

DECLARATION BY THE CANDIDATE

I hereby declare that the thesis entitled "Microbial Infections in Reproductive Organs of Women and the Potential Role of *Lactobacillus*" submitted to Department of Molecular Biology and Biotechnology, School of Sciences, Tezpur University in partial fulfilment for the award of the degree of **Doctor of Philosophy** in Department of Molecular Biology and Biotechnology, is a record of original research work carried out by me under the supervision of Prof. B.K. Konwar. All help received from various sourced have been duly acknowledged. Further, I declare that no part of this thesis has been submitted elsewhere for award of any other degree.

Shreaya Das

Date: 03-06-2024 Place: Napaam, Tezpur

(Shreaya Das) Registration No.: TNZ189794 of 2018

TEZPUR UNIVERSITY (A Central University) Department of Molecular Biology and Biotechnology NAPAAM, TEZPUR-784 028, ASSAM, INDIA

Bolin. K. Konwar, Ph.D (London), DIC Senior Professor Department Molecular Biology and Biotechnology Former Vice-Chancelor, Nagaland University

Ph. 03712-275412 (O) **E-mail**: bkkon@tezu.ernet.in

CERTIFICATE OF THE SUPERVISOR

This is to certify that the thesis entitled "Microbial Infections in Reproductive Organs of Women and the Potential Role of *Lactobacillus*" submitted to the School of Sciences, Tezpur University in partial fulfilment for the award of the degree of **Doctor of Philosophy** in Department of Molecular Biology and Biotechnology, is a record of original research work carried out by Ms. Shreaya Das under my personal supervision and guidance. She has fulfilled the requirements of the rules and regulations related to the nature and prescribed period of research at Tezpur University. The thesis embodies accounts for her own findings and no part of this thesis has been submitted previously anywhere for the award of any degree whatsoever either by him or by anyone else.

All help received by her from various sources have been duly acknowledged.

W 03/06/ 2824

Date: 03-06-2024 Place: Napaam, Tezpur (**B. K. Konwar**) Signature of Supervisor

Acknowledgement

I thank the Almighty for blessing me with the strength, will, patience, and faith to complete my work.

Firstly, I convey my sincerest gratitude to my supervisor Senior Prof. B.K. Konwar for his guidance and wisdom regarding my work. I am thankful for the confidence he instilled in me for carrying out my work and his constant uninterrupted guidance all throughout my time in Tezpur University. His dedication for his work and duties are something to learn from. He has a big role in shaping me into the individual I am today. I genuinely thank you, Sir.

I sincerely thank my Doctoral Committee members Prof. R. Doley and Prof. M. Mandal for their helpful suggestions.

I would also want to thank the entire Faculty Fraternity from Dept. of MBBT, Tezpur University. I acknowledge Dr. R. Mukhopadhyay for providing help and support whenever necessary.

I also humbly thank the non-teaching staff unit Bijoy Da, Pranita Baido, Gunno da, Bene Da for their help and encouragement.

Next, I would like to recall my current and former lab-mates, with whom I have spent hours motivating and empathizing. Kritartha, Mimi, Nigar, Panchi, Nazmin, Runumi, Trishna, Binu, and Mudoi da I am thankful to you all. I also want to remember Ananya (Summer Intern, 2017), Swapnil (MSc, 2018), and Bandita (Integrated MSc, 2023) who have worked with me during my tenure.

I would like to extend my gratitude to CIF facility and laboratories in Dept. of MBBT as well as SAIC facility in Tezpur University for providing

the instrumentation support. I also acknowledge SAIC facility of IIT Bombay, India for helping me to carry out LC-MS/MS which was an essential part of my work.

I acknowledge Tezpur University for enrolling and providing me fellowship and grant which helped me financially all throughout my work. I would like to heartily remember my friends from TU: Anindita, Saheen, Susmita, Rafika, Mandira, Damyanti, Munmi, and Muzamil for their help. I would also like to thank all my seniors and juniors for helping me in times of need.

I am grateful to Manoj Sharma, for supporting me always. I would like to thank my friends Angelina Rahman, Sujata Dev, Subhadipti Dey, Ishanee Kamal, Banazer Akhter for always being by my side emotionally.

I pay deepest sense of gratitude to my ever-loving parents Mr. Suman Das and Mrs. Joyshree Das without whom none of these would have been possible. My father fills me with strength-courage and mother fills me with patience-hard work. My beloved brother Mr. Shravan Das who handled everything on behalf of me as and when required; without him I would not have been at peace in work place. I want to remember my Grandfather Late Mr. Subal Ch. Das, I always cherished him while being happy or sorrowful. I thank Mrs Tanushree Poddar (Maternal Aunt) for always being a role model to look at. I thank Taniya Poddar, Shalini Bose, and Vishal Poddar (Siblings) for always loving me.

I acknowledge my gratitude to everyone who has helped me directly or indirectly during the entire course of my work.

(Shreaya Das)

List of Tables

	Tables	Page No.
Table 1	Thermal cycle of PCR for universal 16s and 18s rDNA gene	45
Table 2	Components of PCR master mix	45
Table 3	Biochemical and morphological characterization of lactic acid bacteria isolates	49
Table 4	Identification of the isolates using BLASTn	50
Table 5	Characterization of potential pathogens	70
Table 6	Ability of LAB isolates to grow at neutral and acidic pH	72
Table 7	Antibiotic resistance and Antibiotic Susceptibility of LAB	72-73
Table 8	Fermentation of sugars by lactic acid bacteria isolates	73
Table 9	Estimation of lactic acid in culture free supernatant of LAB through RP-HPLC	76
Table 10	Estimation of lactic acid in culture free supernatant of LAB measured spectrophotometrically	76
Table 11	Zone of clearance (mm) by vaginal LAB on potential urogenital pathogens by overlay assay	79
Table 12	Inhibition of potential urogenital pathogens by LAB through cup assay	83
Table 13	Zone of inhibition (mm) of potential urogenital pathogens by CFS LAB through cup assay	84
Table 14	Minimum inhibition concentration (mm) lyophilized CFS of LAB	88
Table 15	Antimicrobial metabolites identified in the CFS of <i>L. crispatus</i> , <i>L. gasseri</i> and <i>L. vaginalis</i>	109-113
Table 16	Physicochemical property of encapsulated and non- encapsulated Na-CMC Alginate beads	127
Table 17	Zone of inhibition (mm) of CFS treated non-woven fabric on potential bacterial pathogens	137
Table 18	Physicochemical property of treated and untreated non-woven fabric.	141

List of Figures

	Figures	Page No.
Figure 1	Nutrient broth of pH 4 inoculated with potential pathogens	46
Figure 2	Litmus milk broth inoculated with potential pathogens	47
Figure 3	18s rDNA of fungal isolates and 16s rDNA of bacterial isolates	47
Figure 4	Pure culture of isolates	48
Figure 5	Gram's staining and catalase test of lactic acid bacteria	49
Figure 6	Colony PCR of lactic acid bacteria isolates on agarose gel	50
Figure 7	Pure culture of LAB isolates	51
Figure 8	Schematic representation of biofilm formation in polystyrene well	64
Figure 9	Hemolysis assay of potential pathogens	66-67
Figure 10	Proteolytic assay of potential pathogens	67
Figure 11	Lipolytic assay of potential pathogens	67-68
Figure 12	Amylolytic assay of potential pathogens	68
Figure 13	Effect of LAB resistant antibiotics on potential pathogens	69
Figure 14	Biofilm formation by the potential pathogens	69
Figure 15	Bile salt tolerance of LAB isolates	71
Figure 16	Sodium chloride salt tolerance of LAB isolates	71
Figure 17	Detection of hydrogen peroxide production by LAB isolates	74
Figure 18	Hydrophobicity assay of LAB isolates	74
Figure 19	Auto- aggregation assay of LAB	74
Figure 20	Co- aggregation assay of LAB	75
Figure 21	Standard graph of serially diluted lactic acid (85%) measured spectrophotometrically	75
Figure 22	Standard graph of serially diluted lactic acid (85%) measured from AU value of chromatogram	76
Figure 23	Chromatogram of RP-HPLC of serially diluted lactic acid (85%) and culture free supernatant of LAB	77-78

Figure 24	Inhibition of potential urogenital pathogens by LAB through overlay assay	80-82
Figure 25	Inhibition of potential urogenital pathogens by LAB through cup assay	83
Figure 26	Inhibition of potential urogenital pathogens by LAB CFS through cup assay	85
Figure 27	Bactericidal effect of vaginal LAB CFS on potential urogenital pathogens	86
Figure 28	Minimum inhibition volume of vaginal LAB CFS on potential urogenital pathogens	86-87
Figure 29	Inhibitory effect of lyophilized CFS of LAB on potential urogenital pathogens through cup assay	87
Figure 30	Effect of CFS on budding of C. albicans	90
Figure 31	Effect of treated CFS on budding of C. albicans	91
Figure 32	Effect of CFS on hyphae formation of <i>C. albicans</i> on spider agar plate	92-93
Figure 33	Effect of CFS on hyphae formation of <i>C. albicans</i> on RPMI 1640 media	93-94
Figure 34	Crystal violet assay to assess the effect of CFS on biofilm formation of <i>C. albicans</i>	95
Figure 35	XTT assay to assess the effect of CFS on biofilm formation of <i>C. albicans</i>	96
Figure 36	Biofilm formation by <i>C. albicans</i> with RPMI 1640 under scanning electron microscope	97
Figure 37	Biofilm formation by <i>C. albicans</i> with RPMI 1640 and distilled water under scanning electron microscope	97-98
Figure 38	Biofilm formation by <i>C. albicans</i> on treatment with <i>L. gasseri</i> and LGCFS under scanning electron microscope	98-99
Figure 39	Biofilm formation by <i>C. albicans</i> on treatment with <i>L. crispatus</i> and LCCFS under scanning electron microscope	100-101
Figure 40	Biofilm formation by <i>C. albicans</i> treatment with <i>L. vaginalis</i> and LVCFS under scanning electron microscope	101-102
Figure 41	Differential regulation of hyphal genes in C. albicans	104-107
Figure 42	PCR product of GSP1 gene in 1.5% agarose gel	107

	Droposed mechanism of hyphal sone inhibition on	
Figure 43	Proposed mechanism of hyphal gene inhibition on treatment with CFS	108
Figure 44	Extracellular metabolome of CFS from LC, LG, and LV with antimicrobial compounds	114
Figure 45	Gram's test of 24-month-old lyophilized <i>L. crispatus</i> post growth	125
Figure 46	CMC-Alginate Bead, CMC-Alginate <i>L. crispatus</i> Bead, and Cryopreserved CMC-Alginate Bead	126-127
Figure 47	Gram's staining of <i>L. crispatus</i> encapsulated in Na-CMC alginate bead post growth	128
Figure 48	Energy Dispersive X-Ray of encapsulated and non- encapsulated CMC-Alginate Bead	128
Figure 49	Scanning electron microscopy of encapsulated and non- encapsulated CMC-Alg Bead surface	129-130
Figure 50	Scanning electron microscopy of encapsulated and non- encapsulated CMC-Alg bead cross section	131-132
Figure 51	Fourier Transmission Infra-Red of encapsulated and non- encapsulated Na-CMC-alginate bead	133
Figure 52	Growth of potential bacterial pathogen consortia post single spray of CFS	134
Figure 53	Growth of potential bacterial pathogen consortia with regular spray of CFS	134-136
Figure 54	Inhibition of potential urogenital pathogens by <i>L</i> . <i>crispatus</i> CFS treated non-woven fabric	136-137
Figure 55	Scanning Electron Microscopy of treated and untreated non-woven fabric	138
Figure 56	Energy Dispersive X-Ray treated and untreated non-woven fabric	139
Figure 57	Fourier Transmission Infra-Red of treated and untreated non-woven fabric	140

List of Abbreviations

FRT:	Female Reproductive Tract
LAB:	Lactic Acid Bacteria
BV:	Bacterial Vaginitis
VVC:	Vulva-Vaginal Candidiasis
AV:	Aerobic Vaginitis
LC/C:	L. crispatus
LG/G:	L. gasseri
LV/V:	L. vaginalis
UTI:	Urinary Tract Infection
CFS:	Culture Free Supernatant
MIC:	Minimum Inhibition Concentration
MIV:	Minimum Inhibition Volume
VC:	Vaginal Canal
FSH:	Follicle Stimulating Hormone
LH:	Luteinizing Hormone
PCOD/PCOS:	Polycystic Ovarian Disease/Syndrome
PTL:	Pre-term Labour
PROM:	Premature Rupture of Membrane
UTB:	Uterine Tuberculosis
STD/STI:	Sexually Transmitted Disease/Infection
WHO:	World Health Organization
HPV:	Human Papilloma Virus
HIV:	Human Immunodeficiency Virus
HSV:	Herpes Simplex Virus
TLR:	Toll Like Receptors
NOD-NLR:	Nucleotide Oligomerization Domain Like Receptors
RIG-RLR:	Retinoic Acid-Inducible Gene-I-Like Receptors
CLR:	C-Type Lectin Receptors
PAMP:	Pathogen Associated Molecular Patterns
PRR:	Pattern Recognition Receptors
IL:	Interleukins
CST:	Community State Type

CRH:	Corticotrophin-Releasing Hormone
HRT:	Hormone Replacement Therapy
PTB:	Pre-term Birth
GBS:	Group B Streptococcus
EIA:	Enzyme Immunoassays
PID:	Pelvic Inflammatory Disease
TV:	Trichomonas vaginalis
PCR:	Polymerase Chain Reaction
DNA:	Deoxy Ribo Nucleic Acid
RNA:	Ribo Nucleic Acid
AIDS:	Auto Immune Disease
NAT:	Nucleic Acid Test
IM:	Intra-Muscular
RVVC:	Recurrent Vulva-Vaginal Candidiasis
FDA:	Food And Drug Administration
ART:	Antiretroviral Therapy
GRAS:	Generally Recognized as Safe
TUEC:	Tezpur University Ethical Committee
ICMR:	Indian Council of Medical Research
EDTA:	Ethylenediamine Tetra Acetic Acid
SDS:	Sodium Dodecyl Sulfate
TE:	Tris-EDTA
BLASTn:	Nucleotide Basic Local Alignment Search Tool
MRS:	deMan Rogosa Sharpe
ROS:	Reactive Oxygen Species
NO:	Nitric Oxide
H_2O_2 :	Hydrogen Peroxide
TNF:	Tumour Necrosis Factor
GI:	Gastro-Intestinal Tract
SCFA's:	Short Chain Fatty Acid
PB:	L. crispatus Cells Bead
CB:	CMC-alginate Bead
FTIR:	Fourier Transmission Infrared Spectroscopy
SEM:	Scanning Electron Microscope
EDX:	Energy Dispersive X-ray

NWF:	Non-Woven Fabric
ZOI:	Zone of Inhibition
ZOC:	Zone of Clearance
PBS:	Phosphate Buffered Saline
OD:	Optical Density
Hrs/h:	Hours
Secs	Seconds
Min:	Minutes
RPM:	Rotation Per Minute
nm:	Nano-Meter
°C:	Centigrade
%:	Percentage
HCl:	Hydrochloric Acid
N:	Normal
nM	Nano-Molar
μM:	Micro-Molar
mM:	Milli-Molar
M:	Molar
μL:	Micro-Litre
mL:	Milli-Litre
L:	Litre
ηg:	Nano-Gram
µg/mcg:	Micro Gram
G:	Gram
AU:	Absorbance Unit
NaOH:	Sodium Hydroxide
YPD:	Yeast Potato Dextrose Broth
RPMI:	Roswell Park Memorial Institute
SC:	Secondary Colonization
TC:	Tertiary Colonization
XTT:	2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5- Carboxanilide
NaCl:	Sodium Chloride
NA:	Nalidixic acid
COT:	Co-Trimoxazole

K:	Kanamycin
NX:	Norfloxacin
FLC:	Fluconazole
IT:	Itraconazole
mm:	Milli-Meter
cm:	Centi Meter
R:	RPMI
RM:	RPMI + MRS broth
RW:	RPMI + Water
G:	RPMI+ LGCFS
C:	RPMI + LCCFS
V:	RPMI + LVCFS
PAR:	Protease-Activated Receptors
AMP:	Anti-Microbial Peptide
MAPK:	Mitogen-activated protein kinase
ATCC:	American Type Culture Collection
GC-MS:	Gas Chromatography Mass Spectrometry
LC-MS:	Liquid Chromatography Mass Spectrometry
LB:	Luria-Bertani
PDB:	Potato Dextrose Broth
bp:	Base Pair
TET:	Tetracycline
E:	Erythromycin
GEN:	Gentamicin
CD:	Clindamycin
AMC:	Augmentin
OF:	Ofloxacin
C:	Chloramphenicol
CFM:	Cefixime
CTX:	Cefotaxime
NIT:	Nitrofurantoin
CXM:	Cefuroxime
CV:	Crystal Violet
IVF:	In-Vitro Fertilization
MIP:	Macrophage Inflammatory Protein

RANTES:	Regulated On Activation, Normal T Expressed and Secreted
LPS:	Lipo-Polysaccharide
EMMPRIN:	Extracellular Matrix Metallo-Proteinase Inducer
MCT:	Monocarboxylate Transporter
MMP-8:	Matrix-Metallo-Protease
SLPI:	Secretory Leukocyte Peptidase Inhibitor
NGAL:	Neutrophil Gelatinase-Associated Lipocalin
NF-κB:	Nuclear factor kappa B
CVF:	Cervical-Vaginal Fluid
EPS:	Exopolysaccharides
MBL:	Mannose Binding Lectin
L-type:	Legume Type
INF:	Interferon
RCT:	Randomised Clinical Trials
Ae:	Adverse Events
SAE:	Serious Adverse Events
DPPH	2,2-diphenylpicrylhydrazyl radicals
Ig	Immunoglobulin
SAP	Secreted Aspartyl Protease
MIP	Macrophage Inflammatory Proteins
RB	Reticulate Body