to the Lord

to my dearest parents Krishnamohon and Jamuna

significance in the region. Furthermore, it was revealed that 28 of these fruit species possess multiple applications, highlighting their versatility and potential. These fruits have long been extensively utilized as preventive tonics for addressing a variety of ailments, including skin and gastrointestinal issues, as well as other health-related concerns. The chapter provides valuable insights into the abundance and utility of wild edible fruits in two community forest of Manipur.

Chapter 4 provides a detailed investigation of the seed germination, survival, and growth of selected seven wild edible fruit plant species: Elaeocarpus floribundus, Microcos paniculata, Phyllanthus emblica, Rhus semialata, Solanum betaceum, Vangueria spinosa, and Ziziphus mauritiana. The study focuses on examining the micro-climatic conditions within shade netting experimental houses of varying percentages of shades. The findings reveal notable variations in light intensity, with higher values observed during September and October. The air temperature remains relatively stable throughout the study period, while humidity levels exhibit moderate variations. Soil temperature remains consistent with no significant changes. The experiment highlights that seeds of selected wild edible fruits demonstrate a higher preference for an open field setting in terms of germination. The survivability and growth attributes of these fruits vary among different plant species when exposed to different shaded environments. The variation in light intensity, influenced by different shade nets, emerges as a key factor affecting growth and physiological responses, including photosynthesis rate and pigment content. Overall, this chapter provides valuable insights into the cultivation and environmental requirements of wild edible fruit plants, contributing to our understanding of their growth patterns and potential for cultivation.

Chapter 5 is dedicated to the examination of the physico-chemical and chemical attributes of 15 wild edible fruits. The results demonstrate fluctuations in moisture content, with *Averrhoa carambola* L. displaying the highest moisture content, whereas *Rhus semialata* Murr. exhibits the lowest. The range of ash content is between 2.00% and 12.50%, while the fat content ranges from 0.40% to 6.85%. All fruits exhibit high calorific values. The total carbohydrate content varies from 8.16% to 36.39%, and the total protein content ranges from 0.70 g/100g to 11.66 g/100g. The fruits demonstrate

Declaration

I hereby declare that this thesis entitled 'Assessment of wild edible fruit plants of Manipur, north-east India: population structure, seedling survival, growth, and phytochemical characterization' is being submitted to Tezpur University in partial fulfilment for the award of the degree of Doctor of Philosophy in the Department of Environmental Science. This is a record of bonafide research work accomplished by me under the supervision of Dr. Ashalata Devi, Professor, Department of Environmental Science, Tezpur University, Assam, India. The results obtained and related interpretations included in the thesis are based on my original work. All the help received from various resources (books, research papers, websites, etc.) when writing the thesis are acknowledged at respective places in the text.

I would also like to mention that no part of the thesis has been submitted elsewhere for award of any other degree.

Date: 8/4/2024

M. Bidyalakshmi Devi Mayanglambam Bidyalakshmi Devi

Reg. No: TZ189840

Place: Tezpur

तेजप्रविश्वविद्यालय/ TEZPUR UNIVERSITY (संसदकेअधिनियमदवारास्थापितकेंद्रीयविश्वविदयालय) (A Central University established by an Act of Parliament) तेजपुर-784028 :: असम/ TEZPUR-784028 :: ASSAM

Certificate of the supervision

This is to certify that the thesis entitled 'Assessment of wild edible fruit plants of Manipur, north-east India: population structure, seedling survival, growth, and phytochemical characterization' being submitted by Mayanglambam Bidyalakshmi Devi to the School of Sciences, Tezpur University, India for the award of degree of Doctor of Philosophy is a record of genuine research work carried out by him under my supervision and guidance.

All help received by her from various sources have been duly acknowledged.

No part of this thesis has been submitted elsewhere for the award of any other degree.

The thesis work, in my opinion is worthy of considering for the award of degree of Doctor of Philosophy in accordance with the regulation of the institute.

Date: 8/04/24 Place: Tezpur

Dr. Ashalata Devi Professor Department of Environmental Science Tezpur University, Assam, India

Acknowledgement

I would like to begin by expressing my utmost gratitude and appreciation to my supervisor, **Prof. Ashalata Devi**. Her unwavering encouragement, unconditional support, continuous inspiration, and guidance throughout my research work have been invaluable. I am truly grateful to have her as my supervisor, as she has not only shaped me into a new individual but has also become a family. I have gained numerous invaluable skills and knowledge from her, extending beyond the academic realm.

I extend my heartfelt thanks to the members of my doctoral committee: Dr. Nirmali Gogoi from the Department of Environmental Science, and Prof. Manabendra Mandal and Dr. Nima D. Namsa from the Department of Molecular Biology and Biotechnology at Tezpur University. Their generous time and support in reviewing my research work have been influential. I am deeply grateful for their valuable suggestions, remarks, and encouragement. Additionally, I would like to express my gratitude to the Faculty and Staff members of the Department of Environmental Science at Tezpur University for their facilitation and provision of essential resources that greatly contributed to the completion of my research work.

I would like to acknowledge the Department of Environmental Science at Tezpur University for their financial support through UGC-NET JRF, as well as their technical assistance and provision of testing facilities, which were crucial for the successful execution of this project.

My sincere appreciation goes to Mr. D. P. Morwadun Maring, Mrs. Ksh. Radhamani Devi, Mr. N. Oken Singh, and Ms. Tedun Maring for their valuable companionship during the fieldwork and sample collection. I express my deepest gratitude to the village heads and local people I encountered during my field survey for their sincere support and warm welcome. I must convey my sincere thanks to the local guides, Mr. Khamba Maring and Mr. Methew Maring, as their cooperation and assistance were indispensable in the field.

I also want to take this opportunity to express my special gratitude to my senior labmates, Dr. Jintu Sharma, Dr. Bidyut Sarania, and Dr. Shilpa Baidya. I am indebted to Dr. Shilpa Baidya for her unending help and support during this journey as a friend and a guide and to Dr. Jintu Sharma for his kind assistance in species identification and guidance. I would also like to extend my special thanks to Ms. Munmi Borah for her help in conducting the antimicrobial assay in her lab, Mr. Subham Mandal for his invaluable assistance with the experiment on photosynthesis rate, and Mr. Bijay Thakur for his contribution to generating maps using GIS. These acknowledgments would be incomplete without mentioning my fellow research labmates, Mr. Thingujam Manithoi Singh, Mr. Phurailatpam Surjit Sharma, Mr. Gisandu Malunguja, Mr. Prajnyan Sarma, and Mr. Bijay Thakur. It was a pleasure working with them, and I greatly appreciate their ideas, assistance, and good humour.

I am also grateful to my friends Ms. Bonita Loithongbam, Ms. Juri Chetia, Ms. Roto Yalyo, Ms. Shruti Talukdar, Ms. L. V. Makinei, Mr. Sahbaz Ahmed, Ms. Sharmistha Paul, Ms. Nijara Baruah, and other Research Scholars from the Department of Environmental Science at Tezpur University for their support during my Ph.D. journey.

My deepest appreciation goes to my husband, Dr. Tekcham Gishan Singh and my family members for their love, patience, understanding, unwavering support, constant guidance, and encouragement. I would like to express my heartfelt gratitude to my parents, Late Mayanglambam Krishnamohon Singh and Mrs. Ksh. Jamuna Devi, for always believing in me and motivating me to pursue my Ph.D. My love and dedication are extended to them as I dedicate this thesis. I am also thankful to my siblings for their unwavering love and support. Furthermore, I would like to express my sincere

thanks to all those whom I met during my research period but unconsciously omitted to mention their names. Finally, I offer my prayers to God for blessing me with good health, enabling me to complete my Ph.D. work, and for bringing a wonderful son, Tekcham Korounganba, into my life, who means the world to me.

Mayanglambam Bidyalakshmi Devi

List of figures

Fig. 3.1 Map of study area showing sampling points of market survey (generated using ArcGIS)
Fig. 3.2 Map of study area showing the two selected villages (generated using Arc GIS)
Fig. 3.3 Species accumulation curve of tree species recorded in the two community forest
Fig. 3.4 Dominance-distribution curve of tree species of the two-community forests of Manipur
Fig. 3.5 Girth class density (ha ⁻¹) distribution of tree species recorded in both the community forests of Manipur
Fig. 3.6 Family diversity of tree species accounted from the two community forests of Manipur
Fig. 3.7 Family diversity of fruit tree species (edible fruits) recorded in the two- community forests of Manipur
Fig. 3.8 Number of species used for the treatment of various health ailments
Fig. 3.9: Showing Natural habitat of <i>S. himalayana</i> in the Machi community forest (a), Flower buds (b), Female flower with ten bracts and buds (c), and Colour changes of the flower bracts (d)
Fig. 3.10 Host plant of S. himalayana, Tetrastigma vine in their natural habitat 94
Fig. 4.1 Growth in plant height, total leaf count, and leaf area during the study period in 25% shade house
Fig. 4.2 Growth in plant height, total leaf count, and leaf area during the study period in 50% shade house

Fig. 4.3 Growth in plant height, total leaf count, and leaf area during the study period in 75% shade house
Fig. 4.4 Relative growth rate of seedlings in terms of height (RGRH), under 25% shade, 50% shade, and 75% shade
Fig. 4.5 Relative growth rate of seedlings in terms of leaf area under 25% shade, 50% shade, and 75% shade
Fig. 4.6 Relative growth rate of seedlings in terms of leaf height under 25% shade, 50% shade and 75% shade
Fig. 4.7 Relative growth rate of seedlings in terms of leaf area (a) 25% shade (b) 50% shade (c) 75% shade
Fig. 4.8 Chlorophyll and carotenoid content found in immature leaves and mature leaves under 25% shade,50% shade and 75% shade
Fig. 4.9 Photosynthesis rate (PR) under three shade netting houses (25%, 50%, and 75% shade)
Fig. 5.1 Graphical representation for moisture content, total solids, and solubility percentage of fifteen wild edible fruits
Fig. 5.2 pH of the fifteen fresh and dried wild edible fruits
Fig. 5.3 Titratable acidity of the fifteen wild edible fruits
Fig. 5.4 Graphical representation for CIELab colour coordinates (L*=darkness to lightness; a*=greenness to redness; b*=yellowness vs blueness)
Fig. 5.5 Bar graph showing derived indexes (<i>WI</i> = white index; <i>YI</i> = yellow index; <i>BI</i> = brown index)
Fig. 5.6 Principal component analysis (PCA) Bi-plot (score and loading plot) of all the parameters of physico-chemical parameters of fifteen fruit samples.
Fig. 5.7 Hierarchical cluster plot for physico-chemical properties of fifteen wild edible fruits
Fig. 5.8 Graphical representation of ash content of fifteen wild edible fruits 222
Fig. 5.9 Graphical representation of fat content of fifteen wild edible fruits
Fig. 5.10 Graphical representation of calorific value of fifteen wild edible fruits 223
Fig. 5.11 Calibration curve of total carbohydrate content
Fig. 5.12 Calibration curve of total protein content

LIST OF FIGURES

Fig. 5.13 Graphical representation of total carbohydrate content in fifteen wild edible fruits
Fig. 5.14 Graphical representation of total protein content in fifteen wild edible fruits
Fig. 5.15 Calibration curve of total phenolics content (TPC) 229
Fig. 5.16 Calibration curve of total flavonoids content (TFC)
Fig. 5.17 Calibration curve of total tannin content
Fig. 5.18 Graphical representation of phytochemical properties
Fig. 5.19 Principal component analysis (PCA) Bi-plot (score and loading plot) of all the parameters of proximate composition and phytochemicals of fifteen fruit samples
Fig. 5.20 Hierarchical cluster plot based on proximate composition and phytochemical properties of fifteen wild edible fruits
Fig. 5.21 Calibration curve for DPPH radical inhibition % of ascorbic acids 233
Fig. 5.22 DPPH radical inhibition % of the methanolic extracts of the wild edible fruits (n=3). Error bars denote standard deviation
Fig. 5.23 IC ₅₀ values for DPPH assay (n=3). Error bars denote standard deviation.
Fig. 5.24 Calibration curve for ferric reducing power of standard ascorbic acid 235
Fig. 5.25 FRAP value for wild edible fruits (n=3). Error bars denote standard deviation
Fig. 5.26 Calibration curve for invitro-antioxidant activity of standard ascorbic acids.
Fig. 5.27 Invitro-antioxidant activity for wild edible fruits (n=3). Error bars denote standard deviation
Fig. 5.28 Reducing activity of fifteen wild edible fruits
Fig. 5.29 Hierarchical cluster analysis (HCA) plot of fifteen wild edible fruit samples based on the antioxidant activity
Fig. 5.30 Vitamin C content of the fresh (a) and dried (b) fruit samples (n = 3). Error- bar denote standard deviation
Fig. 5.31 Calibration curve for vitamin B ₁ (thiamine)

Fig. 5.32 Calibration curve for vitamin B ₂ (riboflavin)
Fig. 5.33 Vitamin B complex content in fifteen wild edible fruit sample (a) vitamin B_1 (b) vitamin B_2 (n = 3). Error-bar denote standard deviation
Fig. 5.34 Principal component analysis (PCA) Bi-plot (score and loading plot) of all the mineral elements of fifteen fruit samples
Fig. 5.35 Hierarchical cluster plot based on (a) macro-elements (b) micro-elements.
Fig. 6.1a Visual representation of FT-IR for fifteen wild edible fruits (generated using OriginPro)
Fig. 6.2a LC-MS positive ion chromatograms of the aqueous extracts of the fruits sample A. bunius (a), A. carambola (b), E. floribundus (c), G. pedunculata (d), G xanthochymus (e), and P. emblica (f)
Fig. 6.3a LC-MS negative ion chromatograms of the aqueous extracts of the fruits sample where <i>A. bunius</i> (a), <i>A. carambola</i> (b), <i>E. floribundus</i> (c), <i>G. pedunculata</i> (d)
Fig. 6.4a Percentile level of metabolite classes in wild edible fruits, <i>A. bunius</i> and <i>A. carambola</i> analysed by LC-MS
Fig. 6.5 Percentile levels of metabolite classes in seven wild edible fruits analysed by LC-MS

List of tables

Table 3.1 Quantitative data (F- Frequency %, A- Abundance, D- Density ha ⁻¹ , BA- Basal area m ² ha ⁻¹ , IVI- Importance Value Index) of tree species recorded in Minou community forest.
Table 3.2 Quantitative data (F- Frequency %, A- Abundance, D- Density ha ⁻¹ , BA- Basal area m ² ha ⁻¹ , IVI- Importance Value Index) of tree species recorded in Machi community forest
Table 3.3 Species diversity indices recorded in the two community forests
Table 3.4 Correlation among density, frequency, basal area, and diversity indices recorded in the Minou community forest community
Table 3.5 Correlation among density, frequency, basal area and diversity indices recorded in the Machi community forest
Table 3.6 Fruiting season and market prices of wild edible fruit tree species found in the Minou and Machi community forest.73
Table 3.7 Mode of use and their associated health benefits of wild edible fruit trees 78
Table 4.1 Climatic variables recorded inside the shade (25%, 50% and 75%) netting houses. 116
Table 4.2 Germination percentage and survivability after 10 days of germination of fruit species
Table 4.3 Root-shoot ratio after 10 days and 90 days of germination 118
Table 4.4 Total biomass recorded after 90 days of germination in different shade houses. 118
Table 4.5 Pearson correlation between climatic measures, root-shoot ratio and total biomass 119

Table 4.6 Pearson correlation between light intensity, recorded in three different shade netting houses, and plant' heights
Table 4.7 Pearson correlation between light intensity, recorded in three different shade netting house, and total leaf count. 133
Table 4.8 Pearson correlation between light intensity, recorded in three different shade netting houses, and plant leaf area. 134
Table 4.9 Comparison analysis on the effects recorded under three different shadenetting houses on plant growth parameters (height, total leaf count, and leafarea) among species using Two-Way ANOVA
Table 4.10 Pearson correlation between micro-climatic conditions, and plant relative growth 136
Table 4.11 Chlorophyll (a, b and Total) and carotenoid (total carotenoids) content in immature and mature leaves of different fruit species under varying levels of shading (25%, 50%, and 75% shade)
Table 4.12 Photosynthesis rate (PR) recorded in studied wild edible fruits growing under three shade netting houses (25%, 50%, and 75%)
Table 4.13 Correlation between photosynthesis rate (PR) and pigment content 141
Table 5.1 Instrumental analytical conditions for the ICP-MS of element analysis. 203
Table 5.2 Physical characteristics of fifteen wild edible fruits of Manipur, India 207
Table 5.3 Physio-chemical properties of fifteen wild edible fruits 208
Table 5.4 Pearson's correlation of physico-chemical parameters of fifteen wild edible fruits of Manipur
Table 5.5 Phytochemical constituents recorded in aqueous extract of fruit sample of the studied species. 216
Table 5.6 Phytochemical constituents recorded in ethanol extract of fruit sample of the studied species. 218
Table 5.7 Proximate composition of fifteen wild edible fruits of Manipur
Table 5.8 Phytochemical properties of fifteen wild edible fruits of Manipur 228
Table 5.9 Pearson's correlation between proximate composition and phytochemicals
Table 5.10 Antioxidant activity of fifteen wild edible fruits of Manipur

LIST OF TABLES

Table 5.11 Pearson's correlation coefficient between the antioxidant assays and total phenolic total flavonoid and total tannin contents
Table 5.12 Vitamin C and vitamin B complex content in fifteen wild edible fruits242
Table 5.13 Pearson's correlation coefficient between vitamins and antioxidants 246
Table 5.14 Macro-elements content of the fifteen wild edible fruits
Table 5.15 Micro-elements content of the fifteen wild edible fruits
Table 5.16 Pearson's correlation between macro and micro elements 251
Table 6.1 Details of FTIR spectrum of fifteen fruits (F1-F15)
Table 6.2 Inhibition zone (mm) for aqueous extract (100mg/ml)
Table 6.3 Inhibition zone (mm) for ethanol extract dissolved in DMSO (100 mg/ml)
Table 6.4 Metabolite and its relative percentile in aqueous extract of the fruit sample A. bunius as analysed by LC-MS
Table 6.5 Metabolite and its relative percentile in aqueous extract of the fruit sample A. carambola as analysed by LC-MS
Table 6.6 Metabolite and its relative percentile in aqueous extract of the fruit sample <i>E. floribundus</i> as analysed by LC-MS
Table 6.7 Metabolite and its relative percentile in aqueous extract of the fruit sample <i>G. pedunculata</i> as analysed by LC-MS
Table 6.8 Metabolite and its relative percentile in aqueous extract of the fruit sample <i>G. xanthochymus</i> as analysed by LC-MS
Table 6.9 Metabolite and its relative percentile in aqueous extract of the fruit sample <i>P. emblica</i> as analysed by LC-MS 367
Table 6.10 Metabolite and its relative percentile in aqueous extract of the fruit sample S. pinnata as analysed by LC-MS 372
Table 6.11 Percentile level of metabolites present in the seven wild edible fruits of Manipur. 377
Table 6.12 Reported bioactive compound present in seven wild edible fruits of Manipur. 383