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2.1. Placental Microenvironment 

The maternal decidua serves as the interface connecting maternal immune cells and fetal 

cells as shown in section 1.1. Decidual changes in the endometrial stroma are vital for 

successful implantation and placentation (1). During early pregnancy, the decidua is 

primarily composed of trophoblast cells of fetal origin and maternal decidual immune 

cells (DICs) (2). The majority of these DICs, ranging from 40% to 60%, are Natural 

Killer Cells (NK cells), followed by macrophages and some T cells (3). 

 
2.1.1. Immune cells in decidua 

2.1.1.1. Extravillous trophoblasts (EVTs) 

The placenta plays a crucial role in maintaining a healthy pregnancy through a complex 

developmental process involving various cell types. One of these cell types is the 

extravillous trophoblasts (EVTs), which are derived from cytotrophoblasts (4-5). During 

early pregnancy, cytotrophoblasts infiltrate the uterine decidua and transform into 

EVTs. By the eighth week, these EVTs invade the decidua and establish direct 

communication with maternal uterine spiral arteries(6-7).EVTs via their interaction with 

decidual NK (dNK) cells they remodel the arterial walls and replace the endothelial 

cells, resulting in wider, adrenergic-insensitive, low-resistance conduits (8-9). This 

transformation allows optimal nutrient exchange and facilitates the transport of oxygen, 

nutrients, and metabolic support to the developing fetus(10-11). Disruptions in EVT- 

decidual immune cell communication (DIC) can lead to immune imbalances and 

maternal-fetal immune tolerance issues, potentially impacting pregnancy outcomes (12-

14).The EVT expresses both HLA-C and non-classical HLA class I molecules, including 

HLA-E, HLA-F, and HLA-G (17-18). Although HLA-G expression is tissue restricted, it 

is abundantly expressed in trophoblast cells, mediating tolerance to the semi allogenic 

fetus and promoting angiogenesis and vascularization (19-20). 
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2.1.1.1.1. Human Leukocyte Antigen (HLA) ligands 

of EVT 2.1.1.1.1.1. HLA-G 

The EVTs expresses both HLA-C and non-classical HLA class I molecules, including 

HLA-E, HLA-F, and HLA-G (21-2) . Although HLA-G expression is tissue restricted, it 

is abundantly expressed in trophoblast cells. HLA-G is the only known ligand for KIR 

2DL4 receptors expressed on dNK cells (21,22).It mediates tolerance to the semi 

allogenic fetus and promotes angiogenesis and vascularization (23). 

2.1.1.1.1.1.2. HLA-G isoforms 

HLA-G has seven isoforms which include four membrane-bound (HLA-G1, -G2, -G3, 

and -G4) and three soluble (HLA-G5, -G6, and -G7) isoforms (24-25). However, there is 

a report of another soluble isoform called shedding HLA-G1 which is formed due to 

proteolytic cleavage of cell surface HLA-G1 by metalloproteinase 2 (MMP 2) (26-27). 

Distinctness of HLA-G isoforms lies in the presence of the number of extracellular 

immunoglobulin-like domains and whether intronic sequence encoded residues are 

included or not. All the seven isoforms have extracellular α1 domain (28-29). 

The presence or absence of three extracellular domains - α1, α2, and α3 domains 

determines the isoforms. α1 and α3 domains are present in HLA-G2 but the α2 domain is 

deleted (29-30). Similarly, in HLA-G3 both α2 and α3 domains are absent and it 

contains only an α1 domain. HLA-G4 has both α1 and α2 domains but the α3 domain is 

absent. α1 and α2 domains form the antigen-presenting peptide-binding cleft in HLA-G1 

and HLA-G5 molecules (31-35). HLA-G5 and HLA-G6 are the counterparts of HLA-G1 

and HLA-G2 and are encoded by intron 4 (36-38). In HLA-G7, only α1 domain is 

present which is linked to two amino acid residues and is encoded by intron 2 (39-40). 

Immunoregulatory functions of HLA-G is achieved via interaction of various activating 

and inhibitory receptors such as LILRB1 (ILT2/CD85j), LILRB2 (ILT4/CD85d), and 

KIR2DL4 (CD158d) expressed on the surface of immune cells (41-44). 

 

HLA-G interacts with its receptors to mediate immune suppression through dysregulation 

of immune cell proliferation, differentiation, apoptosis cytotoxicity, cytokine signaling, 

chemotaxis and induction of regulatory cells and MDSCs or M2 type
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macrophage (43-44). LILRB1 and LILRB2 receptors have 4 extracellular domains (D1–

D4) and a transmembrane region of 23 amino acids and three immunoreceptor tyrosine-

based inhibitory motifs (ITIMs) in their cytoplasmic tails (45). The presence of these 

ITIM motifs is responsible for inhibitory characteristics and those LILR family 

receptors which lack these motifs possess an Arg residue in the transmembrane domain 

(46). Interaction of LILR receptors with their ligands results in the initiation of the 

inhibitory cascade by phosphorylating ITIMs and recruiting SHP phosphatases (47-48). 

Dimers formed by HLA-G bind on LILR receptors with a higher affinity compared to 

HLA-G monomers(49-51). These HLA-G dimers are also capable of binding to both the 

receptors simultaneously (52-54). Both LILRB1 and LILRB2 receptors can bind to both 

classical and non-classical HLA-I molecules. NK cells, T cells, B cells, MDSCs, DCs, 

and decidual macrophages mainly express LILRB1 or ILT2 receptor while LILRB2 or 

ILT4 expression is limited to monocytes, macrophages, neutrophils and DCs (55-58). 

KIR2DL4 or CD158d receptor is from killer cell immunoglobulin-like receptors (KIR) 

family and is expressed in all NK cell types(59-60). KIR2DL4 is distinct from other 

members of the KIR family with both activating and inhibitory properties. It contains a 

long cytoplasmic tail which is a characteristic of inhibitory receptors and a charged 

amino acid in the transmembrane domain similarly to activating KIR receptors (61-63). 

As per literature, IL-2 induces the expression of KIR2DL4 and its activation results in a 

weak cytotoxic activity with high IFN-𝛾 production(64). 

 

2.1.1.1.1.2. HLA-C 

Class Ib HLA-C molecules expressed on EVT serve as ligands for 

KIR2DL1/L2/L3/S1/S2(65). And a balance of activating and inhibitory signalling by 

KIRs is crucial for optimal NK activation, for maintenance of pregnancy. HLA-C has 

two allotypes- HLA-C1 and HLA-C2, depending on the presence of asparagine (HLA-

C1) or lysine (HLA- C2) at position 80 in the alpha 2 domain (66). 
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HLA-C2 acts as a cognate ligand for the inhibitory receptor KIR2DL1, delivering a 

robust inhibitory signal while also binding to the activating allele KIR2DS1 (67-68). The 

inhibitory signaling mediated by KIR2DL1 and HLA-C2 is counterbalanced by 

activating signaling mediated by HLA-C2 and KIR2DS1(69-71). On the other hand, 

HLA-C1 serves as the cognate ligand for inhibitory receptors KIR2DL2 and KIR2DL3, 

although with less effective inhibitory signaling compared to KIR2DL1(72-73). 

Furthermore, KIR2DL2 and, to a lesser extent, KIR2DL3 exhibit some cross-reactivity 

with C2 ligands. 

2.1.1.2. decidual NK (dNK) 

In humans, NK cells exist as peripheral NK cells (pNK cells) in the bloodstream and are 

widely distributed throughout the body. Additionally, there are tissue-resident NK 

(trNK) cells found in peripheral tissues, including the liver, lungs, skin, and uterus. A 

specific subset of trNK cells, known as decidual NK (dNK) cells, can be found in the 

endometrial decidua.Unlike the periphery, dNK exhibit CD56 bright CD16-KIR+ 

phenotype, lower cytotoxicity, and higher cytokine secretion. dNK is minimal cytotoxic 

and instead produce cytokines, growth factors, and angiogenic factors needed to 

appropriately remodel the maternal spiral arteries, promoting angiogenesis and attracting 

invasive trophoblasts to the decidua. Distinct subsets of dNK cells have been identified, 

encompassing different stages of pregnancy. dNK1 cells express killer cell 

immunoglobulin-like receptors (KIRs) and Leukocyte Immunoglobulin-Like Receptor 

B1 (ILT2). These receptors interact with HLA molecules, including HLA-C and HLA-

G, expressed by extravillous trophoblasts (EVTs), facilitating trophoblast invasion and 

establishing an immune-tolerant microenvironment. dNK1 cells also possess 

cytoplasmic granule proteins involved in placental infection immunity and enzymes 

related to glycolysis. On the other hand, dNK2 cells express the chemokine receptor 

XCR1, which mediates the recruitment of EVTs and dendritic cells at the fetal-maternal 

interface, particularly attracting cDC1 cells through CCL5- CCR1 interactions. 

However, dNK3 cells are less prevalent in the decidua. The origin of dNK cells in the  
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uterus during pregnancy is still a topic of debate, with two main hypotheses proposing 

their recruitment from peripheral NK cells or differentiation within the uterus from local 

progenitor cells (30-32). 

2.1.1.2.1 NK receptors: Killer Cell Immunoglobulin-Like Receptors (KIRs) 

 

NK cells carry an array of activating and inhibitory receptors that recognize the ligands on 

target cells and control the cytolytic function (25). Activating receptors, NKG2D and 

members of natural cytotoxicity receptors (NCR) group facilitates allorecognition and 

cytotoxicity (26-28). While, inhibitory receptors-KIRs,CD94-NKG2A and co-receptors 

like CD96,TIGIT and PD1 complex mediate inhibition of effector function of NK cells. 

KIR multigene family expressed on surface of dNK cells show high diversity with respect 

to gene content (genotype ), allelic polymorphism and Copy number variations (CNVs) 

(39, 40). Encoded in the leukocyte receptor complex (LRC) on human chromosome 

19q13.4, KIRs consist of fourteen genes [KIR2DL1–5,KIR3DL1–3, KIR2DS1–5, 

KIR3DS1] and two 2 pseudogenes (39). They inhibitory receptors have long cytoplasmic 

tails (L) containing immunoreceptor tyrosine-based inhibition motifs (ITIMs) which gives 

inhibitory signals (41, 42). However, they also bear immune-receptor tyrosine-based 

activating motifs (ITAMs) in short tail (S) receptors, resulting in transmission of an 

activating signal(43). Based on their gene content, KIRs are categorized into haplogroup-

A and haplogroup-B. While haplogroup A is conserved and has higher inhibitory gene 

content, haplogroup B has variation with different combination of inhibitory and 

activating genes(44). KIR2DL4 is different from the other KIR family members as it only 

contains one ITIM instead of two and possesses an arginine in its transmembrane domain 

(45), suggesting its potential activating downstream signalling (46). KIR2DL4 expressed 

on dNK) cells has both an activating and inhibitory signaling (46, 47). It is present in 

endosomal compartment as well as on cell surface and upon interacting with HLAG, 

KIR2DL4 mediates endosomal signaling for the secretion of numerous cytokines and 

chemokines and growth factors essential for early placentation (48, 49). Aberrant 

expression or function of these receptors and ligands have been linked to pregnancy 

complications, including RSAB (48,50,51). Several recent studies have investigated the 

role of NK cells in early pregnancy failure and their interaction with HLA molecules.
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2.2. Early pregnancy loss 

Early pregnancy loss is a significant complication affecting around 10% of clinically 

confirmed pregnancies and is defined as the spontaneous abortion of a fetus before 

twenty weeks of gestation(52). Recurrent spontaneous abortion (RSAB), characterized by 

the repeated occurrence of two or more early pregnancy losses, is observed in 

approximately 2-3% of cases (53). While certain factors such as chromosomal 

abnormalities, hormonal imbalances, uterine abnormalities, autoantibodies, and immune 

dysfunction are recognized causes of early pregnancy loss, the underlying causes of 

approximately 40% of cases remain unidentified. 

Immune dysfunction at the maternal-fetal interface has been implicated in early 

pregnancy failure, highlighting the complex nature of the immune response during 

pregnancy, where the maternal immune system must accept the allogenic fetus while 

maintaining the ability to mount an immune response against potential pathogens (53). 

 
2.3 KIR-HLA disbalance in early pregnancy loss 

Population studies have identified different KIR-HLA genotypes associated with 

pregnancy outcomes, with the prevalence of specific genotypes varying among 

populations (54-55). For instance, the Japanese population shows a high prevalence of 

the AA genotype with HLA-C1 allotypes, while Asian populations tend to have a higher 

frequency of activating genes in the KIR B haplogroup and HLA-C2 allotypes, which are 

favorable for successful pregnancies (56-57). The impact of immune factors on 

pregnancy outcomes has been the focus of several studies (57- 58). Maternal KIR2DS1 

with paternal HLA-C2 has been reported as a protective factor , but conflicting results 

suggest that this combination poses a risk (59-60). Lower levels of KIR2DL1 and 

KIR2DS1 in peripheral NK cells have also been associated with adverse pregnancy 

outcomes (61-62). This highlights the co-evolutionary relationship between KIRs and 

HLA class I molecules , under balancing selection for reproduction  and survival (63).
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HLA-G is the only known ligand for KIR 2DL4 receptors expressed on dNK cells (64, 

65) and mediates tolerance to the semi allogenic fetus and promotes angiogenesis and 

vascularization (65). Studies, including our own and those conducted by other researchers 

(66-67) have shown that HLA-G levels in the maternal serum as well as in early 

decidua and term placenta correlated positively with pregnancy outcome . The expression 

of HLA molecules on fetal trophoblasts has also been studied in the context of SAB. A 

study by Yang et al. (68) found that the expression of HLA-G was significantly decreased 

in the placenta of women with RSA compared to controls(80) while others have reported 

contradictory data on HLA-G levels (69) . Similarly, earlier reports on expression of 

HLA-C was significantly decreased in the women with RSA compared to controls (70). 

 

2.3.3. Cytokine and Chemokine environment in early pregnancy loss 

Chemokines are multifunctional molecules involved in intercellular communication and 

signal transduction. chemokine/chemokine receptor interactions dominate the trafficking 

of leukocytes, the mechanisms underlying the recruitment and maintenance of DICs most 

likely involve the expression and secretion of chemokines at the maternal–fetal interface 

(71-72). 

Decidual cells produce various types of chemokines, such asCCL2, CXCL8, CX3CL1, 

CXCL10 and CXCL12, at significant levels (73-74). These chemokines are differently 

involved in the migration of peripheral NK (pNK) and decidual NK (dNK) cells into the 

decidua (75-76) Interestingly, CXCL12 andCX3CL1 preferentially attract CD161 pNK 

cells, while CXCL10 is essential for the recruitment of CD56
+
CD162 pNK cells (77-78). 

Uterine expression of CXCL14 may also play a role in uterine NK-cell recruitment during 

the early pregnancy (79-80). However, a clear picture of the effects of CXCL14 on 

uterine NK-cell recruitment in the context of the uterus is still vague, since a report using 

knockout models indicates opposite effects of its chemoattractant roles on many types of 

leukocytes (81). 
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dNK cells are potent source of cytokines in the endometrium (82). The regulation of the 

endometrial immune system is crucial for successful implantation and maintenance of 

pregnancy, and this is achieved through the synchronized secretion of specific types of 

cytokines (83). The pro-inflammatory Th1 cell subtype secretes cytokines such as 

interferon-gamma (IFN- γ), tumor necrosis factor-alpha (TNF-α), and interleukins IL-1, 

IL-2, IL-12, IL-15, and IL-18 (84). Conversely, the Th2 subtype secretes anti-

inflammatory cytokines, including IL-4, IL-5, IL-6, IL-10, IL-13, and granulocyte-

macrophage colony-stimulating factor (GM-CSF)(85). The balance between these 

cytokines, represented by the Th1/Th2 ratio, undergoes periodic changes throughout 

pregnancy, reflecting different stages and processes (85). Cytokines, such as IL-1, IL- 6, 

IL-8, TNF, matrix metalloproteinases (MMPs), and prostaglandins, also contribute to 

cervical effacement/dilatation and rupture of the membranes, leading to labor and 

delivery (86). 

One of the critical cytokines secreted by dNK cells is transforming growth factor-beta 

(TGF-β), which plays a crucial role in promoting angiogenesis and vascular remodeling 

in the placenta (88-90). TGF-β also regulates the proliferation and differentiation of 

trophoblast cells and promotes their invasion into the maternal endometrium (91-93). 

Additionally, dNK cells secrete various chemokines that recruit other immune cells to the 

maternal-fetal interface, including macrophages and T cells (94-95) 

 

2.3.4 Autoantibodies in early pregnancy loss. 

Autoantibodies in pathological pregnancies are implicated in NK cell imbalance, which 

plays a crucial role in maintaining immune balance at the maternal-fetal interface (96-97). 

Thrombotic antiphospholipid syndrome (APS), characterized by persistent 

antiphospholipid antibodies (aPLs) including anti-β2 glycoprotein I (anti-β2GPI) and 

anticardiolipin antibodies, is associated with adverse pregnancy outcomes (98-99). 

Abnormal expression of aPLs can induce inflammatory reactions and vascular endothelial 

damage, leading to microvascular thrombus formation. Anti-β2GPI antibodies inhibit 

trophoblastic cell autophagy and activate inflammasomes, amplifying the inflammatory 

response and potentially resulting in fetal rejection (100-102). 
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Notably, occurrence of both aCL and aβ2GPI antibodies have been associated with 

pregnancy complications (98-99,103). However, with conflicting findings. While some 

studies have not found a significant correlation between these antibodies and pregnancy 

loss, aCL has been identified as the most prevalent among the obstetric population with 

adverse pregnancies (103). Elevated levels of APLA have been observed history of 

multiple pregnancy failures as compared to single pregnancy loss (95-97). 

Additionally, the presence of antinuclear autoantibodies (ANAs) targeting cell nucleus 

components is associated with increased risks of complications like preeclampsia and 

fetal growth restriction (101). ANAs may impact embryo quality and development, 

reducing pregnancy and implantation rates (103). 
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