Assam, India January, 2023

26.05.2024

(Co-Supervisor) Dr. Paragmoni Kalita Mechanical Engineering Department Tezpur University Tezpur - 784 028, Assam, India January, 2023

Acknowledgements

I want to convey my sincere thanks to everyone who has assisted me in different ways throughout my Ph.D. journey at Tezpur University. Numerous individuals have provided support and encouragement, with each playing an essential role in my research. I appreciate the contributions of each person who has been part of this journey.

In the first place, I wish to convey my deepest and most sincere gratitude to my supervisors, Prof. Partha Pratim Dutta and Dr. Paragmoni Kalita, from the Department of Mechanical Engineering at the Tezpur University. I am truly thankful for their valuable guidance, encouragement, and gracious support throughout my research work. Their inspiring direction, motivation, and sincere advice played a crucial role in helping me overcome various challenges during the course of my research. I would like to express special gratefulness to Prof. Partha Pratim Dutta for the effort he invested in correcting all my manuscripts and shaping the thesis into its current form.

I express my gratitude to my Doctoral Committee members, Prof. Manuj Kumar Hazarika, Prof. Santanu Sharma, and Dr. Sanjib Banerjee, for their valuable suggestions and encouragement throughout my research. Additionally, I sincerely thank Dr. Paragmoni Kalita, the Head of the Mechanical Engineering Department, for offering research facilities and financial support.

I'd also like to express my gratitude to Dr. Emon Barua, Dr. Nazreena Rahman, Dr. Joy Nondy, Upasana Sarmah and all my friends for their support and encouragement throughout my research.

I extend my sincere appreciation to Mr. Sasthendra Kumar Nath, Mr. Mitharam Handique, Mr. Khargeswar Rangpi, Mr. Uttam Kumar Nath, Mr. Bhaskar Baruah, Mr. Palash Rabha, Mr. Dipak Gogoi and Mr. Anupjyoti Nath, staff of the Mechanical Engineering Department, for their assistance and support in constructing the experimental setup. I would like to acknowledge Mr. Prabin Kumar Bora, Technical Officer, for his enthusiastic assistance with various laboratory apparatus and instruments. A special note of thanks goes to Mrs. Dipanjali Sinha and Mr. Maniram Bania for their support and assistance during my Ph.D.

I would like to express my deepest gratitude to my husband Partha Boruah for his unwavering support, understanding, and encouragement throughout my Ph.D. journey. His patience, love, and belief in my abilities have been a constant source of strength and motivation. To my parents Hironya Dutta and Puspa Dutta, whose boundless love, sacrifices, and continuous encouragement have been the driving force behind my pursuit of knowledge. A special mention goes to my sister, Borneeta Dutta, and brother-in-law, Sandeep Bhuyan for their unwavering support and understanding. I would like to express my gratitude to my nephew, Ayush whose infectious enthusiasm provided much-needed breaks and moments of joy amidst the rigorous academic schedule. Heartfelt thanks to my mother-in-law and fatherin-law, for embracing me into their family with open arms.

Finally, my sincere thanks to the Almighty for granting me the strength, wisdom, and resilience to complete this academic journey.

List of Figures

Figure 1.1 Working concept of open sun drying2
Figure 1.2 Types of solar dryers
Figure 1.3 Layout of a direct solar dryer4
Figure 1.4 Layout of an indirect solar dryer6
Figure 1.5 Layout of a mixed-mode solar dryer7
Figure 3.1 Prototype of direct type free convection corrugated solar dryer28
Figure 3.2 Photograph of FCCSD loaded with GP
Figure 3.3 The intensity of solar radiation and the temperature of the ambient variation
with the drying time for the first batch
Figure 3.4 The intensity of solar radiation and the temperature of the ambient variation
with the drying time for the second batch
Figure 3.5 The ambient, inlet, outlet and absorber plate temperature variation with the
drying time for the first batch
Figure 3.6 The ambient, inlet, outlet and absorber plate temperature variation with the
drying time for the second batch
Figure 3.7 The relative humidity of air at the inlet, outlet and ambient variation with the
drying time for the first batch40
Figure 3.8 The relative humidity of air at the inlet, outlet and ambient variation with the
drying time for the second batch40
Figure 3.9 Useful heat gain variation with the drying time for the first batch41
Figure 3.10 Useful heat gain variation with the drying time for the second batch42
Figure 3.11 Thermal efficiency variation with the drying time for the first batch43
Figure 3.12 Thermal efficiency variation with the drying time for the second batch43
Figure 3.13 The thermal efficiency and specific energy consumption variation with the
drying time for the first batch44
Figure 3.14 The thermal efficiency and specific energy consumption variation with the
drying time for the second batch45
Figure 3.15 MC variation of GP with drying time for the first batch
Figure 3.16 MC variation of GP with drying time for the second batch46
Figure 3.17 Drying rate variation with drying time for the first batch47
Figure 3.18 Drying rate variation with drying time for the second batch
Figure 3.19 Moisture ratio variation of GP with drying time for the first batch

Figure 3.20 Moisture ratio variation of GP with drying time for the second batch50
Figure 3.21 Comparison of predicted and experimental MR for FCCSD of GP by Midilli
and Kucuk model for the first batch53
Figure 3.22 Comparison of predicted and experimental MR for FCCSD of GP by Midilli
and Kucuk model for the second batch
Figure 3.23 Comparison of predicted and experimental MR for OSD of GP by Two Term
model for the first batch
Figure 3.24 Comparison of predicted and experimental MR for OSD of GP by Two Term
model for the second batch
Figure 3.25 Freshly harvested GP56
Figure 3.26 GP dried in FCCSD56
Figure 3.27 GP dried in OSD
Figure 4.1 Active indirect solar dryer with corrugated SAC60
Figure 4.2 Active mixed-mode solar dryer with corrugated SAC60
Figure 4.3 Schematic of solar dyer integrated with corrugated SAC60
Figure 4.4 Diagram representation of the methodology followed for drying of Garcinia
pedunculata62
Figure 4.5 Variations of Solar radiation and ambient temperature with time during Exp.
I and Exp. II
Figure 4.6 Variations of SAC inlet temperature, SAC outlet temperature, dryer inlet
temperature, dryer outlet temperature with time for Exp. I and Exp. II65
Figure 4.7 Variations of relative humidity of the ambient and relative humidity of dryer
with time for Exp. I and Exp. II
Figure 4.8 Variations of energy efficiency of SAC without SHS with time
Figure 4.9 Variations of thermal efficiency and SEC of the dryer with time for Exp. I and
Exp. II
Figure 4.10 Variations of solar radiation and ambient temperature with time during Exp.
III and Exp. IV
Figure 4.11 Variations of SAC inlet temperature, SAC outlet temperature, dryer inlet
temperature, dryer outlet temperature with time for Exp. III and Exp. IV70
Figure 4.12 Variations of relative humidity of the ambient and relative humidity of dryer
with time for Exp. III and Exp. IV71
Figure 4.13 Variations of energy efficiency of SAC with SHS with time72

Figure 4.14 Variation of thermal efficiency and SEC of the dryer with time for Exp. III
and Exp. IV73
Figure 4.15 Variation of drying rate with drying time for Exp. I, Exp. II and OSD74
Figure 4.16 Variation of drying rate with drying time for Exp. III and Exp. IV75
Figure 4.17 Variation of MR with drying time for Exp. I, Exp. II and OSD76
Figure 4.18 Variation of MR with drying time for Exp. III and Exp. IV77
Figure 4.19 Comparison of predicted and experimental MR for Exp. I77
Figure 4.20 Comparison of predicted and experimental MR for Exp. II
Figure 4.21 Comparison of predicted and experimental MR for OSD78
Figure 4.22 Comparison of predicted and experimental MR for Exp. III79
Figure 4.23 Comparison of predicted and experimental MR for Exp. IV79
Figure 4.24 Fresh GP83
Figure 4.25 Dried GP in Exp. I83
Figure 4.26 Dried GP in Exp. II
Figure 4.27 Dried GP in Exp. III
Figure 4.28 Dried GP in Exp. IV83
Figure 4.29 Dried GP in OSD83
Figure 5.1 Layout of the experimental setup
Figure 5.2 Variations of temperatures and solar radiation with time during ID-WOS and
MX-WOS
Figure 5.3 Variations of temperatures and solar radiation with time during ID-WS and
MX-WS
Figure 5.4 Variations of dryer inlet and outlet temperatures with drying time in ID-WOS
and MX-WOS94
Figure 5.5 Variations of dryer inlet and outlet temperatures with drying time in ID-WS
and MX-WS95
Figure 5.6 Variations of exergy in, out, loss, and efficiency of SAC with drying time
during ID-WOS and MX-WOS96
Figure 5.7 Variations of exergy in, out, loss, and efficiency of SAC with drying time
during ID-WS and MX-WS97
Figure 5.8 Variations of exergy in, out, loss and efficiency of the dryer with drying time
during ID-WOS and MX-WOS98
Figure 5.9 Variations of exergy in, out, loss and efficiency of the dryer with drying time
during ID-WS and MX-WS99

Figure 5.10 Variations of SR and Exergy efficiency of the dryer with time for ID-WOS,
MX-WOS, ID-WS and MX-WS100
Figure 6.1 Photograph of the experimental set-up for drying of Curcuma amada107
Figure 6.2 Schematic of the experimental setup107
Figure 6.3 Changes in Temperature and Solar Radiation over time in SDCWOS and
SDCWS
Figure 6.4 Changes in dryer inlet temperature and dryer outlet temperature with drying
time113
Figure 6.5 Variations of MC with time114
Figure 6.6 Variations of MR with time116
Figure 6.7 Comparison of predicted and experimental MR for SDCWOS116
Figure 6.8 Comparison of predicted and experimental MR for SDCWS117
Figure 6.9 Changes in efficiency of canned solar air collector with time120
Figure 6.10 Changes of efficiency and SEC in SDCWOS and SDCWS with drying
time120
Figure 6.11 Variation of efficiency with solar radiation121
Figure 6.12 Variation of thermo-hydraulic performance parameter with time122
Figure 6.13 Changes of exergy in, out, loss, and efficiency of canned solar air collector
with drying time
Figure 6.14 Changes of exergy in, out, loss, and efficiency in SDCWOS and SDCWS
with drying time
Figure 6.15 Variations of SR and Exergy efficiency of the dryer with time for SDCWOS
and SDCWS126

List of Tables

Table 3.1 Values of uncertainties of the different parameters in the experiment30
Table 3.2 Different mathematical models to characterize the drying kinetics of Garcinia
pedunculata33
Table 3.3 Fitting statistics of thin layer drying model of FCCSD of GP for the first
batch
Table 3.4 Fitting statistics of thin layer drying model of OSD of GP for the first batch51
Table 3.5 Fitting statistics of thin layer drying model of FCCSD of GP for the second
batch
Table 3.6 Fitting statistics of thin layer drying model of OSD of GP for the second
batch
Table 3.7 Economic analysis of FCCSD for GP. 55
Table 4.1 Instruments along with their specifications
Table 4.2 Values of uncertainties of the different parameters in the experiment
Table 4.3 Comparative analysis of present dryer with different dryers without
storage
Table 4.4 Comparative analysis of present dryer with different dryers with storage73
Table 4.5 Fitting statistics of thin layer drying model of Exp. I of GP80
Table 4.6 Fitting statistics of thin layer drying model of Exp. II of GP80
Table 4.7 Fitting statistics of thin layer drying model of OSD of GP
Table 4.8 Fitting statistics of thin layer drying model of Exp. III of GP81
Table 4.9 Fitting statistics of thin layer drying model of Exp. IV of GP
Table 4.10 Performance parameters of the solar dryer for Exp. I, Exp. II, Exp. III and
Exp. IV
Table 4.11 Economic study of Exp. I, Exp. II, Exp. III and Exp. IV for GP85
Table 5.1 Mass and Embodied Energy of the different components of dryer without
storage
Table 5.2 Mass and Embodied Energy of the different components of dryer with
storage
Table 5.3 CO ₂ emission, CO ₂ mitigation and Carbon credit of the dryer103
Table 6.1 Specification of the drying setup. 108
Table 6.2 Uncertainties associated with different parameters in the experiment109
Table 6.3 Fitting statistics of thin layer drying model of SDCWOS

Table 6.4 Fitting statistics of thin layer drying model of SDCWS.	118
Table 6.5 Summary of IP, WER and SI for SDCWOS and SDCWS	125
Table 6.6 Estimated prices of SDCWOS and SDCWS	128
Table 6.7 Comparison of different modes of solar dryer.	129

Nomenclature

Ė	Power (W)	Subsc	ripts
Ĥ	Net heat transfer to system (W)	i	inlet
Ŵ	Net power by system (W)	0	outlet
Т	Temperature (°C)	т	mass
h	Enthalpy (J/kg)	l	loss
V	Velocity (m/s)	ex	experimental
Ζ	Height from the datum (m)	pr	predicted
C _{pa}	Specific heat of air (J/kgK)	а	air
Exp.	Experiment	t	at time 't'
A	Area (m ²)	in	input
Ζ	Number of constants	out	output
EPPD	Energy payback period (year)	md	mixed-mode dryer
Q_L	Latent heat of vaporization of water (J/kg)	sys	system
m_w	Amount of moisture evaporated (kg)	SAC	solar air collector
$m_{i,P}$	Initial mass of the product (kg)	avp	average predicted
$m_{j,P}$	Final mass of the product (kg)	dry	dryer
$m_{t,P}$	Mass of the product at time 't' (kg)	dc	drying chamber
MC_P	Moisture content at time 't' (%)	8	atmosphere
M _{P,e}	Moisture content at equilibrium (%)		
$M_{P,i}$	Moisture content at time 't = 0' (%)		
MR	Moisture ratio		
Ė x	Exergy (W)		

n	Number of observations	
Ι	Solar Radiation (Wm ⁻²)	
t _s	total days a solar dryer (100 days assumed) per yea:	
t _d	days is the drying time per batch	
Greek symbols		
α	Absorptivity	
τ	Transmissivity	
$\eta_{e,dry}$	Overall dryer efficiency (%)	
$\eta_{Ex,dc}$	Exergy efficiency of the dryer (%)	