Declaration

hereby declare that the thesis entitled "Development of conducting polymer, 2D layered

naterial nanocomposite based enzymatic and non-enzymatic electrochemical sensors,

und ion irradiation effects", submitted to the School of Sciences, Tezpur University in

partial fulfillment of the requirements for the award- of the Doctor of Philosophy in

Physics, is a record of original research work carried out by me. Any text, figures, theories,

results or designs that are not of my own creation are appropriately referenced in order to

give owing credit to the original author(s). All the sources of assist have been assigned due

acknowledgement. I also declare that neither this work as a whole nor a part of it has been

submitted to any other University or institute for any degree, diploma, fellowship or any

other similar title or recognition.

Date: 10-06-24

Place: Tezpur.

Ankish Medhi.

(Ankush Medhi)

Department of Physics

School of Sciences

Tezpur University

Tezpur-784028, Assam, India

Tezpur University

Certificate

This is to certify that the thesis entitled "Development of conducting polymer, 2D layered material nanocomposite based enzymatic and non-enzymatic electrochemical sensors, and ion irradiation effects", submitted to the School of Sciences, Tezpur University in partial fulfilment of the requirements for the award of the Doctor of Philosophy in Physics, is a record of original research work carried out by Mr. Ankush Medhi under my supervision and guidance.

All help received by him from various sources have been duly acknowledged.

No part of the thesis has been submitted elsewhere for award of any other degree.

(Prof. D. Mohanta)

Designation: Professor

School: School of Science

Department: Physics

Date: 10-june-24

Place: Tezpur-784028, Assam, India

Declaration

I hereby declare that the thesis entitled "Development of conducting polymer, 2D layered material nanocomposite based enzymatic and non-enzymatic electrochemical sensors, and ion irradiation effects", submitted to the School of Sciences, Tezpur University in partial fulfillment of the requirements for the award- of the Doctor of Philosophy in Physics, is a record of original research work carried out by me. Any text, figures, theories, results or designs that are not of my own creation are appropriately referenced in order to give owing credit to the original author(s). All the sources of assist have been assigned due acknowledgement. I also declare that neither this work as a whole nor a part of it has been submitted to any other University or institute for any degree, diploma, fellowship or any other similar title or recognition.

Date:

Place: (Ankush Medhi)

> Department of Physics School of Sciences **Tezpur University** Tezpur-784028, Assam, India

Tezpur University

Certificate

This is to certify that the thesis entitled "Development of conducting polymer, 2D layered material nanocomposite based enzymatic and non-enzymatic electrochemical sensors, and ion irradiation effects", submitted to the School of Sciences, Tezpur University in partial fulfilment of the requirements for the award of the Doctor of Philosophy in Physics, is a record of original research work carried out by Mr. Ankush Medhi under my supervision and guidance.

All help received by him from various sources have been duly acknowledged.

No part of the thesis has been submitted elsewhere for award of any other degree.

(Prof. D. Mohanta)

Designation: Professor

School: School of Science

Department: Physics

Date:

Place: Tezpur-784028, Assam, India

Dedication I dedicate this thesis to my beloved parents

ACKNOWLEDGEMENTS

First and foremost, I want to convey my deep gratitude to my former supervisor, Late Prof. Ashok Kumar. Throughout my journey as a Ph.D. candidate, Prof. Kumar had been a constant source of intellectual stimulation, invaluable guidance and encouragement. His extensive expertise and keen insights into electrochemistry, coupled with his unyielding commitment to rigorous research, have left an indelible mark on my academic journey. It goes without saying that I am immensely indebted to him for his unwavering support and guidance.

It gives me immense pleasure to convey my profound appreciation to my esteemed supervisor, Prof. Dambarudhar Mohanta, for his dynamic and meticulous guidance, motivation, and boundless inspiration throughout my Ph.D. journey. Without his persistent involvement, thoughtfulness, and relentless commitment, completing this thesis on schedule would have been a greater challenge. I will forever value the mentorship provided by Prof. Mohanta, as it has consistently propelled me towards the realization of my long-cherished academic goals.

I extend my heartfelt thanks to the members of my DRC committee, Prof. Pritam Deb and Prof. Pabitra Nath, from the Department of Physics, Tezpur University, for their inspiration, motivation and enriched discussions throughout my Ph.D. journey. My profound appreciation also goes to all the dedicated faculty members of the Department of Physics for their active engagement and timely assistance, which have been instrumental in facilitating my research endeavors.

I extend my sincere appreciation to Dr. C. A. Betty, Scientist, BARC, for granting me the opportunity to work in her lab during the critical phase of my Ph.D. I consider myself truly fortunate to have her mentorship which played a pivotal role to enrich my understanding and experimental expertise.

I am truly grateful for the remarkable opportunities afforded to me at Tezpur University. The outstanding facilities at Tezpur University have played a significant role in this journey. I would like to appreciate the technical and administrative staff of Department of Physics for their prompt assistance in various aspects of my work. I am beholden to all the technical staff of SAIC, Tezpur University for their co-operation in characterization of the samples.

I am thankful to Inter University Accelerator Center (IUAC), New Delhi for their financial support through the project (BTR-66303). I would like to convey thanks to the past and present members of GPS laboratory, Nanoscience and Soft-Matter Laboratory and Material Research Laboratory, Department of Physics, Tezpur University, for all the support, help and motivations. I am fortunate enough to have labmates like them who have cheered me on during both the highs and lows of the research journey. I would like to express my heartfelt gratitude to all my friends specially Sritam, Sunny, Mahesh and Biswa who have been an integral part of my academic and personal life during this journey. The support, encouragement, stimulating discussions and the countless moments of laughter and relaxation have helped me to navigate the challenges of this endeavor. Their presence has made this academic pursuit more enjoyable.

I would like to express my deepest gratitude to Maa, Deuta, Priyanka and Dada for their constant support, encouragement, and sacrifices that have made this academic achievement possible. Their belief in my abilities have been my guiding lights throughout this journey. I could not have reached this milestone without their love, guidance, and support.

Ankush Medhi

List of tables

Table	Caption	Page No.
Table 1.1	Comparision of conductivity values of some common CPs.	10
Table 1.2	Electron mobility comparision of some 2D materials.	14
Table 2.1	Fitted parameters of EIS spectra for the pristine, binary and	52
	ternary electrode.	
Table 2.2	Fitted parameters of the EIS spectra for the ternary electrode	53
	(AuNP/GO/PEDOT-PSS) based sensor after every process	
	step during sensor fabrication.	
Table 3.1	Fitted EIS parameters for PEDOT, PEDOT-MoS ₂ and AuNP/	73
	PEDOT-MoS ₂ electrodes.	
Table 3.2	Fitted EIS parameters for AuNP/PEDOT-MoS ₂ sensor electrode	74
	during different steps of the sensing experiment.	
Table 4.1	EIS derived physical parameters obtained after proper fitting.	87
Table 4.2	Estimated electrochemical parameter of the three system	92
	electrodes.	
Table 4.3	LOD and sensitivity values estimated from the three repeated	96
	experiments.	
Table 4.4	% recovery of the current response of the sensor after multiple	97
	experiments.	
Table 4.5	Comparison of real and estimated glucose concentration in the	98
	ORS samples.	
Table 5.1	Fitted parameter of the Nyquist plot for the sensor electrode.	108
Table 5.2	Detection of H ₂ O ₂ and glucose in artificial urine and ORS	112
	samples.	
Table 6.1	EIS derived parameters of the pristine and irradiated samples.	128
Table 6.2	Electroactive area corresponding to pristine and irradiated	132
	systems.	
Table 6.3	LOD and sensitivity values of pristine and irradiated systems.	135
Table 7.1	Comparision of sensing parameters of as designed sensors.	141

List of Figures

Figure	Caption	Page no
Figure 1.1	Basic components of an electrochemical sensor	3
Figure 1.2	Interaction mechanism of enzyme with the target analyte	4
Figure 1.3	Interaction mechanism of antibody with the target analyte	5
Figure 1.4	Schematic diagram of the H ₂ O ₂ reduction mechanism by NiO based electrode	7
Figure 1.5	Schematic band structure of conducting polymer, and chemical structure of some common CPs	10
Figure 1.6	Different types of 2D layered materials and their lattice structures	12
Figure 1.7	Scheme of top-down and bottom-up synthesis procedures of	13
	2D nanostructures	
Figure 1.8	Schematic layered structure of GO and MoS ₂	15
Figure 1.9	Ion-matter interaction in SHI irradiation	20
Figure 1.10	Schematic of the major components of FT-IR	29
Figure 1.11	Schematic of the major components of SEM	30
Figure 2.1	(a) Electropolymerization of PEDOT-PSS-GO over ITO, (b)	39
	Electrodeposition of AuNP over PEDOT-PSS-GO/ITO film	
Figure 2.2	Illustration of immobilization of antibody over the surface of	40
	AuNP/GO/ PEDOT-PSS/ITO electrode by glutaraldehyde cross-linking	
Figure 2.3	Effect of variation of pH; in case of AuNP/GO/PEDOT-PSS substrate electrode	41
Figure 2.4		42
8	GO/PEDOT-PSS on ITO electrode	
Figure 2.5	FT-IR spectra of PEDOT-PSS, GO/PEDOT-PSS and	44
	AuNP/GO/ PEDOT-PSS on ITO electrodes	
Figure 2.6	SEM micrograph and EDX response of (a) PEDOT-PSS, (b)	45

Figure 2.7	(a) Schematic representation of band bending phenomena on	47
	electrode-electrolyte junction, (b) Mott-Schottky plot of	
	PEDOT-PSS/ITO	
Figure 2.8	(a) CV plots of PEDOT-PSS, GO/PEDOT-PSS, AuNP/GO/	49
	PEDOT-PSS on ITO; Cyclic voltammetry of the (b) GO/	
	PEDOT-PSS and (c) AuNP/GO/PEDOT-PSS sensor after each	
	process step with a total Antigen (IgG) concentration of 23.47	
	μg/mL in 0.05 M PBS buffer	
Figure 2.9	(a) EIS plot of PEDOT-PSS, GO/PEDOT-PSS, AuNP/GO/	51
	PEDOT-PSS on ITO; Impedance response of the (b) GO/	
	PEDOT-PSS and (c) AuNP/ GO/PEDOT-PSS sensor after	
	each process step with a total Antigen (IgG) concentration of	
	$23.47 \mu g/mL$	
Figure 2.10	C_p vs. time plots of PEDOT-PSS at (a) 77 Hz, (b) 1 kHz	54
	frequency, and (b) C_p vs. time plots of GO/PEDOT-PSS based	
	sensors at (c) 77 Hz, and (d) 1 kHz frequency with various	
	concentration of antigen injections	
Figure 2.11	C_p vs. time plots of AuNP/GO/PEDOT-PSS sensor with	55
	various antigen injections in ng/mL concentrations at different	
	frequencies, (a) 77 Hz, and (b) 1 kHz	
Figure 2.12	Change in capacitance vs. antigen concentration in AuNP/	56
C	GO/PEDOT-PSS sensor electrode at (a)77 Hz, and (b)1 kHz;	
	(c) Linear regression fitting for 1/ change in antigen	
	concentration vs. $1/\Delta C_p$ at 77 Hz, and (d) at 1 kHz	
Figure 2.13	Conductance transient vs. time plot of Au/GO/PEDOT-PSS at	57
C	(a) 77Hz and (b) 1kHz	
Figure 2.14	Photograph of the functionalized electrodes on ITO after	58
8	sensing experiment (1) PEDOT-PSS, (2) GO/PEDOT-PSS, (3)	
	Au/GO/ PEDOT-PSS	
Figure 3.1	Schematic illustration of the immunosensor fabrication and	60
J	detection mechanism	

Figure 3.2 (a) XRD pattern, and (b) FT-IR response; of PEDOT, PEDOT-63 MoS₂ and AuNP/PEDOT-MoS₂ systems. The zoomed in view of FT-IR response of MoS₂ is shown in Figure (c) Figure 3.3 FESEM micrograph and EDX spectra of (a) PEDOT, (b) 65 PEDOT-MoS₂ and (c) AuNP/ PEDOT-MoS₂ Figure 3.4 CVresponse of (a) PEDOT, PEDOT-MoS₂ 67 AuNP/PEDOT-MoS₂ electrodes, and that of (b) PEDOT, (c) PEDOT-MoS₂ and (d) AuNP/PEDOT-MoS₂ sensor electrodes at different process steps throughout the sensing experiments Figure 3.5 Cyclic voltammetry responses taken by varying scan rate for 69 (a) PEDOT, (b) PEDOT-MoS₂ and (c) AuNP/PEDOT-MoS₂ electrodes. Peak potential (v) vs root of scan rate ($v^{1/2}$) plot of the CV responses of (a.1) PEDOT, (b.1) PEDOT-MoS₂ and (c.1) AuNP/PEDOT-MoS₂. Anodic peak potential (E_{pq}) vs. log (scan rate) plot of (a.2) PEDOT, (b.2) PEDOT-MoS₂ and (c.2) AuNP/ PEDOT-MoS₂ electrode systems Figure 3.6 (a) Scan rate variation plot, (b) anodic peak current (I_{pq}) vs 70 (scan rate)^{1/2} plot, (c) anodic peak potential (E_{pa}) vs log (scan rate) plot, (d) E_{pa} vs. log (scan rate) plot, (e) $log_e(I_{pa})$ vs (E_{pa} - E_o) plot; for BSA/Antibody/Glu/AuNP/PEDOT-MoS₂ bioelectrodes Figure 3.7 EIS responses of (a) PEDOT, PEDOT-MoS₂ 72 AuNP/PEDOT-MoS₂ electrodes, (b) PEDOT, (c) PEDOT-MoS₂ and (d) AuNP/ PEDOT-MoS₂ sensor electrodes at different process steps throughout the sensing experiment Figure 3.8 (a) DPV response of Antigen/BSA/Antibody/Glu/AuNP/ 76 PEDOT-MoS₂ sensor upon addition of different concentration of antigen, (b) Langmuir fitting of ΔI vs [C] plot, (c) $1/\Delta I$ vs 1/[C] plot, (d) Linear fitting of ΔI vs [C] plot, (e) selectivity test for BSA/ Antibody/Glu/AuNP/PEDOT-MoS₂ immunosensor, (f) comparison of LOD and selectivity estimated from three repetitive experiment

Figure 3.9	Detection of goat antimouse IgG via (a) BSA/Antibody/Glu/	77
	PEDOT and (b) BSA/Antibody/Glu/PEDOT-MoS ₂	
	bioelectrode	
Figure 3.10	Repeatability test for BSA/Antibody/Glu/AuNP/PEDOT-	78
	MoS ₂ bioelectrode (where the repeated experiments have been	
	denoted as (i) and (ii))	
Figure 4.1	Schematic diagram of the glucose oxidation mechanism by as-	81
	synthesized CuO/PEDOT-MoS ₂ /ITO electrode	
Figure 4.2	(a) XRD patterns, and (b) FT-IR spectra of as-synthesized	83
	CuO, PEDOT, CuO/PEDOT, PEDOT-MoS ₂ , and CuO/	
	PEDOT-MoS ₂ systems	
Figure 4.3	FESEM micrograph of (a) CuO, (b) PEDOT, (d) CuO/PEDOT,	85
	(d) PEDOT-MoS ₂ , and (e) CuO/PEDOT-MoS ₂ along with the	
	EDX spectra shown on the right-hand side	
Figure 4.4	(a) Cyclic voltammetry (CV) response, and (b)	87
	electrochemical impedance spectroscopy (EIS) plots of CuO	
	only, CuO/PEDOT and CuO/PEDOT-MoS2 electrodes. A	
	magnified view of the segment in -Z" vs. Z' plot as well as	
	equivalent RC circuit are also shown as inset in (b)	
Figure 4.5	CV responses of (a) CuO/ITO, (b) CuO/PEDOT and (c) CuO/	88
	PEDOT-MoS ₂ at different concentration of glucose varying	
	from 0.1 to 0.5 mM, (d) chronoamperometric response of	
	CuO/PEDOT-MoS ₂ sensor over different glucose	
	concentration at +0.6 V dc potential	
Figure 4.6	(a) Amperometric (<i>i-t</i>) response in presence and absence of 0.2	90
	mM glucose, (b) Cottrell plot ($i vs t^{-1/2}$), (c) current vs. voltage	
	response with scan rate variation in cyclic voltammetry (CV),	
	(d) Randle- Sevcik (i_p vs $v^{1/2}$) plot, (e) E_p vs $log \mid (scan \ rate) \mid$	
	plot and (f) Peak potential (E_p) vs (scan rate) plot; for (I) CuO	
	only, (II) CuO/PEDOT, and (III) CuO/PEDOT-MoS2 electrode	
	systems	

Figure 4.7	(a) Merged amperometric (<i>i-t</i>) response of CuO, CuO/PEDOT and CuO/PEDOT-MoS ₂ electrode, (b) selectivity test of CuO/PEDOT-MoS ₂ , (c) amperometric response of the CuO/PEDOT-MoS ₂ with inset magnified portion, (d) change in (<i>i-t</i>) current (ΔI) vs. change in concentration ($\Delta [CI]$) plot	93
Figure 4.8	Stability test for CuO/PEDOT-MoS ₂ sensor electrode	94
Figure 4.9	(a) Repeatibility tests for the CuO/PEDOT-MoS ₂ sensor electrode, change in current (ΔI) vs. concentration ($\Delta [CI]$) plot for chrono-amperometric (b) response-1 and (b) response-3, and histograms of the (d) LOD and (e) sensitivity values	95
Figure 4.10	CV responses of CuO/PEDOT-MoS ₂ (a) in presence and absence of glucose, (b) on different days. (c) Histogram plot of oxidation current response of the sensor on different days	96
Figure 4.11	Chronoamperometry response of CuO/PEDOT-MoS ₂ sensor electrode for determining glucose concentration in commercially available ORS solution	98
Figure 5.1	(a) XRD, (b) FT-IR, (c) EDX, elemental mapping responses, (d, e) FESEM images, (f) TEM micrograph, (g) SAED pattern and (h, i) HRTEM images of the NiO-MoS ₂ nanocomposite system	103
Figure 5.2	Cyclic voltammetry response of NiO-MoS ₂ sensor electrode in (a) 0.1M PBS solution, (b) 0.1M PBS solution with varying H ₂ O ₂ concentration, (c) 0.1M NaOH solution, (d) 0.1M NaOH solution with varying glucose concentration	105
Figure 5.3	EIS response of NiO-MoS ₂ sensor electrode in (a) 0.1 M PBS solution and (b) 0.1M NaOH solution, with an inset Nyquist plot showing the magnified view of the high frequency region	108
Figure 5.4	Chronoamperometric response of NiO-MoS ₂ sensor electrode in (a) 0.1M PHS solution, (b) 0.1M NaOH solution. (c) ΔI vs. $\Delta [C]$ plot for H ₂ O ₂ sensing, (d) ΔI vs. $\Delta [C]$ plot for glucose sensing	109

Figure 5.5	Selectivity feature of NiO-MoS ₂ based sensor for (a) H ₂ O ₂	111
	sensing and (b) glucose sensing. Detection of (c) H ₂ O ₂ in	
	artificial urine sample and (d) glucose in ORS sample	
Figure 5.6	Repeatability test of NiO-MoS ₂ based sensor for the detection	113
	of (a) H ₂ O ₂ , and (b) glucose	
Figure 6.1	(a) XRD patterns of MoS_2 , PPy and PPy- MoS_2 , and (b) FT-IR	118
	characteristics of PPy and PPy-MoS ₂ systems	
Figure 6.2	(a) XRD and (b) FT-IR, responses of pristine system and	120
	irradiated systems with fluence 1.0×10^{10} , 3.5×10^{10} , 1.0×10^{12}	
	and 1.0×10^{13} , ions/cm ²	
Figure 6.3	Magnified diffraction pattern of the (002) peak of pristine	121
	and irradiated PPy-MoS ₂ system	
Figure 6.4	FESEM micrograph of (a.1, a.2) PPy-MoS ₂ (pristine), and	123
118011000	irradiated PPy-MoS ₂ nanocomposites when subjected to	120
	fluences of (b.1, b.2) 3.5×10^{11} ions/cm ² , (c.1, c.2) 1.0×10^{13}	
	ions/cm ² at different magnifications	
Figure 6.5	TEM micrograph of (a.1-a.3) PPy-MoS ₂ (pristine), and	124
_	irradiated PPy-MoS ₂ composite systems at a fluence of (b.1-	
	b.3) 3.5×10^{11} ions/cm ² , (c.1-c.3) 1.0×10^{13} ions/cm ² and at	
	different magnifications	
Figure 6.6	Comparison of the CV responses of (a) PPy and PPy-MoS ₂	126
8	system, (b) PPy-MoS ₂ (pristine) and samples irradiated with	
	different fluences	
Figure 6.7	Comparison of the EIS spectra of (a) PPy, and PPy-MoS ₂	127
1 15410 0.7	composite, (b) PPy-MoS ₂ (pristine) and irradiated samples	127
Figure 6.8	Scan rate variation plot with inset i_p vs $v^{1/2}$ graph of PPy-MoS ₂	130
riguic 0.6	nano-composite system, (a) without (pristine), and with	130
	irradiation at a fluence of (b) 1.0×10^{10} , (c) 3.5×10^{10} , (d)	
	1.0×10 ¹² and (e) 1.0×10 ¹³ , ions/cm ²	
	1.0010 AUCUALAOTO . 1005/610	

Figure 6.9	E_{pa} vs (scan rate) plot of PPy-MoS ₂ composite system (a.1)	131
	without irradiation and irradiated with fluence of (b.1)	
	1.0×10^{10} , (c.1) 3.5×10^{11} , (d.1) 1.0×10^{12} , (e.1) 1.0×10^{13} ,	
	ions/cm ² and, $ln(I_{pa})$ vs $(E_{pa}-E_o)$, plot of PPy-MoS ₂ composite	
	system (a.2) without irradiation and irradiated with fluence of	
	(b.2) 1.0×10^{10} , (c.2) 3.5×10^{11} , (d.2) 1.0×10^{12} , and (e.2)	
	1.0×10^{13} , ions/cm ²	
Figure 6.10	DPV response, ΔI vs $[C]$ plot and $1/\Delta I$ vs $1/[C]$ plot of PPy-	134
	MoS ₂ composite system (a) without irradiation and irradiated	
	with fluence of (b) 1.0×10^{10} , (c) 3.5×10^{11} , (d) 1.0×10^{12} , and (e)	
	$1.0 \times 10^{13} \text{ ions/cm}^2$	
Figure 6.11	(a) CV and (b) EIS responses of the MPy:2 system monitored	136
	throughout the sensor fabrication and sensing experiment, (c)	
	repeatability test for the MPy:2 system	
Figure 6.12	(a) DPV response with inset ΔI vs [C] plot, and corresponding	137
	(b) $1/\Delta I$ vs $1/[C]$ plot, for MPy:2 system	

Abbreviation Meaning

W.E. Working electrode

R.E. Reference electrode

C.E. Counter electrode

CP Conducting polymer

HOMO Highest occupied molecular orbital

LUMO Lowest unoccupied molecular orbital

LOD Limit of detection

MO Metal oxide

SHI Swift heavy ion

AuNPs Gold nanoparticles

TMDC Transition metal di-chalcogenide

GO Graphene oxide

EDOT Ethylene-dioxy thiophene

PPy Poly-pyrrole

PSS Polystyrene sulfonate

ITO Indium-tin-oxide

PBS Phosphate buffer saline

BSA Bovine serum albumin

CV Cyclic voltammetry

EIS Electrochemical impedance spectroscopy

DPV Differential pulse voltammetry

EDX Energy dispersive X-ray

NS Nanosheet

M-S Mott-Schottky

kD Kilo-Dalton

ORS Oral rehydration solution

NMP N-Methyl-2-Pyrrolidone

PVDF poly-vinylidene fluoride

PVP polyvinylpyrrolidone

EG Ethylene glycol

SEI Solid-electrolyte interface

UA Uric acid

Meaning **Symbol** Immunoglobulin Ig DDiffusion constant Electroactive area \boldsymbol{A} k_{s} Rate constant R_s Solution resistance Double layer capacitance C_{dl} Charge transfer resistance R_{ct} W_z Warburg impedance Constant phase element CPE Scan rate υ I_p Peak current E_p Peak potential ZReal part of impedance Imaginary part of impedance -Z" FFaraday's constant Antibody AbAnAntigen