"If we meticulously keep on working upon the known things, Allah will grant us knowledge of the unknown things."

----Abba

To my Father, a gem of a person, a true philanthropist, and above all a very affectionate Father.

This thesis is dedicated to my father, who have encouraged me to do Ph.D. and always inspired me to be honest and not to take hardships seriously and keep going.

DECLARATION BY THE CANDIDATE

The candidate certifies that the thesis entitled "Near-Infrared based Solutions for Quality Assessment during Manufacturing and Storage of a Ready to Eat Rice" submitted to the School of Engineering, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in the Department of Food Engineering and Technology is a record of research work carried out by me under the supervision of Prof. Manuj Kumar Hazarika.

All assistance received from various sources has been appropriately acknowledged. No part of this thesis has been submitted elsewhere for the award of any degree.

Date:

Place:

Tezpur University

Shagufta Rizwana

Stagusta Rzwana

Registration No.: TZ189552

Roll No.: FEP19101

Department of Food Engineering and Technology

School of Engineering, Tezpur University

Napaam 784028, India

TEZPUR UNIVERSITY

Certificate of the Supervisor

This is to certify that the thesis entitled Near Infrared based Solutions for Quality Assessment during Manufacturing and Storage of a Ready to Eat Rice submitted to the School of Engineering, Tezpur University in part fulfillment for the award of the degree of Doctor of Philosophy in Food Engineering and Technology is a record of research work carried out by Ms. Shagufta Rizwana under my supervision and guidance.

All help received by her from various sources has been duly acknowledged.

No part of this thesis has been submitted elsewhere for award of any other degree.

Signature

MKHazarika Manuj Kumar Hazarika

Professor

School of Engineering

Dept. of Food Engineering and Technology

Tezpur University

DECLARATION BY THE CANDIDATE

The candidate certifies that the thesis entitled "Near-Infrared based Solutions for Quality Assessment

during Manufacturing and Storage of a Ready to Eat Rice" submitted to the School of Engineering,

Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in the

Department of Food Engineering and Technology is a record of research work carried out by me

under the supervision of Prof. Manuj Kumar Hazarika.

All assistance received from various sources has been appropriately acknowledged. No part of this

thesis has been submitted elsewhere for the award of any degree.

Date:

Place: Tezpur University

Shagufta Rizwana

Shagufta Rzwana

Registration No.: TZ189552

Roll No.: FEP19101

Department of Food Engineering and Technology

School of Engineering, Tezpur University

Napaam 784028, India

TEZPUR UNIVERSITY

Certificate of the Supervisor

This is to certify that the thesis entitled **Near Infrared based Solutions for Quality Assessment during Manufacturing and Storage of a Ready to Eat Rice** submitted to the School of Engineering, Tezpur University in part fulfillment for the award of the degree of Doctor of Philosophy in **Food Engineering and Technology** is a record of research work carried out by **Ms. Shagufta Rizwana** under my supervision and guidance.

All help received by her from various sources has been duly acknowledged.

No part of this thesis has been submitted elsewhere for award of any other degree.

Signature

Manuj Kumar Hazarika

Professor

School of Engineering

Dept. of Food Engineering and Technology

Tezpur University

Acknowledgments

I would like to acknowledge the support of all the people who have helped me reach this far in my Ph.D. journey. Firstly, my Ph.D. supervisor Prof. M.K. Hazarika for his guidance and encouragement throughout the execution of the project.

I thank the faculty members, my DRC committee, and the technical and office staff of the Department of Food Engineering and Technology, TU for their guidance and support. I would also like to express my gratitude towards my DC members for their valuable suggestions. I would also like to thank the All India Council for Technical Education for providing me with financial assistance with the National Doctoral Fellowship and the staff of the AICTE cell of Tezpur University, Mr. Debojit Sharma for carrying out our scholarship-related tasks and addressing our grievances.

Special thanks to Mr. Pankaj Hazarika and Mr. Anjan Nath for their kindness and generosity in providing me with samples every harvest. I am grateful for the help I received from other departments, Prof. Santanu Sarma, Head ECE, and his M. Tech Student Miranjyoti Buragohain for helping me with the electronics part; Jayanta Gogoi for his support in configuring the triad sensor program; Dr Nima D. Namsa, Assistant Prof., MBBT for allowing to use the lab and his Ph.D. Scholar Anutee Doley, for her complete help in the gel electrophoresis study.

Ph.D. is tough, but it is less tough if people around you are helpful. My friends and batchmates are always there to support and I owe them a big thank you! Beatrice, Ditimoni, Parismita, Payel, and Somya were always there for me, taking care of me in every possible way. My other batchmates and juniors too have always been kind and helpful towards me. Also, I thank my lab-mates who are supportive people and created a healthy work environment. Sourav Sir, Makeini Di, Sonam Di, Tridisha Baa, Ninja Baa, Swapnil Bhaiya, Arun Sir, Zola Baa, and Shikhapriyom, thank you all.

Lastly, but mostly my parents, my family, my loved ones, and friends who are constantly there to encourage me, support me, also hear me nag about every problem. Abba and Maa are the ones who encouraged me to pursue a Ph.D. and I am grateful to them for sacrificing a lot for our education. My sisters: the elder one for helping me out when I am broke, the younger one for the pressure to work hard for her, and my brother-in-law for taking care of my parents and my family. My entire family, my aunts, uncles, and cousins for their encouragement. My grandparents: Dadi, Nani, Dada, and Nana who aren't here in this world would be happier than everyone. Keerthana who is up above for her selfless help towards me. Sanju, Surabhi, Deepsikha, Kavi, Garima Baa, and all my wonderful bunch of girls who have motivated me to carry on despite their struggles, and Dipangkar for the constant support and encouragement in everything. Throughout my stay at this university, people were kind to me and helped me. Alhamdulillah, I can complete my Ph.D. work because of my father's blessings and his encouragement and support.

List of figures

Fig 1.1: Major analytical bands and relative peak positions for prominent near-infrared	4
absorptions	4
Fig. 1.2: Types of ML	5
Fig. 2.1: Steps involved in ML	25
Fig. 3.1: Process flowchart describing the overall framework of the work	46
Fig. 3.2: Chokuwa paddy of Assam	47
Fig. 3.3: Komal Chaul produced from Chokuwa rice	47
Fig. 3.1.1: Flow diagram for soaking kinetics	52
Fig. 3.2.1: Overall framework of PAT based spectral system	62
Fig. 3.2.2: Portable NIR sensing device (SCiO 1.2, Consumer Physics)	63
Fig. 3.2.3: Top view of sample holder	63
Fig. 3.2.4: NIR sensing device with sample holder	63
Fig. 3.2.5: Overall methodology for calibrating the NIR spectra for moisture content	66
prediction during soaking	00
Fig. 3.2.6: Overall methodology for calibrating the NIR spectra for DG prediction	67
during steaming	
Fig. 3.2.7 Schematic diagram of Triad sensor interfaced with Arduino Mega board	68
Fig. 3.2.8: Overall methodology for calibrating the NIR spectra for moisture content	
prediction during drying	69
Fig. 3.4.1: Flowchart of a PLS process	76
Fig. 4.1.1: Hydration behavior of dehusked <i>Chokuwa</i> rice at various temperatures	80
Fig. 4.1.2: Peleg constants estimation plots	81
Fig. 4.1.3: Moisture estimation using Midili Kucuk equation and comparison	82
Fig. 4.1.4: Change in volumetric concentration during drying	84
Fig. 4.1.5: Fractional absorption of moisture with respect to time for soaking at 60 $^{\circ}$ C	84
Fig. 4.1.6: Mass diffusivity vs moisture content plot at 60 °C	84
Fig. 4.1.7: Color mapping of concentration of water radially along the polar coordinates	85
from surface to core at 60 °C	0.5
Fig. 4.1.8: Mass diffusivity vs moisture content at 50 °C	86
Fig. 4.1.9: Mass diffusivity vs moisture content at 40 °C	87
Fig. 4.1.10: Rate of gelatinization at different pressures for Komal Chaul at different	87
treatment time	07
Fig. 4.1.11: Rate constant estimation plots	88

Fig. 4.1.12: Degree of gelatinization against time for measured and predicted at 0.15	89
MPa	0)
Fig. 4.1.13: Moisture content at different pressures of steaming	91
Fig. 4.1.14 Change in moisture content w.r.t time (a) at 60, 50 and 40 $^{\circ}$ C during drying	91
of steamed brown rice.	91
Fig. 4.1.15: Predicted values of moisture content Page equation and comparison	94
Fig. 4.1.16: Predicted values of moisture using the developed Midili Kucuk equation	96
Fig. 4.1.17: Fractional absorption of moisture with respect to time for drying at 60 $^{\circ}\mathrm{C}$	98
Fig. 4.1.18: Reflectance values against wavelength for the soaking process at 60 $^{\circ}\mathrm{C}$	99
Fig. 4.1.19: Normalized integrated absorbance vs time for soaking spectra at 60 $^{\circ}\mathrm{C}$	99
Fig. 4.1.20: Reflectance values against wavelength for steaming process at 0 MPa	101
Fig. 4.1.21: Normalized integrated absorbance vs time for steaming spectra at 0 MPa	101
Fig. 4.1.22: Reflectance values against wavelength for drying process at 60 $^{\circ}\mathrm{C}$	102
Fig. 4.1.23: Reflectance values against wavelength for drying process at 60 $^{\circ}\mathrm{C}$	102
Fig. 4.2.1: Raw reflectance against wavelength during soaking	103
Fig. 4.2.2: Validation and hyper-tuning of LVs	104
Fig. 4.2.3: Cross-validation of the developed PLS model	104
Fig. 4.2.4: Principal Component Analysis	105
Fig. 4.2.5: Cross-validation plot for PCR	105
Fig. 4.2.6: Confusion matrix for the prediction classes	106
Fig. 4.2.7: Class counts for each class	107
Fig. 4.2.8: Reflectance values against the NIR wavelength range	107
Fig. 4.2.9: Preprocessed spectra of the raw spectra	108
Fig. 4.2.10: Error measurement for different no. of pls components	109
Fig. 4.2.11: Cross validation plot of developed model	109
Fig. 4.2.12: Reflectance values against the wavelength	111
Fig. 4.2.13: Error measurement for hyper tuning	111
Fig. 4.2.14: Cross-validation plot for test data	111
Fig. 4.2.15: Comparison of classification models	112
Fig. 4.2.16: Confusion matrix for the test dataset	112
Fig. 4.3.1: Cooking behavior with respect to storage time	113
Fig. 4.3.2: Amylose content in aged and unaged rice	114
Fig. 4.3.3: Protein content in aged and unaged rice	114
Fig. 4.3.4: Fat content in aged and unaged rice	115
Fig. 4.3.5: Textural parameters of aged and unaged rice	115
Fig. 4.3.6: RVA plot of aged and unaged rice	116

Fig. 4.3.7: FTIR plot of aged and unaged rice	117
Fig. 4.3.8: XRD plot of aged and unaged rice	117
Fig. 4.3.9: Water uptake behavior of sample stored at 4 °C	118
Fig. 4.3.10: Viscograms at different temperature and time	120
Fig. 4.3.11: Fig. 4.3.12: PCA scree plot of viscogram data	120
Fig. 4.3.12: PCA biplot of viscograms at different at different temperature and time	121
Fig. 4.3.13: Differential Scanning Calorimeter plots at storage temperature of 37 °C and 4 °C	122
Fig. 4.3.14: Comparison SEM images of Komal Chaul after lower temperature image	123
Fig. 4.3.15: Comparison SEM images of <i>Komal Chaul</i> after higher temperature image	123
Fig. 4.4.1: Raw reflectance vs wavelength	124
Fig. 4.4.2: Pre- processed spectra	125
Fig. 4.4.3: Hyper tuning the Latent variables	125
Fig. 4.4.4: Cross validation plot of test data of ageing time	125
Fig. 4.4.5: Fitting parameters for optimizing features	126
Fig. 4.4.6: Optimal features selection	127
Fig. 4.4.7: Cross-validation plot after optimization	127
Fig. 4.4.8: Raw reflectance vs wavelength	128
Fig. 4.4.9: Cross-validation plot of test data of cooking time	128
Fig. 4.4.10: Comparison of classification of ageing time on a 1-month basis	130
Fig. 4.4.11: Confusion matrix of classification of aging time on a 1-month basis	130
Fig. 4.4.12: Comparison of classification of ageing time on a 3-month basis	130
Fig. 4.4.13: Confusion matrix of classification of ageing time on a 3-month basis	131
Fig. 4.4.14: Comparison of classification of ageing time on a 6-month basis	131
Fig. 4.4.15: Confusion matrix of ageing time on a 6-month basis	131

List of notations

$ ho_b$	Bulk density
$ ho_t$	True density
M	Moisture
k_1	Peleg's rate constant
k_2	Peleg's capacity constant
M_i	Initial moisture content
M_e	Equilibrium moisture content
MR	Moisture ratio
C_A	Volumetric concentration
C_{As}	Volumetric concentration in saturation
C_{A0}	Initial volumetric concentration
β	Rate constant estimated using experimental data
$ ho_{\scriptscriptstyle W}$	Volume of pure water
$ ho_s$	Volume of pure solid
d_p	Equivalent diameter
$D_{ ho_A}$	Diffusion coefficient
κ	Arbitrary constants used in Fick's diffusion
k_f	Arbitrary constants used in Fick's diffusion
k	First order rate constant
D_G	Degree of gelatinization

^{**} A few arbitrary constants for the empirical drying model are kept as same as literature and those have been reported accordingly.

List of abbreviations

ANFIS Adaptive Neuro Fuzzy Inference System

ANP Aged Non-Parboiled AP Aged Parboiled

ANN Artificial Neural Network BP-ANN Back propagation-ANN

BiPLS Backward PLS

CFTRI Central Food Technological Research Institute

CART Classification and Regression Tree
CNN Convolutional Neural Network
DSC Differential Scanning Calorimetry

db Dry basis

EMC Equilibrium moisture content EDM Euclidean distance measure

FiPLS Forward PLS
GI Glycemic index
KNN K-Nearest Neighbors

LS-SVM Least-squares support vector machines

LDA Linear Discriminant Analysis

LR Logistic Regression
LSTM Long short-term memory
ML Machine Learning
m.c. Moisture content

MLP-ANN Multilayer Perceptron ANN

NB Naïve Bayes NIR Near Infrared

NIRS Near Infrared Spectroscopy

PLS Partial Least Square PLSR PLS regression

PCA Principal component analysis
PAT Process Analytical Technology

RF Random Forest
RVA Rapid Visco Analysis
RNN Recurrent Neural Network

SIMCA Soft Independent Modeling Class Analogy

SAM Spectral angle measure
SCM Spectral correlation measure
SVM Support Vector Machines
UANP Unaged Non-Parboiled
UP Unaged Parboiled

UVE-SPA-LS-SVM Uninformative variable elimination (UVE) and successive

projections algorithm (SPA) LA-SVM

wb Wet basis