
Chapter 4 





Chapter-IV 

Results and Discussion 

4. Results and Discussion 

This chapter is a detailed discussion of the observation and output obtained from following the 

methodologies mentioned in Chapter 3. The chapter is divided into 4 subheadings of the 4 

objectives. The first findings include the changes in soaking, steaming, and drying processes 

occurring at different conditions and optimal parboiling parameters for best rehydration 

property. The second objective’s findings include the developed ML models for process 

analysis of soaking, steaming, and drying using spectral data. The third objective gives us 

inferences on how storage and ageing affect its cooking quality and physicochemical changes 

like compositional changes, pasting behavior, textural parameters, molecular bond change, and 

surface morphology of aged and unaged rice. The temperature-based study also gave us an idea 

about how temperature affects the physicochemical characteristics of Komal Chaul. The fourth 

objective gives us an NIR-based tool for predicting the degree of ageing using ML models. 

4.1 Results and discussion of the kinetic study of the parboiling process and 

spectral calibration 

The first findings include the changes in soaking, steaming, and drying processes occurring at 

different conditions and the diffusion of rehydration kinetics of produced Komal Chaul, in 

addition to spectral calibration for moisture content during soaking, degree of gelatinization 

during steaming, and moisture content during drying. 

4.1.1 Soaking Kinetics 

 

Water diffusion kinetics of brown rice obtained from dehusking of Chokuwa paddy were 

studied at three temperatures 40, 50, and 60 ℃. The moisture content against each time was 

measured using the gravimetric oven method. The moisture content of rice at several hydration 

temperatures is shown in Fig. 4.1.1 as a function of soaking time. The plots gave an idea about 

the dependency of time on the water absorption during soaking at different temperatures. The 

3 temperature plots were observed to follow the same pattern; initially, there was a rapid increase 

in moisture content, later followed by a slow rise in moisture content. Soaking takes place 

because of the penetration of water molecules into the micellar structure of rice. The rapid 

uptake of water initially at the first-time interval occurs due to surface tension and due to the 

porous structure of rice grains. Earlier reports on soaking of brown rice had presented 
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arguments on the increase of moisture content with an increase in temperature, citing that at 

higher temperatures partial gelatinization of the rice granules takes place and the rice granules 

start to swell which results in the high uptake of water at higher temperatures. Increased water 

uptake with increasing soaking temperature was associated with changes in grain diffusion 

resistance [1]. 

4.1.1.1 Peleg equation 

 

The hydration behavior (Fig. 4.1.1) was studied using Peleg’s equation mentioned in Eq. 3.4 

in Chapter 3. Peleg’s equation (Eq. 3.4) represented well the water absorption behavior of 

brown rice during the soaking process at temperatures 40, 50, and 60℃. The constants k1 and 

k2 were calculated using Eq. 3.4. The slope of t/Mt-M0 against t gave us k2 and the intercept 

gave us the value of k1 (Fig. 4.1.2). The R2 values greater than 0.92 (Table 4.1.1) confirms the 

adequacy of the equation for describing the water absorption kinetics of soaking. The Peleg's 

constants k1 and k2 were a function of temperature and decreased with an increase in soaking 

temperature. k1 values were inversely related to temperature which indicates the increasing of 

water absorption rate at higher temperatures. As a result, k1 and temperature were represented 

using the Arrhenius equation (Eq. 3.5), which thus solves the estimation of activation energy. 

The activation energy of the soaking process was calculated to be 42.28 kJ/mol, which doesn’t 

contradict earlier findings of activation energy for soaking brown rice [2]. 

 

Fig. 4.1.1: Hydration behavior of de-husked Chokuwa rice at various temperature 
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Fig. 4.1.2: Peleg constants estimation plots 

Table 4.1.1: Peleg’s constant for the soaking kinetics data at 40, 50, and 60 ℃ 
 

T°C k1(1/s%db) k2(1/%db) R2 RMSE  (fraction) 

40 0.043 0.033 0.922 0.120 

50 0.041 0.026 0.932 0.112 

60 0.039 0.021 0.951 0.038 

 

 

The estimated soaking time from the predicted model for attaining 30% moisture content (wb) 

at 40, 50, and 60 ℃ were 185, 135, and 100 min respectively. Wahengbam et al. [3] studied the 

hydration behavior during brown rice soaking for the Komal Chaul, and described the process 

as temperature dependent, where higher saturation of water is obtained at higher soaking 

temperature. Previous experiments on the hydration behavior of dehusked Chokuwa rice have 

found similar hydration behavior [3]. 

 

 
4.1.1.2 Generalized Midili Kucuk equation 

 

The Midilli-Kucuk model (Eq. 3.8) was developed into a generalized soaking model by 

multiplication of the time shift factor. Coefficients for the equation were determined by fitting 

curves to temperature data (40, 50, and 60 ℃). The fit for the soaking moisture ratio at all 

temperatures was highly accurate, with R2 values exceeding 0.99. The predicted model's root 

mean square error (RMSE) values indicated improved accuracy (Table 4.1.2) presents the 

values for the exponential coefficient (a), rate constant (k), power factor (n), and linear constant. 
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(a) 50oC 

 

(b) 60oC 

 

(c) 40oC 

 

Fig. 4.1.3: Predicted values of moisture using developed Midili Kucuk equation for soaking 
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To establish a reference equation, as recommended by Bezbaruah and Hazarika [4], the 

developed model was adjusted accordingly. The rate constant (k) increased with rising 

temperature, while the power factor of time (n) showed a higher value than the rest of the two 

temperatures. This can be attributed to the exponential relationship between the soaking rate 

constant and temperature [4]. By applying a time shift calculation (using Eq. 3.9), the master 

curve, represented by the equation for the central condition (50 ℃), was overlaid onto all 

experimental conditions. The relationship between the time shift (aT) and temperature (T) was 

found to be linear, with an R2 value of 0.9502 (Eq. 3.10). The final generalized Midili Kucuk 

equation for steamed drying, as presented in Eq. 4.1, was utilized to estimate the moisture ratio 

at 50, 60, and 40 ℃. A comparison of the measured and (Fig. 4.1.3a, 4.1.3b, 4.1.3c) showed 

that slight deviation of the predicted curve of 40 ℃ while later, the measured values and the 

predicted curve coincided adequately for 60 ℃. 

 

𝑀𝑅 = (1.009𝑒−0.067𝑡
0.782 

+ 4.54 × 10−4𝑡)(−0.3002 + 0.025𝑡) (4.1) 

 
Table 4.1.2: Midili-Kucuk coefficient at different temperatures 

 

Temp 40 ℃ 50 ℃ 60 ℃ 

R2 0.990 0.997 0.991 

RMSE 0.238 0.120 0.230 

a 1.006 1.009 1.008 

b 9.94×10-5 4.54×10-4 4.83×10-4 

k 0.053 0.067 0.087 

n 0.759 0.782 0.729 

 

 

4.1.1.3 Diffusion equation 

 

This diffusion equation studied the migration of water (diffusant A) into the solid system(rice). 

The volumetric concentration with respect to time showed rapid uptake of water for the first 1 

h and then a slow uptake until it reached saturation after 3 h (Fig. 4.1.4). The grain parameters 

along with their measurement method that were considered for solving were tabulated in Table 

4.5. The diffusion model (Eq. 3.9) was solved using the discretized solution of the finite 

difference method. 
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The predicted fractional water absorption estimated using the solved diffusion equation almost 

coincided with the experimental value (Fig. 4.1.5). The sum of squared errors (SSE) between 

the predicted and experimental was found to be 1×10-6, which was considerably low suggesting 

us a good optimization of parameters. The effective diffusivity coefficient was found to be 

5.43×10-11 m2/s for the initial concentration (Fig. 4.1.6), and it kept on increasing with an 

increase in concentration. The moisture progressed radially through the surface, and it required 

1.5 h to reach the core from the surface when the moisture value had reached approximately 

30% (wb) (Fig. 4.1.7). After 2 hours, the soaked grain tended to reach saturation. The saturation 

moisture content was calculated using two methods: Peleg’s method and Bello’s method [5]. 

 
 

 

 

 

Fig. 4.1.4: Change in volumetric 

concentration during soaking 

Fig. 4.1.5: Fractional absorption of moisture 

with respect to time for soaking at 60 ℃ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.1.6: Mass diffusivity vs moisture content at 60 ℃ 
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Fig. 4.1.7: Color mapping of concentration of water radially along the polar coordinates from 

surface to core at 60 ℃ 

The physical parameters that were measured are listed in Table 4.1.3. Effective diffusivity 

independent of concentration (D0) was calculated accordingly for each temperature (Table 4.1.4). 

The change in diffusivity coefficient for soaking at 40 and 50 ℃ was also calculated. The 

diffusivity range with a change in moisture content for 50 °C was 4.05-4.50 ×10-11 m2/s (Fig. 4.1.8). 

And the diffusivity range with a change in moisture content for 40 °C was 3.30-3.60 ×10-11 m2/s 

(Fig. 4.1.9). Appendix II shows the changes in moisture concentration radially at 40 and 50 ℃.  
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Table 4.1.3: Grain dimensions and physical parameters 
 

Physical parameters Value Measurement device 

Length of rice grain(m) 6.02×10-3 Grain scanner 

Width of rice grain (m) 2.64×10-3 Grain scanner 

Thickness of rice grain (m) 1.69×10-3 Vernier Caliper 

Density of solid in rice grain (kg/m3) 1572 Gas Pycnometer 

Density of water (kg/m3) 1000 Considered temperature 

independent [5] 

 

 

 

Table 4.1.4: Saturation moisture and Diffusivity comparison 

 

Temperature 

(℃) 

Saturation 

moisture content 

(Peleg method) 

Diffusivity D 

independent of 

concentration 
(Do) (m

2/s) 

Saturation 

moisture content 

(Bello Method) 

Diffusivity D 

independent of 

concentration 
(Do) (m

2/s) 

40 0.4408 5.32×10-11 0.3209 2.83×10-11 

50 0.4508 6.64×10-11 0.4039 3.73×10-11 

60 0.4613 7.92×10-11 0.4136 4.73×10-11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1.8: Mass diffusivity vs moisture content at 50 ℃ 
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Fig. 4.1.9: Mass diffusivity vs moisture content at 40 ℃ 

 

 

 

4.1.2 Steaming Kinetics 

 

The degree of gelatinization percentages for each treatment pressure (0, 0.05, 0.1, 0.15, and 0.2 

MPa gauge pressure) were plotted against the treatment times (Fig. 4.1.10). 

 

 
Fig. 4.1.10: Rate of gelatinization at different pressures for Komal Chaul at different treatment 

time 

The curves in Fig. 4.1.10 suggest that DG values increased exponentially with time of treatment 
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13.29% for the soaked rice, therefore, suggesting that some degree of gelatinization had 

occurred before steaming while soaking at 60 °C for 90 min. It had also been observed that 

with an increase in pressure, the gelatinization rate increases thus requiring a lesser time to 

achieve complete gelatinization. For instance, at 0 MPa to achieve more than 50% 

gelatinization, it took around 12 min, whereas at 0.2 MPa within 9 min, the DG % obtained is 

more than 95%. Nearly, a similar result has been found for rough rice parboiling of Komal 

Chaul at 1 atm (approx. 0.1 MPa) by Wahengbam, 2020, which is 99% gelatinization at 20 

min[6]. 

 
4.1.2.1 Gelatinization reaction kinetics 

 

The percentage of DG change was expressed as a function of time with a reaction rate constant 

(Eq. 3.35) for determination and expressed as a logarithmic expression by integrating Eq. 3.36. 

The reaction rate constant was obtained by finding the slope of Eq. 3.37 (Fig. 4.1.11). 

 

 
Fig. 4.1.11: Rate constant estimation plot 

 

The reaction rate was obtained for each pressure treatment by fitting the experimental data in 

Eq. 3.37. The calculated reaction rate constant (k) and the performance of the fitted model 

based on R2 are presented in Table 4.2.1. It can be observed that a goodness of fit was obtained 

(Fig. 4.1.12) since the R2 values were much closer to 1 and RMSE values were low for all the 

data. Earlier reports also suggested that the rice starch gelatinization process follows the first-

order reaction very well [7,8]. The k values had been observed to vary between 0.003 to 0.001 

s-1 with varying pressure. The maximum changes were due to the increase in steaming time. 
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had been confirmed by other studies [9,10]. The activation energy for the steaming process was 

found to be 18.7 ×102 kJ/mol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1.12: Degree of gelatinization against time for measured and predicted at 0.15 MPa 

Table 4.2.1: First-order kinetics rate equation accuracy metrics 
 

Press (MPa) k (s-1) ×10-3 
 

R2 RMSE (fraction) 

0 

0.05 

0.1 

0.15 

0.2 

1.288 

1.637 

1.776 

3.994 

4.363 

0.927 

0.936 

0.955 

0.964 

0.929 

1.33 

0.88 

0.99 

2.4 

4.6 

Also, a multilinear regression was performed to know the effect of processing variables on the 

percentage of DG values. The multilinear regression model showed significance with a p-value 

< 0.01 and quite a decent accuracy with an R2 value of 0.994, adjusted R2 value of 0.884, and 

SSE value of 10.22 %. The cause of change in DG values with respect to pressure and 

temperature can be expressed in the form of a linear equation (Eq. 4.2) with the coefficients 

obtained as: 

 

𝐷𝐺 (%) = 0.9 + 171𝑡𝑖𝑚𝑒 + 4.4𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 (4.2) 

This gives a clear idea that steaming time tremendously affects the gelatinization process as 

compared to steaming pressure. The Eq. 4.3 implies an elevated moisture content with an 

increase in steaming time. When the temperature favors the gelatinization process, the 
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progression of the gelatinization process depends on th e  availability of water molecules at 

the reaction site. Accordingly, the measured data on DG and moisture content leads to a linear 

relationship, for the holding time for the steaming process as given in Eq. 4.3. 

 

𝐷𝐺 = 5.3615𝑀. 𝐶. − 156.22 (4.3) 

 

Where DG is the degree of gelatinization percentage and M.C. percentage on a wet basis. 

4.1.2.2 Steam diffusion kinetics 

The steam diffusion kinetics at different pressures were simulated using Fick’s law equation 

(Eq. 3.16) based on the initial and boundary conditions as mentioned earlier in section 2.2. 

Considering the volume change to be negligible, the diffusion of steam was in the radial direction 

with constant diffusivity. In order to obtain a solution for the PDE (Eq. 3.16) the grain 

dimensions were considered to be in spherical coordinates. The equivalent diameter calculated 

for the rice grain prior to steaming was 0.0016 m. The initial moisture content obtained for 

soaked rice was 43.09% (db). The average moisture content at different time intervals for each 

pressure treatment as shown in Fig. 4.1.13 gives an idea about the rate of steam penetration in 

the rice grain. It had been determined that with the rise in time, the moisture content increased 

exponentially; and with a rise in pressure, the steam penetration additionally showed an 

increase till it reached saturation. This can be explained in reference to Miah et al. [11] which 

describes that higher pressure allows a greater amount of steam and creates more kinetic energy 

for penetration inside the grain, thus increasing the gelatinization front. 

In order to estimate the diffusivity coefficient, the solution for Fick’s equation i.e., Eq. 3.37 was 

used, where the average moisture content was a function of equilibrium moisture content and 

time. The reaction rate constant (k) values were obtained from Eq. 3.29, the specific heats were 

calculated using Eq. 3.40, 3.41, and 3.43, and the saturated temperatures for steam for every 

treatment pressure were obtained using the steam table. The equilibrium moisture contents were 

calculated using the relation suggested by [7] as in Eq. 3.44, and the values obtained at respective 

pressure (0, 0.05, 0.1, 0.15, 0.2 MPa) were 0.394, 0.511, 0.537, 0.555, and 0.567. Further, these 

calculated values were used in Eq. 3.45 to estimate the diffusivity values, and the Deff values 

were calculated using the SciPy library in Jupyter Notebook to solve the nonlinear series 

equation. The Deff values obtained at 0, 0.05, 0.1, 0.15 and 0.2 MPa were 1.76, 3.52, 5.28, 7.04, 

and 8.8 ×10-8 m2/s respectively. Hence, there was a rise in the diffusivity of steam with the rise of 

steam pressure; and this statement can be validated by an earlier report from Miah et al. [11]. 

As suggested by another study [12], essentially, the diffusion coefficient is a function of the 
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absolute temperature, increased by the power of 1.5 pressure inside the grain. 
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Fig. 4.1.13: Moisture content at different pressures of steaming 

 

4.1.3 Drying kinetics 

 

The rate of moisture removal at three different temperatures was studied. The initial moisture 

content of the steamed brown rice was around 37.21% (wb) (59.27% db). The equilibrium 

moisture content for drying was measured to be 9.31% (wb) (10.27% db), 10.28% (wb) 

(11.24% db), and 11.01% (wb) (12.37% db) at 60 ℃, 50 ℃, and 40 ℃. The change in moisture 

content with respect to time is shown in Fig. 4.1.14. 

 

 
 

 
Fig. 4.1.14 Change in moisture content w.r.t. time (a) at 60, 50 and 40 °C during drying of 

steamed brown rice. 
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The moisture content abruptly decreases during the initial stages and later tends towards 

saturation while drying. 

 
4.1.3.1 Empirical drying models 

 

Usually for food drying, considering the Biot number to be less than 0.1, the ambient air 

temperature and rice temperature were the same. All the models referenced in Table No. 3.2 were 

tested against the drying data at 60, 50, and 40 °C. Among these, the Page model outperformed 

others with an R2 value greater than 0.99 and a RMSE less than 0.01. The performances of 

other models of 60 °C are shown in table No. 4.3.1. Similarly, for drying data of 50 °C and 40 

℃ Page equation fitted the best, with an R2 value greater than 0.99 and an RMSE less than 0.01 

were obtained as detailed in Table 4.3.2 and 4.3.3 respectively. Using the predicted equation, 

the predicted moisture content for each time was calculated using the developed Page model. 

The predicted moisture content was plotted against time and compared with the experimental 

data; it could be observed that they coincide very well (Fig 4.1.15). In most cases of intermittent 

drying of rice, the Page model fits the best [13]. The time predicted to reach 13% m.c. (wb) 

was found to be 150, 165, and 185 min at 60, 50, and 40 ℃ respectively. 

Table 4.3.1: Showing the performances of the models for 60℃ data. 

Model names 

Model 

coefficients 

and constants 

 

R2 RMSE (fraction) 

Page  k=0.0782 

n=0.6805 

0.999 0.006 

Newton k=0.01644 0.939 0.075 

Modified 

Page 
k=0.06554 

n=0.7292 

0.938 

 

0.014 

 

Henderson 

and Pabis 
k=0.01572 

a=0.9587  

0.971 

 

0.051 

 

Wang and 

Singh 

a=-0.0124 

b=4.126×10-5 

0.887 

 

0.103 

 

Diffusion k=0.01082 

a=0.07818 

b=1.396 

0.887 0.102 
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Table 4.3.2: Showing the performances of the models for 50℃ data. 

 

Model names 

Model 

coefficients 

and constants 

 

R2 RMSE (fraction) 

Page  k=0.0643 

n=0.715 

0.998 0.007 

Newton k=0.017 0.978 0.037 

Modified 

Page 
k=0.06468 

n=0.6802 

0.988 

 

0.028 

 

Henderson 

and Pabis 
k=0.01699 

a=0.9995 

0.987 

 

0.029 

 

Wang and 

Singh 

a=-0.01277 

b=4.332×10-5 

0.797 

 

0.115 

 

Diffusion k=0.01677 

a=0.5336 

b=1.029 

0.796 0.115 

 

 

Table 4.3.3: Showing the performances of the models for 40℃ data. 

 

Model names Model coefficients 

and constants 

R2 RMSE (Fraction) 

Page 

 

k=0.0540 

n=0.7502 

0.991 

 

0.009 

 

Newton  k=0.02017 0.981 

 

0.030 

 

Modified Page k=0.0438 

n=0.7043  

0.9851 

 

0.027 

 

Henderson and Pabis  k=0.0211 

a=1.045 

0.989 

 

0.024 

 

Wang and Singh  a=-0.01412 

b=5.021×10-5  

0.909 

 

0.067 

 

Diffusion k=0.01468 

a=3.221 

b=0.872 

0.909 0.067 
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a) 50℃ 

 

a) 60℃ 

 

c) 40℃ 

Fig. 4.1.15: Predicted values of moisture content Page equation and comparison with measured 

values 
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4.1.3.2 Generalized drying equation for time temperature relation 

 

The Midili Kucuk equation consists of two terms; one is the linear function of time, and the 

other one is an exponential term (Eq. 3.26). The coefficients for the Midili Kucuk equation for 

the temperature 40, 50, and 60 ℃ were found using curve fitting. The fit of the drying moisture 

ratio at all temperatures was good with R2 greater than 0.99. The RMSE values of the predicted 

model showed a better prediction accuracy (Table 4.3.4). 

Table 4.3.4: Statistical metrics of Midili-Kucuk prediction 
 

Temperature R2 RMSE (fraction) 

40 ℃ 0.998 0.009 

50 ℃ 0.999 0.004 

60 ℃ 0.998 0.007 

 

 

Table 4.3.5: Midili-Kucuk coefficient at different temperature 
 

Temperature  40 ℃ 50 ℃ 60 ℃ 

Coefficients  

a 1.006 1.002 0.999 

b -9.94×10-5 -4.54×10-4 -4.83×10-4 

k 0.053 0.068 0.082 

n 0.759 0.663 0.658 

 

 

The values of exponential coefficient (a), rate constant (k), power factor (n), and linear constant 

were obtained as tabulated in Table 4.3.5. The developed model was shifted to a reference 

equation as suggested by Bezbaruah and Hazarika [4]. The rate constant (k) was found to 

increase with an increase in temperature, while the power factor of time (n) showed a 

decreasing trend. This is because the drying rate constant is an exponential function of 

temperature [4]. The master curve i.e., the 50 ℃ (central condition) predicted equation was 

superimposed on all experimental conditions from the calculated time shift (using Eq. 3.27) to 

a central condition. The relationship between the time shift (aT) and temperature T was found 

to be a linear equation with an R2 value of 0.9502 (Eq. 3.27). The final generalized developed 

Midili Kucuk equation for drying of steamed brown rice represented in Eq. 4.2 was used to 

estimate the moisture ratio at 50, 60, and 40 ℃ and the comparison plots between the measured 

and predicted (Fig. 4.1.16a, 4.1.16b, 4.1.16c) showed that slight deviation of the predicted curve 

at the initial measurement while at later time, the measured values and the predicted curve 

coincides adequately.  
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(c) 50oC 

 

(d) 60oC 

 

(c) 40oC 

 

Fig. 4.1.16: Predicted values of moisture using developed Midili Kucuk equation 
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0 

An earlier study on the same rice showed that feed-forward artificial neural networks showed 

well accuracy in relating the moisture ratio as a function of temperature and time [14]. The final 

form of the equation is given as Eq 4.1# 

 

𝑀𝑅 = (1.002𝑒−0.067𝑡
0.782 

+ 4.54 × 10−4𝑡)𝑎𝑇 

Where 𝑎𝑇 = 3.0709 − 0.0393𝑇 

 

(4.1#) 

 

 
4.1.3.3 Diffusion equation for drying kinetics 

 

The diffusion model is based on the phenomenon of mass transfer that studies the movement 

of moisture during the process of absorption or desorption of moisture. The diffusion equation 

was solved using a finite difference method for each temperature (40, 50, and 60 °C). Firstly, 

the Cranks solution was used where the constant moisture diffusivity coefficients at 40, 50, and 

60 °C were found to be 7.77×10-9, 5.2×10-9, and 2.6×10-9 m2/s, respectively. Using the 

Arrhenius equation, the activation energy was estimated to be 24.9×10-2 kJ/mol. Hsu method 

was applied to solve the partial differential method (Eq. 3.18 - Eq. 3.24). The diffusion model 

using the Hsu model predicted well. For example, at 60 °C the fractional moisture values of the 

prediction curve and experimental points coincided very well (Fig. 4.1.17). The prediction and 

experimental comparison of fractional moisture values at 40 and 50 °C were illustrated in 

Appendix V. The pre -exponential factor diffusivity (𝐷′ ) was found to be 1.62×10-7, 2.2410-6, 

and 3.32×10-6 at 40, 50, and 60 °C. Deff with respect to time were in the range of 2.72×10-10 to 

3.40×10-9 m2/s with increasing temperature. The change in moisture diffusivity values with 

respect to time at different temperatures are given in Appendix VI. Wahengbam et al., [6] found 

diffusivity in the range of 2.08×10-10 to 3.34×10-10 m2/s with increasing temperature. The reason 

for the slight variation could be attributed to the efficiency of the drying system. The diffusivity 

was higher at the initial time and then slowed down as time increased suggesting saturation. 

Azzouz and co-workers [15] also observed the temperature dependencies of the diffusivity 

coefficient while drying grapes. At the initial stage of drying, the mass diffusion from the rice 

grain was rapid and later remained stable, which is due to the air temperature attaining the set 

value of temperature [16]. Therefore, with the approach of the finite difference method and 

particle swarm optimization, the partial differential equation for mass diffusion was solved, 

which helped in estimating the moisture content throughout the grain at different time intervals. 
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Fig. 4.1.17: Fractional desorption of moisture with respect to time for drying at 60 ℃ 

4.1.4 Rehydration kinetics 

 

The rehydration kinetics was done at 40, 50, and 60 ℃ for the time duration of 25 min and 

moisture was measured at 2.5 min intervals. The saturation moisture content obtained during 

the process of rehydration at 40, 50, and 60 ℃ were 0.541, 0.690, 0.789 kg/kgdb reached at 

time 15 min, 22.5 min and 25 min respectively. The average effective diffusivity was 3.39×10-

6, 2.24×10-6, and 1.62×10-6 m2/s at 60, 50, and 40 ℃ respectively. The activation energy for the 

process was estimated to be 78.48 kJ/mol. It ensures that the water absorption or hydration of 

Komal Chaul was much higher than Chokuwa rice hydration attributing to the ready to the 

property of Komal Chaul. 

4.1.5 Calibration of processing parameters using spectra 

 
4.1.5.1 Moisture content calibration for soaking process 

 

The calibration process involved finding integrated absorbance values from spectra at different 

concentrations. Average reflectance values of spectra over the wavelength range 740-1050 nm 

were chosen for 60, 50, and 40 ℃ for 0-120 min at 20 min intervals for moisture values ranging 

from 13-33 % (wb). The plot for average absorbance values against wavelength obtained at 

different times for soaking for 60 ℃ as shown in Fig. 4.1.18, gave the idea about the varying 

reflectance values and the peak range 925-1025 nm corresponding to water molecule [17]. The 

reflectance values were converted into absorbance values for the time considered and the 

integrated absorbance for each concentration was obtained using Origin Pro 8.5. The integrated 

absorbance values with respect to time were plotted and found to follow an almost linear trend 

(Fig. 4.1.19). 
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Fig. 4.1.18: Reflectance values against wavelength for soaking process at 60 ℃ 
 

 

 

 

Fig. 4.1.19: Normalized integrated absorbance vs time for soaking spectra at 60 ℃ 

 

 

Table 4.3.6: Coefficients and statistical metrics of linear plots of soaking spectral calibration 
 

Temperature Coefficients R2 RMSE (%) 

40 ℃ a=0.428, b=-0.451 0.910 0.0014 

50 ℃ a=0.398, b=-0.524 0.932 0.0011 

60 ℃ a=0.383, b=-0.621 0.926 0.0013 
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The normalized integrated absorbance values were then linear fitted with the fractional 

concentration of moisture content (wb). The slope (b) and intercept (a) of the linear equations 

were obtained for 40, 50, and 60 ℃ as well, and goodness of fit was expressed in terms of R2 

and RMSE (Table 4.3.6). Slope and intercept were found to decrease with an increase in 

temperature. This may be because in the case of soaking the reflectance values were found to 

decrease with an increase in time. 

4.1.5.2 Degree of gelatinization calibration for the steaming process 

A similar process of calibration for the degree of gelatinization was followed. The integrated 

absorbance values were calculated by integrating the area of the peak contributing to water 

molecule in the range of 925-1025 nm at 0, 3, 6, 9, 12, and 15 min of steaming (Fig. 4.1.20). 

The normalized value of integrated absorbance and degree of gelatinization values at respective 

pressures of 0 MPa showed a linear trend (Fig. 4.1.21), and similarly at 0.05, 0.1, 0.15 and 0.2 

MPa gauge pressure the integrated absorbance values were fitted linearly against concentration 

of the respective time. The coefficients and statistical metrics are represented in Table 4.3.7. 

Similar to soaking, steaming spectra showed a decreasing trend with increasing time while the 

peaks were sharper in the case of steaming. 

4.1.5.3 Moisture content calibration for drying process 

The drying process was calibrated using a laboratory-developed sensor discussed in Appendix-

I. The NIR zone of this sensor is from 700-940 nm. Reflectance peaks were observed between 

800-900 nm. Therefore, integrated absorbances were calculated by integrating the area of 

absorbance values from 800-900 nm (Fig. 4.1.22). The normalized integrated absorbance was 

calculated by integrating the area of absorbances against wavelength (Fig. 4.1.23) and they 

were linearly correlated with moisture values obtained at drying time. The coefficients and 

statistical metrics as mentioned in Table 4.3.8. In the case of drying the peaks showed an 

increasing trend with time. The increase in absorbance values with time for respective 

concentrations showed an opposite trend as soaking and steaming. This may be due to the 

desorption of water from the rice grains during drying. 

The conventional old chemometric technique considers discrete wavelength specifying a single 

bond, whereas the other bonds may also contribute to the attribute of concern. Therefore, our 

next objective is multidimensional calibration using machine learning techniques. 
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Fig. 4.1.20: Reflectance values against wavelength for steaming process at 0 MPa 
 

 

Fig. 4.1.21: Normalized integrated absorbance vs time for steaming spectra at 0 MPa 

Table 4.3.7: Coefficients and statistical metrics of linear plots of steaming spectral calibration 
 

Pressure Coefficients R2 RMSE (%) 

0 a=0.510, b=-0.695 0.991 0.0012 

0.05 a= 0.492, b=-0.785 0.993 0.0011 

0.1 a=0.438, b=-0.803 0.995 0.0013 

0.15 a=0.421, b=-1.41 0.894 0.0101 

0.2 a=0.398, b=-1.49 0.892 0.0110 
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Fig. 4.1.22: Reflectance values against wavelength for drying process at 60 ℃ 
 

 

 

Fig. 4.1.23: Reflectance values against wavelength for drying process at 60 ℃ 

Table 4.3.8: Coefficients and statistical metrics of linear plots of drying spectral calibration 
 

Temperature Coefficients R2 RMSE(%) 

40 ℃ a=0.528, b=1.451 0.951 0.0014 

50 ℃ a=0.698, b=1.628 0.962 0.0011 

60 ℃       a=0.723, b=1.821 0.946 0.0013 
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4.2 Results and discussion for spectral calibration of parameters of the parboiling 

process using ML models 

4.2.1 Soaking spectral modeling 

 

At every temperature i.e., 40, 50, and 60 ℃, and at every time interval of 10 min throughout 

the 0–180-minute soaking process, each spectrum was obtained in triplicates giving us a total 

scan of 171 (3×19×3). The spectra were acquired using the software development kit SCiO 

Lab. The moisture content at each time for every temperature was measured. The raw reflectance 

values of soaked rice at every condition against wavelength were plotted (Fig. 4.2.1). PLS was 

used as a regression model for estimating the quantitative value of moisture during soaking of 

rice. The machine learning model was trained using the training data set. K-fold validation was 

used since the dataset consists of more than 100 spectra. The training set at k=1, k=2, and k=3 

was validated in reference to the number of latent variables. It was observed that the RMSE 

values does not chang after the 5 latent variables in Fig. 4.2.2. The regression model of PLS 

didn’t fit well for NIR spectral data with statistical metrics of performance R2 :0.305, RMSE: 

2.109 % for the validation dataset and R2: 0.338, SEP: 2.109 for the test dataset. The low R2 

and low RMSE of prediction values suggested very little correlation between the variables and 

low error. The green line plot, which is the expected zero error relation showed the regressive 

relation between the measured and the predicted represented by the blue plot was hardly 

correlating (Fig. 4.2.3). 

 

 
Fig. 4.2.1: Raw reflectance against wavelength during soaking 
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Fig. 4.2.2: Validation and hyper tuning of LVs 

 

 

Fig. 4.2.3: Cross-validation of the developed PLS model 

This inferred that while the NIR data obtained during the process of soaking are correlated, the 

moisture content is not much correlated with the spectral values for soaking because the 

moisture content doesn’t change gradually with equal difference with time, there was an abrupt 

rise at the initial moisture and then very significantly low rise in water uptake. Therefore, the 

supervised learning technique, principal component regression has been used. The figure on 

PCA analysis showed the distribution of spectral data from moisture content intervals as PCA 

only considers the spectral data (and its variance) and not the class labels. Therefore, Principal 

component regression was used for the purpose of regression on the features reduced by PCA 

(n=4) (Fig. 4.2.4). The optimal number of components based on accuracy was 4. The prediction 

accuracy was higher compared to PLS, R2 of 0.695, and RMSE of 1.109 % for the test dataset 

(Fig 4.2.5). The standard error (SE) for validation and test set were 3.01 and 3.13 % respectively. 
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Fig. 4.2.4: Principal Component Analysis 
 

Fig. 4.2.5: Cross-validation plot for PCR 

 

 

The biases for validation and test set were 0.1 % and -3.8 % respectively. In order to improve 

the performance of the model, rather than continuous estimation of moisture values during 

soaking using regression, a discrete approach of classification was chosen. The spectral data 

were clustered into three different groups of moisture content, (14- 25%), (25-30%), and (> 30 

%), and further used for ML-based classification. 0 (14-25%), 1 (25- 30%), and 2(> 30%). A 

Random Forest (RF) classifier was used to classify the classes based on the spectral 

information. Therefore, spectral data in the range of 740-1050 nm was used as the features. The 

features were normalized using standard normal variation (SNV). Previous reports also 

suggested that ensemble preprocessing gave the best prediction for multivariate spectral data 

[18]. The dataset of 162 spectra was divided into training (70%), validation (20%), and test set 

(10%). The model was then trained and validated using k-fold cross-validation (k=5). The best 

hyperparameters obtained were: 101 number of decision trees in the forest and the maximum 

depth of a decision tree was 10. The mean classification accuracy was found to be 0.894. The 
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best model was then used for prediction on the test dataset. The trade-offs between the correctly 

classified and wrongly classified classes were explained using the confusion matrix (Fig. 4.2.6). 

The test results represented the probability of each class having been represented in Table 4.4. 

Since there aren’t equal number of classes counts for every class. The class counts for every 

class as represented in the bar plot (Fig. 4.2.7) showed the class imbalance. Since Class 0, i.e., 

14-25% had a lower class count, therefore the Weighted loss functions like weighted cross 

entropy (CE) (Eq. 3.33) and focal loss (FL) (Eq. 3.34) were measured. The calculated 

probability for the classes’ prediction as in Table 4.4 was incorporated in Eq. 3.33 and Eq. 3.34. 

The CE value and FL for the minority class (i.e., a class representing 14-25% moisture content) 

were found to be 0.0079 and 0.0026. Cross entropy is mostly used for classification problems 

to address the data imbalance problem [19]. Earlier work on NIR spectra of tea leaves for rapid 

identification of varieties was classified best using LDA and RF classifiers, and the latter 

performed better [20]. Random forest often performs better because of its ensemble structure 

that does not lead it to overfitting. 

 

 

 
Fig. 4.2.6: Confusion matrix for the prediction classes 



107  

 
 

Fig. 4.2.7: Class counts for each class 

 

Table 4.4.1: Probability values of prediction class during soaking 
 

Labels Class0 Class1 Class2 

Class0 0.833 0.2 0 

Class1 0.167 0.8 0.167 

Class 2 0 0 0.833 

 

4.2.2 Steaming spectral modeling 

 

The raw reflectance values were obtained against the wavelength range for each pressure and 

time combination in quadruplicate making it a total of 140 scans: over 54 resolution gaps making 

it 7560 data points. The average reflectance for the range 740-1050 nm was shown for their 

attributes in Fig. 4.2.8. 

 

Fig. 4.2.8: Reflectance values against the NIR wavelength range 
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The raw spectra were pre-processed by using the first derivative function (poly order=1 with 

odd numbers of windows) to reduce the gaps and to smoothen the spectral data (Fig. 4.2.9). This 

was followed by logarithmic transformation and the standard normalization. 

 

 

Fig. 4.2.9: Pre-processed spectra of raw reflectance values 

 

 

Later, the over-scattered range i.e., from 970-1050 nm was kept for the feature set. The feature 

set was divided into a training set (60%), a validation set (20%), and a test set (20%). The PLS 

model was fitted on the training set for several components (latent variables). The performance 

of the trained model was tuned by checking the performance on the validation set. It can be 

observed that the residual score (RMSE) reaches saturation after 10 latent variables (Fig. 

4.2.10). This suggests that 10 latent variables are enough to map the spectrum with their 

respective DG values. The accuracy for the developed model with 10 LVs in terms of statistical 

metrics were: R2 of 0.882 and RMSE of 2.56 % including standard error and biases as 5.16 % 

and 4.6 % respectively. The precision accuracy of the developed model was assessed on the 

test set and the predicted values were compared with measured values as shown in Fig. 4.2.11. 

It can be observed in the cross-validation plot that prediction accuracy at the lower and higher 

extremes was more accurately predicted than the mid values of DG; thus, showing an R2 value 

of 0.843. The estimated highest and lowest relative percent differences (RPD) values were 

19.79 and 0.94 %, respectively. The Relative error range (RER) was found to be 12.76 %. 

There are research reports that give reliability to the use of PLS for the purpose of regression 

of NIR data for rice characterization. For example, a  modified PLS model for optimizing 
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the NIR reflectance model for measuring the gelatinization characteristics of rice flour [21], 

amylose determination using NIR [22], and many more [23]. Similarly, portable NIR sensors 

have given reliable results, for example in the estimation of freshness in quail eggs [24], and 

tandem eggs [25]; and also, for the classification of ground meat [26] and identifying 

adulteration in paprika [27]. The present study also found the PLS model equally reliable for 

modeling NIR spectra with gelatinization degree. 

 

 
Fig. 4.2.10: Error measurement for different no. of pls components 

 

 

Fig. 4.2.11: Cross-validation plot for degree of gelatinization 

 

 

4.2.3 Spectral modeling for drying data 

 

The spectra were collected using a laboratory-developed Vis-NIR sensor in the range of 410- 

940 nm with 18 channels or features (Fig. 4.2.12). The procedure for the development of the 

Vis-NIR sensor has been mentioned in Appendix-I. The spectral data were collected after every 
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10 min for 3 h at the 3 temperatures, 40°C, 50°C, and 60°C in a tray drier (Make:UK Model: 

Armfield – UOP8-A). The number of spectral scans each time was 5, giving a total number of 

285 scans. A Neural network using TensorFlow with four hidden layers and the Adam optimizer 

function was used. The purpose of using ANN over PLS was because there were fewer spectral 

points or features, and the Neural network is better at finding complex nonlinear mapping with 

the response labels even if the number of features is less. The dataset was divided into training 

(70%), validation (20%), and test data (10%). Primarily, the reflectance data set was 

preprocessed using Z-score normalization. After that, using a TensorFlow sequence of 4 hidden 

layers with the ReLu activation function, the weights of the neural network were optimized for 

100 epochs using an Adam optimizer function. The error loss of the model at every epoch (Fig. 

4.2.13) showed that as the epoch increases the mean squared logarithmic error decreases. The 

validation performance showed a loss of 0.2734. The test score showed R2 value of 0.624 

between predicted and measured values and an RMSE value of 7.034 % (Fig. 4.2.14). The SE 

and bias are respectively 3.62 and 6.031% respectively. Artificial neural networks have worked 

well in mapping Vis-NIR data in the food system [28,29]. 

A classification-based study on the end point screening of rice samples during drying was done 

using the ML model The targeted moisture content was kept at less than 13 (% wb) because 

the best storage moisture percentage is around 12-13%. More spectra of rice samples were 

taken for samples after drying them to a moisture level of 13% to balance out the number of 

spectra set into classes to avoid the bias due to inequality of class: Class 0 (< 13%) and class 

1(>13%) moisture content. The same set of data was then trained on the most used classification 

models (Fig. 4.2.16) without preprocessing as suggested by Li and He [30]. The classification 

was done based on k-fold validation. The mean accuracy calculated for the validation set was 

0.95. The optimal number of hyperparameters chosen was 56 and the depth of the tree was 

found to be 18. The performance of the test dataset displayed in the confusion matrix (Fig. 

4.2.16) showed that the prediction accuracy was 0.933, the recall value of 1, and the precision 

of 0.87. Therefore, the F-score was found to be 0.928 suggesting a good classification model. A 

Vis- NIR-based sensor in the range of 400-1000 nm was found to be reliable for estimating 

moisture in meat earlier [31]. 
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Fig. 4.2.12: Reflectance values against the wavelength 

 

 

Fig. 4.2.13: Error measurement for ANN 
 

 

Fig. 4.2.14: Cross validation plot for drying moisture estimation 
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Fig. 4.2.15: Comparison of classification models 

 

 

Fig. 4.2.16: Confusion matrix for the test dataset 

 

 

4.3 Results and discussion for studying the physicochemical changes during ageing 

4.3.1 Study on changes in cooking or softening quality of Komal Chaul 

 

The change in cooking or softening quality of Komal Chaul with respect to storage time in a 

year showed that the cooking time had increased linearly (Fig. 4.3.1). The starch granules 

absorbed water and caused the starch to gelatinize, and cooking time was considered as the 

time when all starch (> 90%) had gelatinized. The low amylose composition and the soft nature 

of this rice causes it to cook faster. There was an increase in cooking time with respect to 

ageing. The slight inconsistency of the linear curve might be due to the difference in the extent 

of processing while parboiling the Chokuwa rice, though similar conditions were maintained 

for every batch, the slight difference may be shrinkage of the surface of certain grain during 
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drying. The change of physical parameters like true density from 1.26 × 103 kg/m3 to 1.37 

×  103 kg/m3 and bulk density from 0.857 × 103 kg/m3 to 0.897 × 103 kg/m3. The reason for 

this could be due to the increased air spaces or porosity as the rice dries out due to syneresis or 

retrogradation of Komal Chaul that might have caused the grain to become compact resulting 

in less absorption of water and as a result higher cooking time for the aged sample (Appendix-

III). 

 

 

Fig. 4.3.1: Cooking behavior with respect to storage time 

4.3.2 Changes in composition 

 

The rice samples were marked as UANP: Unaged Non-Parboiled, UAP: Unaged Parboiled, 

ANP: Aged Non-Parboiled, AP: Aged Parboiled. The respective amylose content obtained for 

the samples UANP, UAP, ANP, and AP were 9.70 ± 0.29, 9.10 ± 0.25, 12.72 ± 0.07, 12.39 ± 

0.57 %. The amylose content or the apparent amylose content showed no significant change 

during the process of ageing. There was a significant difference in the percentage of amylose 

in parboiled and non-parboiled samples (Fig. 4.3.2). This was because of the formation of short 

amylopectin fine structures during the process of parboiling. 

The protein content for the samples was estimated for both aged and unaged rice (Fig. 4.3.3). 

The aged samples (ANP) and unaged samples (UANP) of Chokuwa showed significant 

difference. The protein of Komal Chaul (UAP) and (AP) showed differences too. Oryzenin is a 
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chief peptide in rice. The decrease in the concentration of low molecular weight protein in the 

aged rice grains might have resulted in a change in the protein concentration [31]. A different 

study also reports an increase in the peptides of higher molecular weight like globulins during 

storage [32]. 

The fat content for samples UANP, ANP, UAP, and AP were 2.27 ± 0.02, 2.03 ± 0.02, 0.56 ± 

0.03, 0.55 ± 0.05 g/100g respectively (Fig. 4.3.4). The fat content in the parboiled sample was 

much lesser because of inhibition of lipase activity during processing. The free fatty acid value 

increased from 0.118g /g (UANP) to 0.253 g/g (ANP) for Chokuwa rice. While for Komal 

Chaul, free fatty acid increased from 0.0595 g/g rice to 0.0613 g/g. As an earlier proposed 

theory by Moritaka and Yasumatsu as stated by Zhou et al. [33], the consequences of hydrolysis 

of lipids to free fatty acids result in forming a complex between starch and interaction with 

starch and protein. 

 

 
Fig. 4.3.2: Amylose content in aged and unaged rice 

(Different alphabets represent significant differences based on Duncan Test, p<0.05) 
 

 

Fig. 4.3.3: Protein content in aged and unaged rice 

(Different alphabets represent significant differences based on Duncan Test, p<0.05) 
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Fig. 4.3.4: Fat content in aged and unaged rice 

(Different alphabets represent significant differences based on Duncan Test, p<0.05) 

4.3.3 Changes in textural parameters 

 

Textural parameters were measured for aged and unaged parboiled rice after rehydration and 

showed variation in hardness and stickiness. The overall average change in the value is quite 

significant (Fig. 4.3.5). For the aged samples, hardness values were higher while stickiness 

values were much lower compared to that of cooked unaged parboiled rice. The increase in 

hardness could be due to grains becoming denser and more compact as rice loses moisture and 

the gaps between the starch granules might have decreased over time [34]. 

 

 
Fig. 4.3.5: Textural parameters of aged and unaged rice 

4.3.4 Changes in pasting properties 

 

There were abrupt changes noticed in the pasting properties of the aged and unaged samples 

(Fig. 4.3.6). For non-parboiled samples peak viscosities and setback viscosities have changed 

much over a year. However, the pasting temperature of parboiled samples was lower indicating 
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their no cooking properties (62-64 ℃). Parboiled samples (Komal Chaul) shifted to lower 

values of peak viscosity, holding viscosity as well as final viscosity. The viscosities such as the 

final and setback viscosity of aged rice usually increase [34]. For non-parboiled rice i.e., 

Chokuwa rice, a similar trend was observed. The final viscosity, setback viscosity, and peak 

viscosity were significantly higher for ANP than UANP. The properties of aged Komal Chaul 

showed lower setback however the setback and holding viscosities were higher than the unaged 

parboiled sample (UAP). 

 

 
Fig. 4.3.6: RVA plot of aged and unaged rice 

4.3.5 Changes in molecular bonds 

 

The FTIR plots of Chokuwa rice showed strong OH, C-H, and C=O peaks at 3200-3400 cm-1, 

2850-3100 cm-1, and 1650-1800 cm-1 respectively (Fig. 4.3.7). The ANP spectrum obtained is 

quite similar to the unpolished raw sample of Chokuwa used for fortification, this may be due 

to the presence of cellulosic materials or bran layer in the aged rice [35, 36]. The freshly harvested 

Chokuwa rice had the same peaks while the bond intensity at 3200-3400 cm-1 is lesser than the 

aged sample which could have changed due to the interaction between starch protein or starch 

lipid interaction. For Komal Chaul there were no distinguishable peaks observed for OH and 

CH stretching. Similar peaks were found for parboiled Komal Chaul [36]. 
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Fig. 4.3.7: FTIR plot of aged and unaged rice 

4.3.6 Changes in crystalline pattern 

 

The crystallographic change in the aged (A) and unaged (UA) sample of Chokuwa rice (NP) 

and Komal Chaul (P) were observed using X-ray diffraction plots (Fig. 4.3.8). 

 

 

 
Fig. 4.3.8: XRD plot of aged and unaged rice 

The Chokuwa rice samples both aged (ANP) and unaged (UANP) showed peaks at 15.1⁰, 17.1⁰, 

18.2⁰ and 23.2⁰ which suggests A-type diffractions as mentioned by Dutta and Mahanta for 
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Chokuwa rice [37]. The peak widths have increased for ANP and as a result, the crystallinity 

percentage was found to increase from 36.9% to 47.5%. Komal Chaul showed an almost 

amorphous diffraction plot with a feeble V type at 20.2⁰ Bragg angle for the unaged sample 

(UAP) contributing to a crystallinity percentage of 13.23%. An additional B (24.1⁰) type peak 

was observed in the aged sample of Komal Chaul (AP) resulting in an increase in crystallinity 

percentage from 13.23 to 19.24% which could be inferred as the cause of higher cooking time 

in the aged sample. Similar peaks of Komal Chaul were observed for pressure-parboiled 

samples for longer duration [38]. 

4.3.7 Temperature-based storage study of parboiled Komal Chaul 

 
4.3.7.1 Effect on rehydration property 

 

Water absorption or rehydration ratio is an index for the efficiency of cooking quality. Higher 

absorption suggests better cooking quality [39]. There were significant changes that had been 

observed in the rehydration ratio of soaked parboiled Komal Chaul, especially for the sample 

stored at 37 ℃ (Fig. 4.3.9). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 4.3.9: Water uptake behavior of sample stored at 4 ℃ and 37 ℃ 

 

The lowest rehydration ratio was observed at 3.45. The sample stored at 4 ℃ showed negligible 

variation in the water uptake behavior till and the 24th day of storage (Fig. 4.3.9), and on the 

later days, there was minimal change in the ratio. Statistical comparison using two paired t-

tests showed that the most significant change with P-value (T<=t) less than 0.01, the mean 

difference of rehydration ratio was observed to be more in the rice sample stored at 37 ℃. Earlier 
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studies, on the other hand, it reported that rice varieties stored at 37 ℃ showed greater water 

uptake, reduced pH, and solid loss, however, those rice samples were high and intermediate 

amylose rice with amylose content in the range of 29-18% [40]. Because no study on the 

rehydration property of no cooking low amylose variety Komal Chaul concerning ageing had 

been done, therefore, a conclusive remark requires further analysis. The change in the water 

uptake behavior could be possibly due to chemical or physical changes in the structure during 

storage. The low temperatures might have not facilitated much change, but at higher 

temperatures the changes were distinguishable. 

 
4.3.7.2 Effect on pasting property 

 

Forty viscograms were obtained from Komal rice stored at 37 ℃ and 4 ℃ for a period of 2 

months at an interval of 3 days (Fig. 4.3.10). For the purpose of representing and finding the 

differences, the RVA data were analyzed using PCA as shown in Fig. 4.3.11. The two-

component PCA analysis (Fig. 4.3.11) showed that samples stored at 37 ℃ for 33, 42, 45, 54, 

57 days (i.e., the labels 37_33, 37_42, 37_45, 33_54, and 33_57) showed less covariance from 

rest. Samples stored at 37 ℃, those profiles when compared with the 0th-day sample it can be 

observed that the samples for the latter days’ viscosities shifted to lower values. There was an 

increase in peak viscosity, breakdown viscosity, setback as well final viscosity for a few days, 

later for days, and then a sudden decrease from the 27th day onwards. The pasting temperature 

plot gave a clear observation of how the pasting temperature varies with storage time. For 

Komal Chaul stored at 4 ℃, there was no significant difference observed in the pasting 

temperature throughout the storage period of 60 days having an average temperature of 61.2 

℃ (Fig. 4.3.10). However, in the pasting temperature profile for P_37 (Komal Chaul stored at 

37 ℃), there was more variation in the temperature plot ranging from 52-75 ℃ approximately. 

Thus, if the storage temperature was high, there was more variation in viscogram profiles 

(Appendix-IV). Huang and Lai [41] used multivariate factor analysis, Principal Component 

Analysis (PCA) for the representation of RVA profiles. Rice stored at low temperature exhibited 

a lesser degradation as cited in earlier literature; including intensive degradation at high storage 

temperature and delayed storage period were reported for waxy rice stored at 4 and 17 ℃ [40, 

41]. 
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Fig. 4.3.10: Viscograms at different at different temperature and time 

 

 

Fig. 4.3.11: PCA scree plot of viscogram data 



121  

 

 

Fig. 4.3.12: PCA biplot of viscograms at different temperature and time. 

(The interpretation of these two number codes is: first numbers of 4 and 37 are the storage 

temperatures in degree Celsius, second number is the number of days of storage of samples). 

 

 

4.3.7.3 Effect on thermal property 

 

Thermal characterization was done using the shift in peak temperature as well as the change in 

peak width of the endothermic curves were quite distinct. Komal Chaul stored at 37 ℃ (P-37) 

had a much broader and steeper endothermic peak (Fig. 4.3.13). The onset temperature and 

peak temperature had also changed considerably. The broader, as well as sharper peak at 37 ℃ 

storage, indicates that the rice took more time and thermal energy to gelatinize; this result was 

substantially attributed to the partial softening of starch at a warm temperature and then 

reordering of the starch granules of parboiled Komal Chaul during the process of ageing. Komal 

Chaul stored at 4 ℃ (P-04) showed a shift in onset temperature i.e. 46.3, which is more than 

the sample P-37. P-04 may not have caused any further degradation or reorientation of the 

starch components, and similar endothermic peaks were obtained for mildly parboiled Komal 

Chaul. The polymers in P-04 may have similar temperature sensitivity and that is the reason 

why it has merged with the main peak, which suggests the retrograded fraction [42]. This 

inference of DSC thermograms ratifies with our structural morphology and crystallinity values. 
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No peaks were obtained after 100 ℃ for amylose lipid complexes. Consequently, previous 

literature suggests that high percentage of amylopectin facilitated the starch granule structure 

to be stable and which caused a rise in the gelatinization temperature and enthalpy determined 

by differential scanning calorimetry. 

 

 

 

 
Fig. 4.3.13: Differential Scanning Calorimeter plots at storage temperature of 37 ℃ and 4 ℃ 

 

4.3.7.4 Effect on surface morphology 

 

SEM was used to visualize the internal structure of unaged and aged parboiled rice grains and 

to examine the effect of the microstructure of individual parboiled rice grains due to 

temperature storage. The unaged parboiled rice from the freshly harvested sample shows a very 

smooth surface, while in contrast, the aged rice’s SEM image for both 37 ℃ and 4 ℃ showed 

globular structure in the images taken at the highest focal length (Fig. 4.3.14 and Fig. 4.3.15). It 

can be considered that the hydrogen bonds between the amylopectin side chains played an 

important factor in the growth of the structures, and the amount of water present both have a 

significant impact on the internal structure of the granules [42,43]. There was no round structure 

in the unaged SEM image, samples at 4 ℃ showed formations of a few tiny round structures. 

The average diameter of a few larger-sized globular starch structures (marked red in Fig. 4.3.15) 

was found to be 9.6 µm, quite high as compared to the average diameter of rice stored at 4 ℃. 

The appearance of a white line might have been attributed to the white swollen globular structure 

in the magnified image which could be possibly due to partial gelatinization of parboiled Komal 
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Unaged parboiled rice 

 
4 ℃ storage 

Fig. 4.3.14: Comparison SEM images of Komal Chaul after lower temperature image 
 

Unaged parboiled rice 

 
37 ℃ 

Fig. 4.3.15: Comparison SEM images of Komal Chaul after higher temperature storage 
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Chaul at a warm temperature, and then settling of the partially gelatinized granular particles 

when brought to room temperature. The other reason could be the interaction of starch protein 

molecules which was one of the reasons cited earlier on the study of waxy rice of protein. 

4.4 Results and discussion for prediction of ageing time 

4.4.1 Estimation ageing time of Komal Chaul by ML model 

 

Firstly, NIR-based spectral library (wavelength range: 740-1050 nm) of aged and unaged rice 

samples with their respective ages from the time of harvesting was created (Fig. 4.4.1). Those 

raw data were preprocessed using the Savitzky Golay function, that takes the derivative of the 

data (Fig. 4.4.2). Then, a Partial Least Square (PLS), an ML-based regression model was trained 

on the pre-processed data, validated, and tested (k-fold selection) for estimating the time of 

ageing of rice using the spectral library. Later, the predictive model with best-fitted parameters. 

The least MSE values were obtained for 10 latent variables, so a PLS model with 10 

components was trained (Fig. 4.4.3). The PLS model for ageing time estimation showed R2 of 

0.897 and RMSE of 19.409 days for the validation set. The test dataset showed a lesser accuracy 

with an R2 value of 0.7013 and RMSE to be 32.477 days (Fig. 4.4.4). However, the relative 

percent deviation was less, that is 3.08. 

 

 

Fig. 4.4.1: Raw reflectance vs wavelength 
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Fig. 4.4.2: Pre- processed spectra of raw reflectance 
 

 

 

 

Fig. 4.4.3: Hyper-tuning the Latent variables 
 

Fig. 4.4.4: Cross validation plot of test data for ageing time 
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To improve the performance of the model a variable selection approach was made. Earlier 

studies had suggested that variable selection for high-dimensional data was helpful in 

improving the performance of those with higher dimensions of data. There are various ways to 

approach selecting variables for PLS regression: filter method, wrapper method, and embedded 

method. For this study, a filter method was applied for wavelength selection [44]. The filtration 

was based on the regression coefficients of the PLS model. The association between PLS 

coefficients for every wavelength gave us an idea of largely contributing features (Fig. 4.4.5). 

 

 
Fig. 4.4.5: Fitting parameters for optimizing features 

 

 

The number of PLS components after optimization was chosen to be 40. The application of a 

recursive method whereby eliminating one wavelength at a time and calculating the MSE value. 

The optimal number of discarded wavelength features was 37 based on an optimal MSE value 

of 11.29. The chosen wavelength values were 790, 795, 800, 805, 810, 830, 835, 840, 845, 

850, 855, 860, 875, 880, 885, 900, 905, 910, 930, 935, 940, 945, 970, 975, 980 and 1000 (Fig. 

4.4.6).  
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The cross-validation plot between the measured and predicted showed better regression with 

an R2 value of 0.89 (Fig. 4.4.7). The regression for the test dataset was better than the previous 

PLS model suggesting better predictability. The RMSE values of validation and test set were 

found to be 2.01 and 3.24 days which is considerably low. The SE for validation and test set 

were found to be 1.75 and 14.24 days and biases were 3.9 and 9.6 days respectively. 

 

 
Fig. 4.4.6: Optimal features selection 

 

 

 

 

Fig. 4.4.7: Cross validation plot after optimization 
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4.4.2 Estimation of cooking quality of Komal Chaul by ML model 

 

The same spectral data (Fig. 4.4.8) were later mapped with the cooking time or softening time 

of Komal Chaul have changed linearly with time. Those raw data were preprocessed using the 

Savitzky Golay function, which takes the derivative of the data. PLS regression was used to 

model cooking with spectral data taken during the process of ageing. The training set was 

trained over 40 numbers of Latent variables. The least MSE values were obtained for 10 latent 

variables, so the PLS model with 10 components was validated. The validation score was found 

to be R2: 0.79 and RMSE of 1.09 min. The test dataset showed accuracy with an R2 value of 

0.77 and an RMSE to be 2.77 min (Fig. 4.4.9). The RMSE was higher because the endpoint 

predicted deviated more for both the higher values and lower values. 

 

Fig. 4.4.8: Raw reflectance vs wavelength 

 

Fig. 4.4.9: Cross validation plot for prediction of test data for cooking time 
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Therefore, ML-based PLS regression method proved quite a definitive technique in calibrating 

the ageing parameters of Komal Chaul as supported by previous work that worked on aged rice 

determination using NIRS [45]. This is because, in the case of limited data, PLS is more stable 

than other models as it can establish non-linear relationships between input and output variables 

by exploiting underlying latent factors. 

4.4.3 Prediction of the age of Komal Chaul by classification ML model 

 

The ageing data were collected over a period of a year at an interval of 7 days. The spectral 

archieve of ageing data for Komal Chaul was divided into 3 groups: 1 month, 3 months interval, 

6 months interval. The classification models were then trained on the training dataset and tested 

over the test dataset using the k-fold validation technique. The validation accuracy was found 

to be highest for the SVM model (Fig. 4.4.10) with a value of 0.77. This could be due to ability 

of SVM models to form collinearity among multilinear data [46]. The test accuracy was found 

to be 0.79 and the F1-score was found to be 0.69. The test dataset predictions were represented 

using a confusion matrix which showed that the later month predictions are coinciding (4th to 

7th group) with that of the 6–9 months predictions. (Fig. 4.4.11). Therefore, our next 

classification was based on three months classification, and the random forest classifier showed 

the best in classifying the data where each group consisted of spectral data from 3 months. The 

test accuracy was found to be 0.89 and the F1 score was found to be 0.81. This showed spectral 

data from 6-9 months (2nd group) coincides mostly, also the 0th and 1st group suggesting lower 

accuracy of prediction for the first 3 months. Lastly, a classification was based on six-month 

spectral data. The prediction accuracy was highest for RF classifier with an accuracy of 0.92 

for the test data and the F1 score was highest. Therefore, the classification comparison suggests 

that Komal Chaul that are spectra obtained from apparently age groups of 6 months, were 

showing better predictability. This could also be due to the reason of a two class classification 

problem. 
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Fig. 4.4.10: Comparison of classification of ageing time on 1-month basis 

 

 

Fig. 4.4.11: Confusion matrix of classification of ageing time on 1-month basis 
 

 

Fig. 4.4.12: Comparison of classification of ageing time on 3-month basis 
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Fig. 4.4.13: Confusion matrix of classification of ageing time on 3-month basis 
 

 

Fig. 4.4.14: Comparison of classification of ageing time on 6-month basis 
 

Fig. 4.4.15: Confusion matix of ageing time on 6-month basis 
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4.5 Summary of Chapter IV 

The findings obtained from implementing the methodologies of chapter 3 and subsequent 

inference are described in this chapter. The soaking kinetics gave Peleg’s constant k1 in the 

range 0.039 s-1 - 0.043 s-1 and k2 in the range 0.021- 0.033 % db-1. Midili Kucuk equation for 

soaking time with moisture ratio was developed for any given temperature, 

𝑀𝑅 = (1.009𝑒−0.067𝑡
0.782 

+ 4.54 × 10−4𝑡)(−0.3002 + 0.025𝑡). 

 

The time (approx.) estimated for reaching 30% m.c. (wb) using Peleg’s equation was found to 

be 111, 135, and 188 min, at 60, 50, and 40 ℃ respectively and using Midili Kucuk equation 

the time estimated were 108, 134, and 192 min at 60, 50, and 40 ℃ respectively. The activation 

energy of the soaking process was calculated to be 42.28 kJ/mol. Fick’s diffusivity coefficient 

was found to be in the range of 2.83 – 7.92 ×10-11 m2/s. For, the steaming process, the first 

order rate constant was in the range between 0.003 to 0.001 s-1 with varying pressures. The 

time required to reach 99% gelatinization was estimated to be 21, 17, 12, 10, and 6 at 0, 0.05, 

0.1, 0.15, and 0.2 MPa respectively. The activation energy of the steaming process was 

calculated to be 18.7×102 kJ/mol. For drying kinetics, the Page model fitted the best, and the 

estimated time for reaching 13% m.c. (wb) was found to be 150, 165, and 185 min at 60, 50, 

and 40 ℃ respectively. The activation energy calculated for the drying process was found to 

be 2.49 × 10-7 kJ/mol. The diffusion coefficient for the process of drying estimated from Crank’s 

solution was in the range 2.60 ×10-9 m2/s - 7.77 ×10-9 m2/s. The second objective findings 

include the developed ML models for process analysis of soaking, steaming, and drying using 

spectral data. Linear regression combined with principal components performed better in 

regressing moisture content during soaking with prediction score: R2 of 0.695, and RMSE of 

1.109%. PLS for the purpose of regression of NIR data with DG values worked well with an 

R2 value of 0.843. The estimated highest and lowest relative percent differences (RPD) values 

for the test dataset were 19.79 and 0.94, respectively. For drying moisture regression with 

spectral, ANN performed well with cross-validation score of R2 of 0.66 and RMSE of 7.03%. 

The supervised learning technique, Random Forest (RF) performed well with a prediction 

accuracy of 0.8952 in classifying the soaked samples based on moisture content. For the third 

objective, the overall composition of amylose, protein and fat contents in the rice grain remained 

essentially unchanged after ageing while changes were observed due to processing. However, 

textural and structural changes do occur. Storage at higher temperature induces more changes in 

pasting behavior and thermal property, as well as the rehydration property of Komal Chaul. 
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The PLS model for ageing time estimation showed regression coefficient (R2) of 0.897. The 

test data performance for rehydration ratio showed a very little correlation with a low R2 value. 

The prediction performance of the PLS model for gruel solid loss and cooking time showed 

better correlation with R2 value of 0.77 respectively. Therefore, the classification comparison 

suggests that Komal Chaul spectra that were obtained from apparently age groups of 6 months, 

were showing better predictability. 
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