Dedicated

To my beloved parents, Husband and Daughter.

Declaration

I declare that this written submission represents my ideas in my own words and where others ideas or words have been included, I have adequately cited and referenced the original sources. I also declare that I have adhered to all principles of academic honesty and integrity and have not misrepresented or fabricated or falsified any idea/data/fact/source in my submission. I understand that any violation of the above will be cause for disciplinary action by the Institute and can also evoke penal action from the sources which have thus not been properly cited or from whom proper permission has not been taken when needed.

Date: 10th June 2024

Margaret Kathing

Roll No. CSP19112

Certificate of Supervisor

This is to certify that the thesis entitled *Vision-Based Gait Analysis for human identification with covariate conditions* submitted to Tezpur University in the Department of Computer Science and Engineering under the School of Engineering in partial fulfillment of the requirements for the award of the degree of Doctor of Philosophy in Computer Science and Engineering is a record of research work carried out by Mrs Margaret Kathing under my personal supervision and guidance.

All helps received by him from various sources have been duly acknowledged.

No part of this thesis has been reproduced elsewhere for the award of any other degree or diploma.

Signature of Research Supervisor

(Sarat Saharia)

Designation: Professor **School:** Engineering

Department: Computer Science and Engineering

Date: 15th June 2024 Place: Tezpur

Certificate

This is to certify that the thesis entitled "Vision-Based Gait Analysis for human identification with covariate conditions" submitted by Margaret Kathing to Tezpur University in the Department of Computer Science and Engineering under the School of Engineering in partial fulfillment of the requirements for the award of the degree of Doctor of Philosophy in Computer Science and Engineering has been examined by us on ..l.O.....0.6....20.24. and found to be satisfactory.

The Committee recommends for award of the degree of Doctor of Philosophy.

Signature of Principal Supervisor

Signature of External Examiner

Acknowledgments

It is a great joy to express my gratitude to all who have provided me with guidance and support in bringing about the successful completion of my doctoral program at Tezpur University. Achieving this milestone would not have been possible through my efforts alone. I would like to thank everyone who supported and assisted me in my PhD journey at Tezpur University.

First and foremost, I would like to thank my supervisor *Prof. Sarat Saharia* for his constant support, trust, valuable feedback, encouragement, and innumerable advice. He gave me the freedom to pursue my ideas and work at my own pace and was always available to discuss various problems along the way. His encouragement and guidance have laid a solid foundation for the completion of my research work.

I am indebted to the Department of Computer Science and Engineering of Tezpur University. I am particularly grateful to Prof. B.Borah, Dr. S.Patra, and Dr Arindam Karmakar, who are the members of my doctoral committee for reviewing my progress constantly and for their kind support.

I would like to acknowledge the North Eastern Regional Institute of Science and Technology (NERIST) for providing me QIP leave to pursue my PhD at Tezpur University. I am indebted to the AICTE, Govt. of India, New Delhi for providing me with a QIP Fellowship.

I am very fortunate that I met my scholar friends Kaushik, Rishang, Nitya, Anjan, Tonmoyee, Priyanjana, Priyanka, Amos, Tamal, Tapash, Birlang, Ashwariya, Deena, Wungshim, and Nirmal. Thank you for being a great bunch of people in and out of the lab, for making the 4 years much more enjoyable, and for keeping me sane through the whole process.

A special thanks to my University friends and family for all the support we received during my family's short stay at Tezpur University.

I am grateful to my parents for supporting me with constant love and prayers. And my husband, James Guanmei, who has been a constant support in my life and has always being there for me throughout. He has stood by me through all my travails, my absences, my fits of pique, and impatience. My little daughter, Soyin, who joined us during my PhD journey, stays awake and waits for me to get things done. They remain an inspiration to me throughout my academic and personal life.

Finally, I would like to thank all those who have directly or indirectly helped me in different capacities to complete my research work.

Above all, I thank God Almighty for His goodness and mercies in my life.

Date: 10 th June 2024

Margaret Kathing

Roll No. CSP19112

List of Tables

1.1	Summary of vision-based survey articles that focused on human identification				
	using gait	12			
1.2	Vision-based gait datasets and their characteristics	14			
2.1	Correct classification rate for normal walk covariate	33			
2.2	Correct classification rate for clothing covariate	34			
2.3	Correct classification rate for baggage covariate	34			
2.4	Average correct classification of all the covariate conditions	34			
2.5	Comparison with other methods	35			
3.1	Evaluation of PCC and F1-Score using DCNN for Concrete, Grass and Stairs .	44			
3.2	Evaluation of PCC and F1-Score using MOG2 for Concrete, Grass and Stairs .	45			
3.3	Evaluation of PCC and F1-Score using KNN for Concrete, Grass and Stairs	45			
3.4	Mean F1 Score for various Backgroud substraction model	46			
3.5	Mean PCC for various Backgroud substraction model	46			
3.6	Test accuracy using dynamic pose features	55			
4.1	Accuracy with GEI templates	63			
4.2	Accuracy with GGMI templates	63			
4.3	Testing accuracy for all covariate conditions	65			
4.4	Comparision table with recent works on gait recognition in covariates	65			
4.5	Experimental analysis result indicating normal walk, wearing coat and carrying				
	bag condition when gallery and probe angle are identical	70			
4.6	Comparison table with existing methods	70			
5 1	Correct Classification rate for Experiment 1	77			

5.2	Correct Classification rate for Experiment-2	77
5.3	Correct Classification rate for Experiment-3	78
5.4	Average correct classification rate covering all the covariates	78
5.5	Comparison with other method	79

List of Figures

1.1	Human gait analysis approaches and acquisition techniques	11
1.2	Gait video sequences under covariate conditions from various standard dataset .	19
2.1	Overview of System	27
2.2	Gait cycle image from silhouette dataset	28
2.3	Gait Energy Image(GEI)	29
2.4	CASIA B Dataset 90 degree angle	33
2.5	Comparison graph with other methods	35
3.3	File arrangement steps	40
3.1	Setup for dataset	40
3.2	Walking environment setup with different backgrounds	40
3.4	Dataset creation steps	41
3.5	Steps for extracting silhouette frames	42
3.6	Comparison of segmentation results of the three background subtraction models	
	for subject one.(a) Original image,(b)Ground truth,(c) DCNN ,(d) MOG2,(e)	
	KNN	47
3.9	Blaze pose model and the landkmark[9]	47
3.7	F1_Score of the three background subtraction models on three covariates con-	
	ditions	48
3.8	PCC of the three background subtraction models on three covariates conditions.	48
3.10	Steps for keypoints extraction to create csv file	49
3.11	Skeleton image extraction from developed dataset	49
3.12	Model for performance analysis	50
3.13	Performance analysis on Improved LeNet CNN model	51

3.14	Proposed CNN architecture for known covariate classifications	53
3.15	Training and Validation analysis on the proposed CNN model	54
4.1	CNN with GEI as input	60
4.2	CNN with GGMI as input	62
4.3	CASIA B Dataset 90 degree angle	62
4.4	GEI train accuracy and validation accuracy	64
4.5	GGMI train accuracy and validation accuracy	64
4.6	The Proposed framework	68
4.7	Casia-B 90 Degree dataset Sample	69
4.8	Comparison graph with other methods	71
5.1	View angle representation	74
5.2	Proposed system for multiview gait recognition	75
5.3	Comparison graph with other methods	79
5.4	Dynamic pose estimation key points with Knee angles	80
5.5	Representation of maximum step width of human walking	80
5.6	Hip, Knee and joints labeling forming an angle	81
57	Graphical representation of Gait cycle	82