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Appendix-I

(A1) Cross linking mechanism of glutaraldehyde in PPy-MoS: system

The monomer unit of polypyrrole has a five-membered ring containing four carbon atoms and
one nitrogen atom. It has conjugated double bond systems making it suitable for effective
polymerization. On the other hand, glutaraldehyde (GA) consists of two reactive aldehydic
groups, and widely used as a crosslinking agent for covalent coupling. The formation of
covalent linkage in between the secondary amine (NH) group of the monomer unit with the
GA molecule has been depicted below in the schematic chemical reaction. GA shows
remarkable reactivity towards the amine groups, and it gets attached to the polypyrrole chain
by removing its one oxygen atom from the aldehyde (-CH=0) part followed by binding with
the nitrogen atom present in the monomer unit. The formation of C=C occurs due to the
dislocation of the n-bond corresponding to C=O of the aldehydic group (as can be seen in the
Figure A2 (a) below). To realize the interaction of GA with the polymer-TMDC based
composite system, we have taken the FT-IR response of the PPy-MoS» after treating it with
4% glutaraldehyde for 1 h, and compared with the pristine PPy-MoS, system.
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Figure A2: (a) Reaction mechanism of polypyrrole and GA, (b) FT-IR response of
the pristine and GA treated PPy-MoS; electrode system

163



Here, we can see that the vibrational bands of the GA treated PPy-MoS> system has shifted
little bit towards the lower wavenumber region. This decrease in the bond vibration energy
indicates the generation of strain in the polymer chain due to the incidence of covalently
attached GA molecules in polypyrrole system. In the FT-IR spectra of Figure A2 (b), one can
see that intensity of N-H vibration mode (~1325 cm™) decreases as well as intensity of C-N
mode (~1123 cm™') increases in case of the GA treated system, which is due to the replacement
of N-H by C-N bond. Again, the sharp rise of the C=C vibrational mode (~1628 cm™) also
indicates the appearance of additional C=C in the polymer structure after the covalent
attachment of the GA. This suggests that the GA molecules interact with the surface of the
polypyrrole-MoS; electrode system by forming a covalent linkage with the polypyrrole

backbone.
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Appendix-II

(A2) (a) Comparison of figure of merits of different immunosensors and detection
methods

Table A1 compares the figure of merits for detection of immunoglobulin G molecules using
different methods. Though the surface plasmon resonance (SPR) based detection methods are
popular for their accuracy, the LOD value obtained from this method are comparatively large
[1-3]. So, low concentration detection can’t be effectively carried out by SPR based techniques.
But electrochemical methods can overcome this drawback, offering very low LOD value, as
can be seen in the table below [4-8]. Depending upon the detection protocols and types of
transducer materials, the sensing parameters (LOD, sensitivity, detection range) of different
electrochemical techniques varies accordingly. If we compare our works with the other groups,
then we can see that the obtained values of LOD is relatively higher than few of the them, but
the sensitivity is fairly high in our ion beam modified system indicating high accuracy.
Moreover, most of the sensing protocol with low LOD have very narrow detection range (Table
A1) which is the major drawback of such systems. While, a wide detection range of (9-363)
ng/mL in case of AuNP/GO/ PEDOT-PSS based system stipulates better applicability of our

IMMmunosensor.

Table A1: Comparison of figure of merits of different immunosensor and detection methods.

System & detection Target LOD Sensitivity Detection Ref.

method range

Au-nano-shell, Human IgG 0.20 1.84 (1- 40) [1]

LRSPR pug/mL mM mL pg! pg/mL

MoSez-Au based Goat-Anti- 0.33

substrate, SPR Rabbit IgG pug/mL . . (2]

Polydimethylsiloxane (15-225)

substrate, SPR Human /gG | 15 pg/mL - ug/mL [3]

Cu-MOF, (0.01-10)

DPV Human IgG | 3 pg/mL -- ng/mL (4]
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Ferrocenyl Goat IgG | 2.0 ng/mL 0.020 (5-50) [5]

dendrimer/GCE, pA.mL.ng ! ng/mL

Amperometry

Modified Graphene, Rabit IgG -- -- (0.3-7.0) [6]

EIS pug/mL

Poly indol-6- Human /gG | 0.8 ng/mL -- (2-16) [7]

carboxylic acid/GCE, ng/mL

SWV

Core-shell SiO2/Au Human IgG 120 -- 0.75 mg/mL [8]

(Using GOx as ug/mL to

enhancer), CV 0.14 gm/mL

AuNP/GO/ PEDOT- Mouse IgG 49.2 -- 9-363 ng/mL | Ch.2

PSS, Impedimetric nm/mL Our

technique work

AuNP/PEDOT-MoS,, | Mouse IgG 12.22 1.845 nA ng’! 7.7-263 Ch. 3

Amperometry ng/mL mL cm™ ng/mL Our
work

Ion beam modified Mouse IgG 30.0 10.0 (5-190) Ch. 6

PPy-MoS, ng/mL uA.mL.ng ! ng/mL Our

DPV work

(A2) (b) Interpretation and comparison of non-enzymatic glucose sensor

We obtained electrochemical parameters for different investigated electrode specimens, as can
be found in Table A2. In Chapter 4, a better electroactivity of CuO/PEDOT-MoS; system
towards glucose sensing has been witnessed. A fairly low LOD value of 0.046 uM and a high
sensitivity of 829 pA mM*cm would indicate a better redox activity in the conversion of
glucose into gluconic acid. In the past, Kim et. al. designed a potentiometric glucose sensor by
immobilizing Au-NPs over benzoic acid-functionalized poly-terthiophene (p-TBA) and could
achieve a detection limit of 0.19 uM in the linear range of 0.32 uM* mM [10]. Other groups
viz. Liu et. al. [12] and Wang et. al. [14] also designed CuNPs/ poly (o -phenylenediamine)
and Ni/PANi based sensor electrode respectively and have achieved low LOD values and
higher sensitivity over a broad linear range of glucose concentrations. However, the NiO-MoS;
NS based electrocatalyst system in Chapter 5 exhibited a quite high sensitivity value for
detection of glucose. This resembles high signal amplification of our layered NiO based
modified transducer. A comparative view of sensing parameters, selectivity, LOD, etc. of other

non-enzymatic sensors and this work can be found in Table A2.
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Table A2: Comparison of reported non-enzymatic glucose sensors.

Substrate LOD (uM) Linearity Sensitivity Group
(MA mM-1cm?)
Ni Fe (NPs)-PANi 0.5 10uM-1.0 mM 1050 [9]
pTAB/AuUNP/SPCS 0.19 0.32uM-1mM [10]
NiPg.1-SnO,/PANi/ 0.13 1uM-10mM 1325 [11]
CuO/Cotton
CuNPs/PoPD/GCE 0.25 5uM-1.6mM [12]
Ni-Co-S NS/PPy NW 0.82 2 uM-0.14 mM [13]
core/shell structure
Ni/PANI coaxial 10 Upto 7mM 76.8 [14]
nanowire
CuO/PEDOT-Mo0S,/ITO 0.043 30uM-1.06 830 Ch.4
mM Our work
NiO-MoS; 3.53 5-370 uM 1880 Ch.5
Our work
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Abstract

Immunoglobulin (/g) molecules play most important role in body’s immune system, serving as a
defense line against the harmful pathogens. Among the other classes of Igs, IgG is the most
abundant one found in the blood serum, making it a potential biomarker for several oncological
and inflammatory diseases. This leads to an utmost importance of examining the /gG level in blood
for diagnosis purpose. Apart from this, monitoring the glucose and H20; level in body fluids can
also provide valuable insight regarding blood sugar regulation, whole body oxidative stress and
metabolism system. Out of other conventional methods, electrochemical detection technique has
been extensively used due to its simplicity, high accuracy and point-of-care detection strategies.
The detection mechanism of /gG includes the proper immobilization of the antibody molecules
over the electroactive specimen called transducer, followed by quantification of the target /gG
molecules via electrochemical methods. On the other hand, the redox activity of some metal oxide
nanoparticles towards glucose and hydrogen peroxide (H:02) have opened up a convenient
approach for non-enzymatic detection of such simple analytes. To design a high-performance

clectrochemical sensor, meticulous selection and designing of the transducer material is very

crucial. In this regard, ing polymers (eg. polyaniline, , PEODT etc.) are widely
used as an electroactive material that can offer high surface area, good conductivity and better
stability. It has been reported that composite of 2D layered nanostructures (graphene and its
derivative, TMDCs, MXenes, g-CNs, hBN ctc.) with conducting polymer holds high possibility
for synergic tuning of several physico-chemical propertics of the composite system, thereby
expanding their range of functionalities for sensing applications. Apart from this, swift heavy ion
(SHI) irradiation-based material modification can effectively modify the structural, morphological
electrical, optical and other spectroscopic behaviour of the target material. In polymer system, the

SHI can introduce cross-linking, chain scissioning depending upon the energy, type and fluence of

the ion beam used. So, it is anticipated that the i of the pol based
nanosystem can be significantly improved through ion beam modifications.

In the present thesis, fabrication of both enzymatic and non-enzymatic electrochemical
sensors has been carried out for sensing of biological analytes. In the first and second work,
enzymatic detection of goat anti-mouse /gG was performed by using conducting polymer (CP) and

2D layered material based composite substrate decorated by electrodeposited gold nanoparticles
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