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(ii) Transverse relaxation T2: (a) CEIZF, (b) CEAIZF, (c) 
CEZF, (d) CSEZF, and (e) HCEZF. 
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Figure 6.10 
A Schematic presentation for varied easy axes in a 
complex anisotropy landscape and respective faster 
transverse relaxation trend. 
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Figure 7.1 
FESEM micrographs at scale of (a, b, c) 100 nm, (d, e, f, 
g, h) TEM micrographs, (i) Schematic presentation of 
complex morphology; the EDX analysis: (j) Sum 
spectrum for present elements, (k) selected area EDX 
(30 µm), (l) for Zinc (Zn), (m) for Iron (Fe), and (n) for 
Oxygen (O) of 𝛾-Fe2O3@ZnFe2O4. The big hollow 
ensemble is comprised of elongated shaped 
nanosystems, which represent the Zinc Ferrite 
ensemble and the small spherical shapes are used to 
represent the Iron-Oxide nanoparticles. However, the 
arrows are marked to illustrate blocked/freeze spins 
in a certain direction. In Figure (a), the yellow circle is 
provided to address the Iron Oxide nanoparticles and 
the red arrow is showing the broken ensemble. 
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Figure 7.2 
(a) SAXS and SANS fitting, (b) XRD pattern, (c) Raman 
plots; XPS study of (d) Zinc 2P, (e) Iron 2P, and (f) 
Oxygen 1S spectrum of 𝛾-Fe2O3@ZnFe2O4. 
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Figure 7.3 
Real component ac susceptibility (a), imaginary 
component ac susceptibility (b); (c) Arrhenius law 
fitting, (d) VF law fitting, (e) Critical slowing down 
fitting of 𝛾-Fe2O3@ZnFe2O4. The arrow mark indicates 
the change in Tmax and χmax with an increase in 
frequency in Figure (a, b). The error bars are for 
standard deviation representation. 
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Figure 7.4 
(a) Zeta potential plot, (b) MTT-assay in HEK-293 cell, 
(c) MTT-assay in MDA-MB-231 cancer cell; Intensity in 
signal for both longitudinal relaxation (d), for 
transverse relaxation (e) at various metal 
concentrations; (f) 1/T1 vs. Metal concentration curve 
to attain r1; (g) 1/T2 vs. Metal concentration to get r2 of 
𝛾-Fe2O3@ZnFe2O4. The error bars are for standard 
deviation representation. 
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Figure 7.5 
Pristine ZnFe2O4: (a) 1/T1 vs. Metal concentration 
curve to attain the longitudinal relaxivity (r1) and (b) 
1/T2 vs. Metal concentration to attain the transverse 
relaxivity (r2). The error bars in the data represent 
standard deviation in experimental data. 

188 

Figure 7.6 
(A) Longitudinal relaxivity plot, (B) Transverse 
relaxivity plot, Phantom images for (i) Longitudinal 
relaxation with TI, (ii) Transverse relaxation with TE 
of 𝛾-Fe2O3@ZnFe2O4. 
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Figure 8.1 
FESEM images at a resolution (a) 1 µm scale bar, (b) 
100 nm scale bar, (c) 1 µm scale bar, (d) 100 nm scale 
bar, and (e) 100 nm scale bar, and (f) Schematic 
representation of hybrid ensemble of 𝛾-Fe2O3@δ-
MnO2@NiFe2O4. The schematic is depicted wherein 
three different nanosystems are presented to 
differentiate among Nickel Ferrite nanoparticles 
(presented in the core), δ-MnO2 nanoflakes, and Iron 
Oxide nanoparticles over the flakes. Iron Oxide is 
decorated over the system MnO2@NiFe2O4 (which is 
used in Chapter 3 for magnetic analysis wherein TEM 
images of MnO2@NiFe2O4 are shown). The decoration 
of Iron Oxide over the ensemble of MnO2@NiFe2O4 in 
yellow circle in Figure (c). The spin arrangement is 
also shown in the Schematic to illustrate the alignment 
of the blocked spins. 
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Figure 8.2 
(a) SAXS and MSANS intensity profile, (b) XRD curve, 
and (c) Raman spectrum of 𝛾-Fe2O3@δ-
MnO2@NiFe2O4. 
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Figure 8.3 
XPS analysis for (a) Mn 2P, (b) Ni 2P, (c) Fe 2P, and (d) 
O 1S spectrum of 𝛾-Fe2O3@δ-MnO2@NiFe2O4. 203 

Figure 8.4 
(a) Sum spectrum of EDX, (b) elementary mapping for 
O, (c) elementary mapping for Mn, (d) elementary 
mapping for Fe, and (e) elementary mapping for Ni of 
𝛾-Fe2O3@δ-MnO2@NiFe2O4. 
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Figure 8.5 
(a) In-phase ac susceptibility with different 
frequencies, (b) out-of-phase ac susceptibility with 
different frequencies of 𝛾-Fe2O3@δ-MnO2@NiFe2O4, 
(c) depiction of two peaks in out-of-phase component 
at frequency of 9724 Hz (two different Tmax are shown 
in circle). The arrow mark indicates the change in Tmax 

and χmax with an increase in frequency in Figure (a, b). 
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Figure 8.6 
Temperature maxima fitting with a range of frequency 
following: (a) Neel-Brown model, (b) VF model, and 
(c) Critical slowing down model of 𝛾-Fe2O3@δ-
MnO2@NiFe2O4. The error bars in the data represent 
standard deviation in experimental data. 
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Figure 8.7 
(a) Zeta potential curve, (b) MTT-based cytotoxicity 
analysis study for HEK-293 cell-line of 𝛾-Fe2O3@δ-
MnO2@NiFe2O4. The error bars are for standard 
deviation representation  
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Figure 8.8 
MR-relaxation analysis of 𝛾-Fe2O3@δ-MnO2@NiFe2O4: 
(a) Longitudinal relaxivity (r1) and (b) transverse 
relaxivity (r2) plot with various concentrations. The 
error bars are for standard deviation representation. 
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Figure 8.9 
Phantom image of 𝛾-Fe2O3@δ-MnO2@NiFe2O4: (i) 
Longitudinal relaxation at different inversion time (TI) 
(a-e) and (ii) Transverse relaxation at different echo 
time (TE) (f-l) with metal concentrations variation. 
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Figure 8.10 
Schematic of spin organization in interacting 
superparamagnetic ensembles having both isotropic 
and anisotropic MNPs with significant MR-relaxivity 
of 𝛾-Fe2O3@δ-MnO2@NiFe2O4. 
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List of Symbols 

Parameters Meanings 

 

Å 
 
Angstrom, atomic scale unit 

nm Nanometer 
Ms Saturation magnetization 
kB Boltzmann constant 
Mr Remanence 
q Scattering vector 
TB Blocking Temperature 
emu electromagnetic units 
σ Polydispersity index 
K Magnetic anisotropy constant 
n(r) Density of states 
TB Blocking temperature 
Tf Freezing temperature 
Tg Glass transition temperature 
EF Fermi energy 
Ry Rydberg constant 
τ Spin flipping time 
T1 Longitudinal relaxation time 
T2 Transverse relaxation time 
r1 Longitudinal relaxivity 
r2 Transverse relaxivity 
TC Curie Temperature 
𝛾0 Proton gyromagnetic ratio 
Δω Larmor frequency 
𝜏𝑑𝑖𝑓𝑓 Diffusive time 
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Abbreviations Names 

MNPs Magnetic Nanoparticles 

2D Two-dimension 

SAXS Small Angle X-ray Scattering 
SANS Small Angle Neutron Scattering 
DBF Model Dormann-Bessais-Fiorani Model 
MT Model Mørup-Tronc Model 
FC Field Cooling 
ZFC Zero Field Cooling 
DFT Density Functional Theory 
DLS Dynamic Light Scattering 
HRTEM High Resolution Transmission Electron Microscopy 
DOS Density of states 
VF Vogel-Fulcher 
MRI Magnetic Resonance Imaging 
PPMS Physical Property Measurement System 
TI Inversion Time 
TE Echo Time 
TD-NMR Time Domain Nuclear Magnetic Resonance 
mM Milimole 
DCD Direct current demagnetization 
LDA Local Density Approximation 
RF Radio frequency 
QE Quantum Espresso 
PP Pseudopotential 
RKKY Ruderman-Kittel-Kasuya-Yosida 
SSG Super spin glass 
SPM Superparamagnetism 
NaOH Sodium Hydroxide 
DMSO Dimethylsulfoxide 
FESEM Field Emission Scanning Electron Microscopy 
PVP Polyvinylpyrrolidone 
DM Dzyaloshinskii-Moriya 
XRD X-ray Diffraction 
SDR Static Dephasing Regime 
MAR Motional Averaging Regime 
SBM Soloman-Bloembergen-Morgan 
MME Magnetic Memory Effect 
PDOS Partial density of states 
AFM Antiferromagnetic 
FM Ferromagnetic 
BZ Brillouin Zones 
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PW Perdew and Wang 
LDA Local Density Approximation 
RRKJ Rappe-Rabe-Kaxiras-Joannopoulos 
USPP Ultrasoft Pseudopotentials 
KS  Kohn-Sham 
BFGS Broyden-Fletcher-Goldfarb-Shanno 
DMEM Dulbecco's Modified Eagle Medium 
HEK-293 Human Embryonic Kidney cell lines 
MCF-7 Michigan Cancer Foundation cell lines 
MTT 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium 

Bromide 
JCPDS Joint Committee on Powder Diffraction Standards 
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