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Chapter-II 

Review of Literature 

2. Review of Literature 

This chapter consists of references of the work that has helped in better understanding of the 

concept of processing rice, ageing of rice, application of NIRS for quality assessment, NIR-

based process analysis, ML techniques for predictive modeling, low-cost portable sensors, and 

other similar topics. 

2.1 Parboiling of rice 

Production of high-quality safe food is a concern for the food industries. Likewise, rice 

industries have a huge demand to meet the consumption of people. Rice goes through a process 

of direct milling of paddy after drying to a moisture level for safe storage, or else parboiling. 

Parboiling involves soaking, steaming, and drying. Each step of this process is crucial in 

manufacturing good quality rice [1]. 

The basic process of parboiling has remained the same throughout the years. Soaking is done 

for the diffusion of water along with nutrients into the endosperm, steaming for gelatinization 

of the starch, and lastly drying to a storable moisture content [2]. However, the variation in 

conditions differs in accordance with the requirement of the final product [3]. It is cooked or 

processed in different ways, and every task and all parameters have a major impact on its eating 

quality. In addition, geographical location has impacts on rice characteristics [4]. For example, 

East Asian countries mostly prefer short sticky rice, whereas South Asians prefer parboiled 

sticky rice [5]. Rice grown in the state of Assam or northeastern states are mostly of medium 

size and bold or slender in shape distinguishing themselves from the rice preferred and grown 

in other parts of the country, which are mostly long in size and slender in shape. 

Parboiling of rice has been found to increase the cooking time. The reason for this is due to the 

structural changes during parboiling i.e., the internal fissures and cracks in endosperms are 

filled making the structure more compact [6]. Treatment like instant controlled pressure drop 

has a very high impact on the quality attributes like less breakage during milling and higher 

water diffusion in soaking which is very desirable in terms of cooking quality [7]. The pressure-

parboiling process reduces the processing time further. 
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Paddy is usually soaked at room temperature for roughly 72 hours during a single boiling 

process. Paddy that has been soaked, was dried by steaming after the soak water has been 

drained. Although this method is inexpensive and simple to use, there is no safeguard against 

microbial fermentation, which could give the product an unsavory flavor. The double boiling 

procedure includes a step of steaming before placing the paddy in the soak water, which heats 

the water. The soaking process is then repeated at ambient temperature, but for a shorter period, 

around 36 hours. The unsoaked water is drained, then steamed and dried. While the shortened 

soaking time and the ability to achieve an aged texture are advantages over a single steaming 

operation, the possibility of fermentation leading to off-flavor development remains as well as 

the chance of grain bursting [8]. The CFTRI procedure, which is a faster process with only about 

3 hours of soaking, is performed at a soak water temperature of about 70°C, a temperature close 

to the gelatinization temperature. After soaking, the normal process of draining the soaking 

water, steaming, and drying follows. While this process offers benefits such as reduced soaking 

time and elimination of potential off-odor development, the process is expensive and operates 

only in batch mode [9]. 

In Africa and South Asia, for example, fuelwood and direct rice husk combustion have been 

the main sources of energy for parboiling and steaming. Many local parboilers rely primarily 

on solar energy to dry their paddy. However, medium-scale parboiling has also been done in 

parts of Asia using a combination of sun and mechanical drying approaches [10]. Kwofie et al. 

[10] reviewed the concept, systems, energy supply, energy consumption, and effects of the use 

of energy on the quality of the product of the parboiling process. As per the study, the wide 

variation between theoretical parboiling energy demand and therefore the laboratory and field 

measuring were considered a sign of inefficient systems. Parboiling of de-husked rice or brown 

rice reduced energy consumption to 40%, thus saving the tough drudgery and resources of small 

manufacturers, making it a more economical process, and moreover enhancing the organoleptic 

properties [11]. An investigation based on the utilization of superheated steam-fluidized bed 

drying to generate fully parboiled glutinous rice in just one method as opposed to two 

conventional methods (steaming and drying at the same time) gave a better head rice yield, 

lighter color, and softer texture [12]. 

Soaking is an important and foremost step in parboiling. Rice starches under normal conditions 

have a moisture content of about 12-14% (wb). During soaking, cold water can enter the 

amorphous starch region without disturbing the micelle, and a maximum water content of 30%
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(wb) is reached. On allowing the rice mixture to be heated, the intermolecular hydrogen bonds 

are broken, and the granules absorb more water and swell. This causes the loss of birefringence. 

This leads to the leaching of amylose and the formation of gel while steaming rice [13]. 

Isothermal soaking experiments were carried out at different temperatures in different studies. 

The soaking temperature on rough rice was checked at 65, 70, and 75 °C for 3 h, where the 

higher temperature sample had more influence on the pasting temperature [14]. Water uptake 

was also studied for brown rice within the soaking temperatures of 25, 35, 45, 55, and 65 °C, 

which gave a clear idea that diffusion coefficients were a strongly increasing function of 

moisture content [15]. However, it was suggested that soaking above the temperature of 60 °C 

facilitates gelatinization over hydration [16]. Cheevitsopon and Noomhorm [17] performed 

diffusion kinetics of water at soaking temperatures ranging from 30 to 60 ℃ and found the 

diffusion coefficient to be ranging from 5.30 x 10-11 to 1.56 x 10-10 m2/s. 

Soaking lets hydration of the kernels fill the fissures inside the kernels, steaming involves heat 

treatment that causes starch gelatinization. Dietary starches are a mixture of two structurally 

distinct components: amylose and amylopectin. Amylose and amylopectin are arranged 

radially inside the starch granules, containing both non-crystalline and crystalline structures in 

alternate layers. In the case of undamaged starch grains, insolubility is high in cold water but 

can absorb water reversibly if the temperature is increased and starts leaching out in water. As 

a result, when heated with water, starch granules undergo leaching and start forming gel and 

this process is called gelatinization. Therefore, gelatinization can be defined as a method in 

which starch particles are heated in water until they break, collapse, and produce a paste or gel. 

In alternative words, gelatinization is the breaking of the molecular order among the molecules. 

The kernels start to swell speedily and lose birefringence at a particular temperature which is 

known as gelatinization temperature. The gelatinization temperature of rice is generally around 

65-73 °C [18]. A study comparing both the gelatinization temperatures and endothermic energy 

of brown, and rice-milled flours with high, moderate, and low amylose contents revealed that 

brown rice flour generally had higher gelatinization temperatures than milled rice flour. The 

same investigation also stated that mean endothermic energy is more with a decrease in amylose 

content [19]. 

Drying is the last step and most crucial step for proper storage. Drying is one of the oldest 

phenomena for food preservation that involves both heat and mass transfer simultaneously [20]. 

The primary steps of parboiling, which involves soaking and steaming, can be categorized as  
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moisture absorption processes. The purpose of drying is to remove the moisture from the brown 

rice for further storage without any spoilage. The desirable moisture content is 12-13% (wb) 

[20]. The color of cooked rice was affected by drying temperature, but it insignificantly affected 

shrinkage and the rehydration capability of dried cooked rice. 

Dutta and Mahanta (2014) reviewed the traditional status of the rice varieties in Assam. As 

reported, the Indian state of Assam produces a vast range of rice types, some of which are 

conventionally processed into exotic parboiled low-amylose rice products such as Hurum, 

Komal Chaul, Bhoja chaul, and Sandahguri, which have both ethnic and commercial 

significance [21]. They had optimized a laboratory scale method for developing ready-to-eat 

Komal Chaul-based products that involved initial hot soaking of paddy for 1 and 3 min and 

tempering by allowing it to cool temperature for 18 h, pressure steaming for 20 min, followed 

by drying at room temperature for 48 h and finally milling [22]. Wahengbam and Hazarika 

(2018) suggested a brown parboiling method for the production of Komal Chaul; this method 

implied soaking of dehusked Chokuwa at 60 °C for 90 min, open steaming of 20 min or pressure 

steaming, followed by drying to a moisture content of 12% (wb) [23]. 

Mohapatra and Rao, (2005) reported the influence of cooking qualities on the degree of milling 

like with a 3.3% increase in the degree of milling optimum cooking time decreased by 4 min. 

The degree of milling showed an increased effect on the physical properties of rice which is due 

to the removal of the bran layer. Grain thickness correlated in a decreasing manner with 

optimum cooking time, and cohesiveness and positively with water uptake ratio, volume 

expansion ratio, length expansion ratio, hardness, and adhesiveness, however, amylose content 

has a negative impact on optimum cooking time, hardness adhesiveness, and positive impact 

on water uptake ratio, volume expansion ratio, length expansion ratio, cohesiveness, and 

adhesiveness [24]. 

So, therefore an easy-to-handle and reliable technology for monitoring the stages of parboiling 

is required for quality products. Earlier, mathematical models were used to estimate overall 

processing conditions for the desired palatability of rice. Models are required to optimize the 

cooking time and water concentration for the best cooking. Earlier works give us ideas about 

how kinetic models like shrinking core models, diffusion equations, and empirical models 

mapped to image data provide us an insight into the intrinsic reactions while cooking, thus 

making us understand cooking fundamentally [25]. ML techniques like Principal Component 

Analysis (PCA) ensembled with polytomous logistic regression can help us predict the sensorial 

stickiness of rice in terms of textural attributes which were mapped with apparent amylose 
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content, gelatinization temperature, and rapid visco analysis (RVA) parameters [26]. Reports 

have been found that use artificial intelligence-based systems for the development of prediction 

of soaking characteristics. It helps us to characterize and improve the soaking process, build 

grain processing machinery, and forecast water absorption as a function of temperature and 

time. The models that perform very well for estimating hydration behavior are Adaptive Neuro 

Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN), and Variable diffusivity 

approach. ANFIS is the amalgamation of neural network and fuzzy logic where it incorporates 

learning abilities from neural networks and inference capabilities like modifying the 

membership function for desirability. The hydration behavior of wheat can be modeled by an 

Adaptive neuro-fuzzy inference system (ANFIS), one of the most widely used artificial 

intelligence simulation frameworks [27]. Recently, it was found that ANN outperformed other 

predictive models for determining the hydration rate [28]. Also, the diffusivity approach is 

studied for better fundamental understanding [29]. 

2.2 Ageing of rice 

Aged rice is preferable due to its low glycemic index (GI) rice. Low GI type of food is usually 

related to a lower postprandial response of glucose and insulin. Reports suggest that consuming 

aged rice would have a lower risk of diabetes mellitus [30]. Although rice ageing is not fully 

understood, the noticeable factors need to be studied with the eating and cooking quality. 

Rice is generally devoured as cooked rice, there's a prerequisite for the capacity of rice. As a 

result, rice gets matured which leads to physicochemical changes. To be exact, rice maturing 

begins sometimes near harvesting [31]. Prior reports had affirmed rice composition, pasting 

properties, thermal properties, and texture are influenced by aging [32, 33, 34]. Lipids, protein, 

and starch changes moreover take place but at a negligible rate as portrayed by Chrastil and 

Zarin, (1992) [35]. The normal atomic weight of peptide subunits of oryzenin increments amid 

capacity, the rate of higher atomic weight increments whereas the rate of lower atomic weight 

diminishes. 

Ageing leads to changes in textural properties. As reported by Zhou et al. [36] amylograph 

peak viscosity was found to be higher in new rice, whereas in other cases it was totally diverse. 

After an initial increase at the primary six months, the setback viscosity started to diminish 

over the three-year period of study. Pasting properties, color, flavor, and composition change 

while ageing, but there were no significant changes found in the textural and viscometrical 

parameters at different packaging conditions. 
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Changes during ageing were studied at 4 ℃ and 37 ℃ by Zhou et al. [34]. At 37 ℃, the RVA 

peak was quite high, suggesting a quick ageing process. Coarser morphology for SEM at 4℃ 

compared to 37 ℃. Consequently, the ageing process decreased the gruel solid mass into the 

residual cooking water, further confirming that the starch grains in the aged rice grains caused 

less leaching of amylose and moreover less hydration and swelling. Cell wall residue analysis 

indicated that rice stored at higher temperatures caused a significant increase in the amount of 

cell wall residue throughout storage, which might be due to the cell wall structure of rice grains 

ageing and becoming more lignified. Thus, it is assumed that the ageing method ends up in the 

cell walls turning more strengthened and lignified, which makes the rice grain more organized 

in its structure and later reduces starch granules' disruption and molecules' natural process 

throughout the cooking. 

Parboiling seldom changes the order of the helical structure, side chain distribution, or the 

double helix structure, however, crystallinity is affected by parboiling. A study on the multi-

scale structural changes and in vivo digestibility of parboiled rice reported that the crystallinity 

changed from A to A+V or B+V relative crystallinity decreased by 24% approximately. The in 

vivo study also indicated that parboiling significantly reduced the glycemic index of rice to a 

medium level [38]. Furthermore, in the process of ageing, the rice structure gets progressively 

organized and reinforced. According to previous work [39], the RVA and Differential Scanning 

Calorimetry (DSC) data indicated that rice aged faster at higher temperature storage. This was 

due to the reason that in aged rice the starch granules were less likely hydrated and swollen. 

Some reports cite the acceleration of ageing in rice is due to the presence of endogenous amylase 

enzymes. Studies also suggested that the presence of oryzenin enhanced ageing giving more 

rigidity to the starch structure. Interactions between starch granules and protein molecules give 

the granule stiffness or strength in aged rice samples because of increased protein disulfide 

bridges and inter/intra protein molecule cross-linking. Prolamins and glutelin rice storage 

proteins were reported to decrease during ageing [40]. 

The starch content of rice is generally considered an intrinsic component; therefore, the change 

in starch content over time during rice aging is of little significance. According to Dhaliwal 

[41] and Cao et al. [42] enzymatic degradation of starch might occur during storage of aged
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rice. It was observed that aged rice had a slight increase in reducing sugar content, indicating 

the possibility of enzymatic degradation of starch during storage. 

In rice, the changes in its pasting properties, as measured with a thermo-viscometer and 

particularly by amylography, are one of the most sensitive indices of the ageing process. 

Changes in rice paste and thermal properties after storage have been extensively studied and 

the results imply that changes in rice paste, and thermal properties are strongly dependent on 

storage temperature and storage time. In rapid visco analysis, breakdown viscosity, and peak 

viscosity are the maximum sensitive indices for comparing the rice ageing process [43, 32]. 

Reduced breakdown and gradual disappearance of a well-defined peak in aged samples were 

the most notable effects of ageing. The gelatinization kinetics study confirmed that better 

temperature storage resulted in a surge within the breaking factor temperature for the aged rice 

when compared to its clean rice. The breakdown point divides the gelatinization technique into 

regions: disruption of the amorphous vicinity and crystalline vicinity [36, 44]. 

Environmental factors like temperature and moisture are dominant factors of rice yellowing. 

Yellowness indicates primary and secondary metabolism. The upregulation of flavonoids is the 

direct cause of rice yellowing. Aeration and cooling can prevent rice from yellowing during 

storage [45]. Airtight storage of rice appears to be a more practical and beneficial way to 

maintain rice quality and control insect mortality during storage. The use of hermetic storage 

has been proposed to lead to a safe, pesticide-free, and sustainable storage method suitable for 

rice seeds. Comparing the storage of rice in IRRI airtight bags or ordinary woven polyethylene 

bags at room temperature for 9 months and found that dry rice airtight storage could greatly 

improve the overall quality of rice, including insect mortality, gas content, moisture content 

and mass of thousands of grains, porosity, hardness, whiteness, total milled rice yield, brown 

rice yield, gelatinization temperature, amylose, crude protein, crude fat, free fatty acids and 

sensory characteristics [46]. 

2.3 NIRS and its application 

NIR spectra are electromagnetic frequencies in the range of 780-2500 nm. NIRS is usually 

preferred over conventional chemical analysis for its non-destructive nature and can easily 

generate spectrum from solid samples (both solid and liquid) without any initial treatment. The 

rapidness of this method has made speedy characterization possible without any use of 
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chemical, thus making it a reagent-free methodology when calibrated against the primary 

reference method [47]. 

The principle behind molecular spectroscopy is the fundamental vibration of molecules due to 

combination and overtone bonds, resulting in absorption or reflectance of light. The bonds that 

are recognized in the infrared region are OH, CH, CO, NH, and other covalent bonds. NIR 

absorption bands are also very wide and highly overlapped because they are the overtones and 

also orders of magnitude weaker than the fundamental bands [48]. 

NIRS is usually preferred for its non-destructive nature and can easily record spectra from solid 

and liquid samples without any pre-treatment [49]. Wider findings on proof of concept at the 

research level are more limited to research fields but NIR application has expanded to the food 

industry though very limited [50]. Unlike other non-destructive techniques, NIR is preferred for 

its cost-effectiveness. Its instrumentation involves simple mechanics and robust sensors making 

it suitable for online process analysis [51]. 

In fact, NIR is not a novel technique. It was first used in 1950 but was popularized by Karl 

Norris at the USDA in the 1970s. It was reported that in 1974 Canadian Grain Commission 

used the NIRS technique for protein estimation as an alternative to the Kjeldahl method. They 

saved a million dollars thus proving it to be a cost-effective method [47]. Back in 1995, 

Principal Component Regression was used to calibrate NIR spectra of salmon filets for 

estimation of moisture, protein, and fat [52], thus showing that multivariate analysis was used 

long back for calibrating spectral data. 

At present times, there are advancements in the technologies for instrumentation and it has 

resulted in the manufacturing of portable spectrophotometers that are able to give spectral data 

without much initial processing, making it better for rapid analysis [53]. It uses ML as a 

calibration tool to map a link of NIRS-based measurements into desirable extrinsic measures 

of food quality that use our smartphone as a visualizing medium for output. In this study, we 

plan to briefly discuss the applications of ML as an enabler for calibration and validation tools 

of NIR spectroscopy. This will surely give us insight into how we can apply ML techniques 

combined with NIR to provide better solutions to the food industry in quality analysis and 

process monitoring. 
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NIR spectroscopy has been used for food analysis for several reasons like a non-destructive, 

rapid response, cost-effective, and environmentally friendly. Here in this section, the recent 

application of ML techniques and their feasibility in food quality is discussed. 

NIRS in combination with the multivariate technique is a better alternative to laborious 

chemical analysis for the detection of solid adulterants like cocoa shells in cocoa powder. Data 

recorded in the range of 1100–2500 nm was acquired for all samples to perform detection as 

well as quantification analysis. The classification analysis performed by using PCA and partial 

least squares (PLS) discriminant analysis (PLS-DA) and regression analysis showed high 

accuracy [54]. 

Spectral data of milk obtained from a single and three detectors UV-Vis and FT-NIR 

spectrophotometers were used for classification based on the geographical origin of the sample. 

The study proposes to develop a spectral-based classification tool to avoid adulteration in milk 

using Artificial Neural Network (ANN). Due to the higher dimensionality of the data obtained 

from the 63 samples of cow milk, PCA was used to check if clusters were formed among 

different groups. The principal components were then used as inputs for the Feed-forward 

Multilayer Perceptron ANN (MLP-ANN). The best fit showed accuracy of 100% classification 

irrespective of the type of spectrophotometers [55]. A few years back, the classification model 

for distinguishing tea varieties from visible and NIR spectra in the range of 325-1075 nm was 

reliable with an accuracy rate of 100%. The technique involves feature extraction by wavelet 

transform method, dimensionality reduction using PCA, and finally, BP ANN using 8 PCs as 

inputs [56]. 

Generating artificial outliers in ensemble decision tree classifiers like Random Forest proved 

to be a better model than PLS-DA for segregating the data obtained from ATR-FTIR and NIR 

of adulterated and unadulterated samples. The spectra-based non-destructive technique 

combined with ML models proved to be a less time-consuming method [57]. 

Spectral angle measure (SAM), Spectral correlation measure (SCM), and Euclidean distance 

measure (EDM) are some metrics that can be used for distinguishing minute differences in 

spectral values. One such report is that those metrics models were applied to NIR data for 

melamine adulteration in milk. These methods of SAM, SCM, and EDM showed almost the 

same performances in terms of accuracy on melamine screening from milk powders thus, 

proving NIR hyperspectral imaging technique and spectral similarity analyses as an effective 

way to detect melamine adulteration in milk powders [58]. 
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Maturity index of mango was predicted based on NIR spectra in the wavelength range of 1200–

2200 nm, collected from 1180 mangoes from various states of India.  Multiple-linear regression 

(MLR) and partial least square (PLS) models were developed to predict the maturity index. A 

very good predictive PLS model was reported which uses the MSC data treatment in the 

wavelength range of 1600–1800 nm. Multiple correlation coefficients (R) for calibration and 

validation of PLS model were 0.74 and 0.68, respectively. Lower difference in standard errors 

of calibration (0.305) and prediction (0.335), indicated the potential of NIRS in non-destructive 

prediction of fruit maturity. [59]  

Work had been done on the classification of food powders with open set using a portable 

spectrometer with frequencies in the range of 450 to 1000 nm. In the research, it had classified 

indistinguishable eight food powders with CNN (Convolutional Neural Network) that hardly 

caught the naked eye. Their experimental results demonstrated the capability of powder 

analysis using a portable spectrometer with statistical techniques of ML as a tool [60]. 

The convenience and feasibility of a similar technique like NIR i.e., hyperspectral imaging was 

studied for the detection of adulteration in prawns by subjecting the spectra data to Least-

squares support vector machines (LS-SVM) for calibrating the gelatin percentage of prawn 

samples with their respective spectral data. For optimizing the wavelengths in the hyperspectral 

image analysis, the hybrid of Uninformative variable elimination (UVE) and successive 

projections algorithm (SPA) was applied to select the optimal values. The UVE–SPA–LS-SVM 

model gave quiet accuracy with a coefficient of determination (R2) of 0.965, thus showing it to 

be an efficient tool [61]. 

SVM and PLS-DA were applied on visible-NIR hyperspectral data to check the feasibility of a 

handheld NIR sensor for identifying cultivars of barley, chickpea, and sorghum of Ethiopian 

variety. The ML algorithms delivered an accuracy of 89%, 96%, and 87% for barley, chickpea, 

and sorghum respectively [62]. 

A recent study aims to show the potential use of a commercialized spectrophotometer for 

determining the damage level caused by Sunn Pest insects. The spectral range was (400–813 

nm) for Visible and for NIR wavelength range was 950–1636 nm. The calibration models based 

on PLS were found to be more accurate for higher damage percentages with an R2 value of 0.89 

[63]. 

Sprouted mung beans are generally preferred these days for their health benefits. Germination 



22  

and sprouting depend on the metabolic energy status. The metabolic changes during the 

development of mung beans under different energy statuses were investigated by obtaining the 

Nuclear Magnetic Resonance Spectra. PCA of the spectral data showed the formation of 

clusters among the elements of the same groups and the supervised data analysis tool 

orthogonal partial least squares- discriminant analysis OPLS-DA showed a fit close to 1 [64]. 

Portable NIR sensors in the range of 740-1070 nm, that can be connected to smartphones 

showed a rapid and nondestructive way for on-site evaluation of fruits and vegetables using 

ML models [65]. 

PLS with second derivative preprocessing was found to be quite reliable for evaluating the 

concentration of glucose, fructose, and sucrose from NIR spectra of bayberry juice [66]. 

Similarly, FT-NIR-based data for evaluating glucose and fructose percentage in lotus powder 

was done using calibration models constituted by interval PLS of forward (FiPLS) and 

backward (BiPLS), PLS regression (PLSR), back propagation-ANN (BP-ANN) and least 

squares-SVM (LS-SVM) [67]. 

Hyperspectral imaging data combined with textural measurements obtained from salted pork 

were calibrated against pH values. thirteen important features were selected using PCA that 

were later processed by the PLS regression method. Predictability was better with an R2 of 0.794 

for the test samples based on data fusion (spectra and texture), making it superior to the results 

based on other data alone. Thus, providing a statement that methods of data fusion of spectral 

and texture analyses give more robust prediction [68]. 

To investigate the quality of oil, total polar compounds (TPC), free fatty acid (FFA), and 

conjugated dienoic acid (CDA) are generally measured. A rapid determination method for 

quantification of TPC, FFA, and CDA was developed by obtaining the Vis-NIR spectra in the 

range of 350 – 1050 nm. The spectra were processed using PLS and leave one out cross-

validation that showed an accuracy in context coefficient of determination, R2 of 0.984 for 

TPC, 0.973 for FFA, and 0.902 for CDA [69]. 

Eggs are generally stored at room temperature. During storage, they undergo certain changes 

like thinning of albumen, weakening of the vitelline membrane, and an increase in the water 

content. Predicting these changes with respect to the storage period is critical to monitor the 

egg’s freshness. It has been proposed that PLS and ANN models can be used to determine the 

egg storage time using a low-cost portable NIR spectrophotometer [70]. In similar work related 
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to the storage time of pork and its spoilage, instead of regression, classification algorithms like 

LDA, k-NN, and SVM were used taking the principal components of the spectra as inputs [71]. 

MATLAB also provides us with a PLS Toolbox that can perform multivariate analysis. 

Freshness in cheese is a very important factor. A MATLAB program based on principal 

component regression was developed that could predict the critical day of storage i.e. shelf life 

of cheese by acquiring FT-NIR and FT-IR spectra [72]. 

2.4 NIR based PAT 

NIR technology is popular for its nondestructive nature. Also, NIR spectra are quite reliable 

predictors of changes occurring at the molecular level. Since drying involves changes in water 

molecules, NIR-based measurements can work well for predicting water content or water loss 

with respect to drying. There is a much need for an online quality prediction system. In simpler 

terms, the PAT system for ongoing moisture measurement during the process of drying for 

better quality after products. Since, NIR techniques are not specific in nature, apart from 

moisture content other quality parameters can be measured [73]. 

NIRS has shown to have a major scope in the food industry for its efficiency in process 

monitoring. It helps us in modeling a process by providing real-time analysis solutions [73]. 

Since fermentation is a complex process the process variables need to accurately be measured 

for delivering high-standard products. Grassi et al. [74] used multivariate curve resolution- 

alternating least squares (MCR-ALS) for mapping FT-NIR spectra, pH, and rheometric data 

with concentration at different stages of fermentation. The accuracy in terms of explained 

variance was around 99.9% and the lack of fit was 0.63665%. Another study quite elaborately 

explained how the based method helped in estimating the change in lactic acid fermentation 

with viscosity as reference data. NIR measurements were not only reproducible but also helped 

in quantifying the changes in the dynamic process of fermentation [75]. The alcoholic beverage 

industry also has a massive scope for NIR techniques. It has been used to study the factors 

affecting the fermentation process in beer [76]. Based on the polyphenolic profile, Spanish 

wines were distinguished using LDA, SIMCA, and SVM as ML tools [77]. 

NIRS has also been considered as a tool for non-contact interaction tool that helps in predicting 

the core temperature in liver pate during baking. Spectra acquired were in the range of 760- 

1250 nm and modeled using PLS [78]. NIR spectroscopy with an application of chemometrics 

has been regarded as a feasible method for online monitoring of meat [79]. The calibrated PLS 
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model which was pre-processed using standard normal variate was quite successful in 

determining the core temperature of fish during heating using NIR spectra [80]. Mark et al. 

[81] developed a continuous near-infrared spectroscopic (NIRS) measuring tool attached to a 

fluidized bed drier that had been implemented to gain all essential product information rapidly 

and simultaneously for online monitoring of the drying progress and finding of the desired 

drying endpoint. NIR spectroscopy was used to develop a quick and robust quality control 

system for an active pharmaceutical ingredient to support the information obtained through 

PAT monitoring of its manufacturing process. Collell et al. [82] used NIR technology for online 

determination of superficial aw and moisture content during the drying process of fermented 

sausages. A few examples like an NIR interference system for non-contact monitoring of the 

temperature profile of baked liver pate during baking, moisture content was also measured by 

near-infrared spectroscopy during storage of microwave-dried Yerba mate leaves, artificial 

intelligence-based systems for prediction of hydration characteristics of wheat and so on. A 

company named ‘Freund Vector uses NIR for drying technology and PAT for moisture 

estimation [83]. 

2.5 ML techniques for predictive modeling 

ML and artificial intelligence are trending topics in today’s technological world. Be it in the 

banking sector [84] or medicine [85], it has found enormous potential in several fields. In the 

field of bioinformatics, ML upholds a tremendous role in genomics, proteomics, system 

biology, and text mining [86]. ML application has been widely growing in management 

sciences for data mining [87]. An article published in (https://medium.com/app-affairs) site 

discusses briefly about the application of ML in our day-to-day life activities e.g. Virtual 

assistant (popularly known as Siri, Alexa, and Google Assistant), Video surveillance, Social 

media services, Search engine results, Online shopping systems and so on. 

It would be wrong to assume that in food analysis, ML techniques are only used for spectra 

calibration. There are other applications e.g., a multivariate analysis-based classification tool for 

predicting the cooking qualities of different rice ideotypes was proposed to be a convenient 

way of estimating cooking and eating quality making it useful for consumer preferences for 

further analysis. The data that were taken into consideration were viscosity, rheometric, and 

mechanical texture parameters [88]. Deep learning models like CNN form weight sharing 

architecture for visual data, RNN feedback recurrent for time series data and LSTM handles 

lags for time series data have proved to be highly reliable methods for sequence learning, 

https://medium.com/app-affairs
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recognition of visual data, and sub-division tasks to classify plant and for understanding 

physiology by using images of the plants [89]. 

We can describe machine learning as a part of artificial intelligence that learns from data and 

enables the computer to perform different tasks based on data. It is different from conventional 

programming where we define the method and get output; it is rather generating the method 

from the output (data). The property of the data points is called features [90]. ML process 

involves the methods shown in Fig. 1 [91]: 

 

 

 

 

 
Fig. 2.1: Steps involved in ML 

The different classes and subclasses of ML that can be used as calibration models are briefly 

discussed in Table 2.1. We can broadly classify ML techniques into supervised, unsupervised, 

and reinforcement learning. Supervised learning is for data that are labeled or whose outcome 

is known whereas unsupervised learning is for unlabeled data. Reinforcement learning allows 

acting based on a situation from data that are not predefined. Neural networks and deep learning 

are closely related to each other. 

ML techniques also provide us with statistical metrics to evaluate the execution of calibration 

models. The validation methods are briefly discussed in Table 2.2. Based on these parameters 

we can decide which the best calibration model is and how accurately it predicts the output 

with minimum error. It tells about the efficiency of the model. 

Preparation of data 

(Feature Preprocessing) 

Collection of data 

(different methods) 

Splitting the data 

(training and test) 

Algorithm selection 

(classification or 

regression 

Model 
Parameter 

tuning/Testing 

Evaluation on 

validation data 

Training of data 
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Table 2.1: Types of ML and their respective models 

Types of learning Techniques Models References 

Supervised 

 

 

 

 

 

 

 

 

 

 

 

 

 

Unsupervised 

 

 

 

Reinforcement 

Regression 

 

 

 

 

 

Classification 

 

 

 

 

 

 

 

Dimensionality reduction 

Clustering 

Trial and Error 

Simple regression 

Partial least square 

Ridge regression 

Lasso regression 

KNN regression 

Kernel regression 

Linear classifiers 

Logistic classifiers 

Decision trees 

Random Forest 

Naïve bayes 

Linear discriminant analysis 

Support Vector machine 

Principal component analysis 

Factor analysis 

K Means clustering 

Hierarchical clustering 

Monte Carlo 

Q learning 

State-action-reward-state- 

action 

[92] 

[93] 

[94] 

[95] 

[95] 

[96] 

[97] 

[98] 

[99] 

[100] 

[99] 

[101] 

[101] 

[102] 

[103] 

[104] 

[104] 

[105] 

[106] 

[107] 

 

 

Table 2.2: Statistical metrics for performance evaluation 
 

Statistical term Symbol 

used 

Description 

Coefficient of 

determination 

Euclidean distance 

Manhattan distance 

 

Classification Accuracy 

Precision 

 

 

Recall 

F1 score 

Mean Square Error 

 

Root Mean Squared 

Error 

Mean Relative Error 

Maximum Likelihood 

Estimation 

R2 

 

 

D 

|D| 

CA 

P 

R 

F1 

MSE 

RMSE 

MRE 

MLE 

It is described as the proportion of variance between the actual 

and predicted measurements. 

The perpendicular distance between two coordinates. 

It is the actual distance between two points measured along the 

axis. 

Ratio of accurately predicted units to total units. 

 

The ratio of True Positive (TP) to the sum of TP and False 

Positive (FP). 

True Positive (TP)/True Positive (TP)+ False Negative (FN) 

Harmonic mean of Precision and Recall. 

Average of the squared of errors (difference between estimated 

and predicted. 

Standard deviation between the estimated and predicted value 

 

Mean error values between predicted and estimated. 

Estimating the parameters of a probability distribution function 

that gives maximized value. 
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There are several reports on how ML supports NIRS. There are several literatures reporting the 

applicability of ML and spectroscopy in adulteration, identification, proximate evaluation, 

storage quality, process monitoring, and post-harvest analysis. The most widely used ML 

techniques are PCA, PLS, soft independent modeling class analogy (SIMCA), k- k-nearest 

neighbor, classification and regression tree, support vector machine, and random forest 

classifiers [78]. In this review, we are mainly focusing on the recent application of NIR and 

ML for food quality evaluation and process monitoring. 

It started in the year 1960 with the access of computers to scientists and at that time the NASA 

Mars mission required chemists to perform structural elucidation. Later, in the 1970s analytical 

chemistry merged with multivariate techniques and statistics. The term ‘Chemometrics’ was 

first used in the year 1972 which was earlier known as chemical pattern recognition. NIR 

calibration was one of the primary uses of these techniques. Later, with the advancement of 

science and technology, these techniques found a broad range of applications in the medical 

sciences and food chemistry sector. This is how the applications of ML techniques have 

emerged [108]. Chemometrics is another nomenclature for ML that involves multivariate 

analysis to extract information from chemical data. It involves the use of mathematics, 

statistics, and computation to select optimal procedures for chemical experiments. It is 

generally a process of multi-calibration of the chemical data to get a cause-effect relation with 

the analyzed parameters. One can’t deny the scope of chemometrics in the field of NIR 

spectroscopy. NIR spectroscopy, being a secondary technique, requires chemometrics for 

calibration purposes. Chemometrics methods have also been present as an alternative to 

chromatography [109]. Gatlier and co-researchers [110] used chemometric techniques to 

extract chemical information from spectral data of virgin olive oil. NIR spectroscopy combined 

with chemometric techniques was successful in differentiating powder from different brands 

available in the market [111]. 

2.6 Portable spectra based sensors 

At present times, there are advancements in the technologies for instrumentation and it has 

resulted in the manufacturing of portable spectrophotometers that can give spectral data without 

time consumption making it better for rapid analysis [53]. It uses ML as a calibration tool to 

map a link of near-infrared spectroscopy-based measurements into desirable extrinsic factors of 

analysis for quality that uses our smart-phone as a visualizing medium for output. 
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In this study, we plan to briefly discuss such applications of ML as an enabler for calibration 

and validation tools of NIR spectroscopy. This will surely give us insight into how we can 

apply ML techniques combined with NIR to provide better solutions to the food industry in 

quality analysis and as in process monitoring. 

The most used ML model for spectral data in food analysis is PLS followed by PCA. 

Additionally, the availability of Open-Source Programming languages like Python and R, has 

made the task quite accessible for all. Thus, we can say that the ML technique in combination 

with NIRS; can be extended in the field of food technology to provide better solutions in the food 

industry. 

2.6.1 Advantages of portable sensors for analysis purpose 

 

Portable devices with prior calibration using ML models can be a great boon for the purpose 

of analysis due to the various reasons such as  (i) rapid analysis (ii) on-site evaluation (iii) 

reagent-free technology (iv) cost-effective compared to bench-top equipment (v) useful for 

measuring parameters that are not time-stable (vi) utilizable for a wide range of analysis (vii) 

applicable for PAT systems [112]. There are a reported works of literature available that have 

worked on portable spectrophotometers for analysis purposes. A few are briefly cited in Table 

2.3 (Page 29). 

2.7 Recent works in the similar field 

Recently, researchers from the Hamburg School of Food Science, Germany have published a 

work regarding identification of the demographically different white asparagus using FT-NIR 

and chemometric techniques. Thus, demonstrating the ability of NIR spectroscopy combined 

with ML methods as a separating tool for accurate screening of asparagus [123]. 

Researchers at IARI, India has used ATR–FTIR for the detection of skim milk (SM) 

adulteration. In this study, milk adulterated with known quantity of SM were acquired in the 

wave number range of 4000–500 cm−1 using Attenuated Total Reflectance (ATR)–FTIR. The 

acquired spectra revealed differences amongst milk, SM and adulterated milk (AM) samples 

in the wave number range of 1680–1058 cm−1. This region encompasses the absorption 

frequency of amide-I, amide-II, amide-III, beta-sheet protein, α-tocopherol and Soybean 

Kunitz Trypsin Inhibitor. Principal component analysis (PCA) was used for clustering of 

samples based on SM concentration at 5% level of significance. [124] 
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Table 2.3: Details about the available portable NIR sensors used in Agriculture 
 

Sl.no 
. 

Application/Study 
Type/Manufacturer of 

sensors 

Wavelength 

(nm) 
Reference 

 

 

 

1 

 

Comparison on the 

performance of three hand 

handled device for Umbu 

fruit quality parameters 

Sensor for raw produce 

quality meter named F-750 

(Felix Instruments, Portland, 

USA) 

Tellspec (Tellspec Inc., 

Toronto, Canada) 
Scio Version 1.2 (Consumer 

physics, Israel) 

300-1150 

 

 

 

900-1700 

 

740-1100 

 

 

 

[113] 

 

2 

Prediction of postharvest 

dry matter and soluble 

solid content 

Sensor named F-750 for raw 

produce quality meter 

(Felix Instruments, Portland, 

USA) 

 

310-1100 

 

[114] 

3 

Segregation of seedlings 

for postharvest fruit 

phenotypes 

NIRvana (Integrated 

Spectronics, Australia) 
400-1100 [115] 

 

4 

Prediction of Kiwi Fruit 

dry matter after 

postharvest using 
optimized six wavelengths 

NIRvana (Integrated 

Spectronics, Australia) 

 

300-1150 

 

[116] 

5 
Assessment of internal 

flesh browning in apples 

Three different halogen 

lamps as source 30 W, 150 W 

and 300 W 
302-1150 [117] 

 

6 

On site measuring nitrogen 

content and mass per unit 

area of leaf of wheat in 
throughout plant cycle 

Spectralon (Labsphere Inc., 

New Hampshire) 

 

250-2500 

 

[118] 

 

7 

Non-destructive way of 

measuring fruit maturity 

using Vis-NIR 
spectrophotometer 

Hamamatsu S 3904 256Q 

(Lab developed set up) 

 

310-1100 

 

[119] 

 

8 

Physical and chemical 

assessment of mandarin 

during harvest using NIR 
spectrophotometer 

Phazir 2400 MEMS 

Instrument (Polychromix 

Incorporated Companies, 
Wilmington, USA) 

 

1600-2400 

 

[120] 

9 
Detection of allergens in 

food using smartphone 

Tellspec food Sensor 
(Tellspec companies, 

Toronto, Canada) 
1350-2150 [121] 

 

 

10 

 

Consumer scale NIR 

sensors for kiwifruit 

quality measurement 

Tellspec food sensor 

(Tellspec companies, 

Toronto, Canada) 

Scio Version 1.2 (Consumer 

physics, Israel) 
LinkSquare (Stratio Inc., 

Seoul, Korea) 

1350-2150 

 

740-1100 

 

400-1100 

 

 

[122] 
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Machine vision has been been used for the quality inspection of food and agricultural produces, 

as reviewed in the work of Patel et al [125]. Conventional machine vision just assigns the 

primary colors (RGB) to each pixel. However, Hyperspectral imaging (HSI) is different from 

conventional imaging as it uses a wide range spectrum of light and assigns spectral values to 

each pixel, thereby adds a third dimension to the two-dimensional spectral data  

The main advantage of hyperspectral imaging (HIS) systems is the ability to integrate both the 

benefits of spectroscopy and imaging techniques to evaluate different components directly at 

the same time, as well as localize the spatial distribution of such components within the tested 

product. HSI is better compared to NIR spectroscopy for generating more accurate and detailed 

information. This makes it very appropriate for the application of HSI in food and agro-sectors, 

where certain targeted regions need to be specified. 

In hyperspectral data, the spectral range can extend beyond the UV-visible range to the Infrared 

range. Now, the advancement of technology and different data handling software being made 

so easily available has given opportunities for creating viable and efficient solutions, be it 

military or agriculture. HSI application has made promising progress in the field of analytical 

technology [126]. Here, the application of ML, a type of artificial intelligence, plays a big role 

in mapping the data. 

Recent applications: 

 

Poultry: The poultry industry has the potential application of HSI. Hyperspectral imaging 

application has been found to be a useful technique for detecting egg freshness, scattered egg 

yolks, and cracks [127]. Another critical demand is non-invasive early in-ovo chicken sexing 

methods to avoid the culling of eggs. On-line inspection of chicken breasts to find wooden 

breasts using HSI is a non-destructive application saving much time. 

Cereals: HSI has a big capability for grain inspection, evaluation, and control of bulk storage. 

Particularly, hyperspectral imaging systems utilizing line or area scanning were considered 

capable and proposed for application in bulk grain storage quality inspection. Existing literature 

shows that most studies on the application of hyperspectral imaging for grain quality 

assessment were majorly focused on wheat. Future research should consider other grains [128]. 

Hyperspectral imaging is a viable technology for heterogeneous contamination control in 

grains by identifying mycotoxin levels, and HSI is a suitable technique for fungal-damaged 
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kernel detection at industry entrance [129]. 

Fruits and vegetables: Gingerols and gingerol derivatives are the major bioactive chemicals 

in ginger that are responsible for its pungent flavor and bioactive characteristics. To determine 

the ratio of both compounds, a hyperspectral method works well [130]. NIR- HSI Imaging 

makes it possible to track the concentration of nutrient components in Textured Vegetable 

Protein quality control that can be done with the help of chemometrics [131]. The non-

destructive analytical nature of HSI makes it very appropriate for online investigation of fruit 

quality during processing, for example, jujubes, apples, strawberries, etc. [132, 133]. 

Milk: Although for milk, there are a few rapid biochemical processes available. While, for 

complex processes, HSI is a boon to milk industries [134]. For example: point-scan Raman 

hyperspectral imaging technology for rapid detection of non-protein nitrogen adulterants in 

milk powder, rapid identification of Escherichia coli O157:H7 and Listeria monocytogenes in 

dairy products, etc. [135]. 

Sensory: Traditional sensory property analysis methods, such as trained sensory panels, 

colorimeters, and texture analyzers, are invasive, time-consuming, and small-scale operations. 

HSI has evolved as a less time-consuming and non-destructive way of determining the sensory 

qualities of a wide variety of foods [136]. 

2.8 Summary of Chapter II 

The literature review of the work discussed the processing of rice and how different parboiling 

methods have benefitted in terms of quality improvement as well as improvement of energy 

efficiency. Parboiling of Chokuwa rice grown in the state of Assam, which is a low amylose 

variety manufactures Komal Chaul which has a distinctive characteristic of ready to eat by 

soaking it in warm water. The previous work done on Komal Chaul focuses on its nutritional 

information and standardization of the process for enhancing the quality as well as process 

efficiency. Ageing due to various factors only happens in rice as a cereal, and many works had 

been done earlier to study at the physicochemical and molecular level. However, there has been 

no literature found on the ageing process of Komal Chaul. A detailed study on nondestructive 

techniques like NIRS gave us information about the application of this technology in food 

assessment and the preference of its application for various process analytical purposes. And 

advancement of ML models and their integrability to sensors have provided real-time solution. 
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