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CHAPTER 2 

REVIEW OF LITERATURE 

 

This chapter provides the literature on works related to the present work. Section 2.1 

presents a glimpse of the spectral, electrical, and thermal modeling of photovoltaic 

(PV) modules in previous works by various researchers. Also, the section shows the 

spectrum's effect on the PV module's performance. Section 2.2 reviews multiple 

publications on the impact of soiling on PV module performances. This section also 

examines the effect of varying environmental parameters on PV soiling. Section 2.3 

reviewed the studies based on the seasonal performance analysis of the PV modules. 

2.1 Modeling approaches for performance analysis of photovoltaic module 

The performance of the photovoltaic module depends on various parameters 

includes solar spectrum and environmental parameters. Several modeling approaches 

have been developed for precise estimation of the PV modules. Some models 

emphasize on the electrical performance, while some on the thermal performance. 

Other modeling approaches are integration of solar spectrum with electrical and 

thermal model. 

2.1.1 Spectral modeling 

The spectral variation plays a vital role in the performance of the photovoltaic 

system. The influence of seasonal variation of the solar spectrum is important in 

optimum solar photovoltaic system design [76]. The spectrum of the sunlight changes 

with the change in the time throughout the day, month, or year [77, 78]. The spectrum 

is ‗red‘ during sunrise and sunset and ‗blue‘ during noon. The significance of the 

changing solar spectrum varies differently based on the photovoltaic technology 

considered [79]. The solar spectrum is sensitive to declination angle, latitude, hour 

angle, aerosol density, water vapor, and ozone thickness [77]. The spectral response 

of a PV cell relates to the location and time of the day. The variation in the spectral 

distribution depends on the meteorological conditions and the sun‘s position. It is 

considered that not all atmospheric parameters are responsible for the spectral 
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variation. Some main parameters are irradiance, air mass, aerosol, and turbidity. The 

atmospheric constituents available in the atmosphere are responsible for absorption 

and reflection of the incident spectrum falling on the earth‘s surface. The main 

meteorological parameters affecting the performance of the PV system include solar 

geometry, global irradiance, diffuse irradiance, ambient temperature, relative 

humidity, and wind speed [80]. Different PV systems act in different ways to the 

incident spectrum wavelength range based on their band energies. For example, the 

utilization of spectral irradiance for electricity generation and part of the spectrum that 

contributes to heat generation in crystalline silicon solar cells is shown in Figure 2.1.  

In a single junction, the spectral response is based on only one material, whereas in a 

multijunction, several cells of varied material with suitable band energies are stacked 

together to obtain a better spectral response. Different PV technologies are 

experimentally investigated under varying bands of the spectrum. Some authors have 

worked on monocrystalline silicon cells [81-84], multicrystalline silicon photovoltaic 

modules [81-87], some on single junction amorphous silicon PV modules [81-83, 86-

88], double junction amorphous silicon solar cells [88], three-stacked amorphous 

silicon photovoltaic module [87], thin film CdTe, CIGS, perovskite [82], and triple 

junction PV modules [89]. 

 

Figure 2.1 Distribution of solar spectrum used for electricity and heat generation in silicon 

solar cell  [90, 91]. 
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For PV modules with small band gap material (crystalline silicon), the 

efficiency lies from 4% to 5% between seasons, while for high band gap materials 

(amorphous Si) the efficiency varies from -10% to 15% between seasons [92]. 

However, the total installed capacity of the crystalline silicon solar cell was 93% in 

2016 [93], which gives an interest in the consideration of crystalline silicon solar 

cells. There are various spectral models used for spectral modeling in clear-sky and 

cloudy conditions. Some of them are SMARTS2: Simple Model of the Atmospheric 

Radiative Transfer of Sunshine version 2 [94, 95], SPCTRAL2: Simple Solar Spectral 

Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's 

Surface for Cloudless Atmospheres [96, 97], SEDES2 [98], SBDART: Santa Barbara 

DISORT Atmospheric Radiative Transfer [99], and ASPIRE: All-sky Spectral 

IRadiancE [100].  

2.1.2 Extraction of solar cell parameters 

The growth in energy crises and uncertainties in conventional energy sources 

have encouraged the development of self-dependent renewable energy sources.  In the 

photovoltaic (PV) industry, efficiency and power output are considered to be the most 

important parameters since it defines the applicability of the PV panel for a specific 

purpose [101]. Practically, the output differs from the standard efficiency described by 

the manufacturer (labeled in the PV modules). The difference in the actual output is 

due to the variations in the solar radiation (in terms of magnitude and spectrum 

content) [102] as a function of the sun‘s position, the cell temperature, the seasonal 

change, and the varying atmospheric parameters [101, 103]. The absorption and the 

scattering of air molecules and dust in the atmosphere are the major factors that 

contribute to the change in the integrated power of the spectrum [104]. Typically, the 

cell parameters provided by the PV manufacturer are under the standard test 

conditions (STC). These cell parameters are limited to the short-circuit current (Isc), 

open-circuit voltage (Voc), maximum current (Imp), maximum voltage (Vmp), and 

maximum power (Pmax). However, there are some significant unknown cell parameters 

such as photocurrent (Iph), diode saturation current (Io), ideality factor (n), series 

resistance (Rs), and shunt resistance (Rsh). Since the current-voltage (I-V) 

characteristics of a PV module is a non-linear implicit expression, and therefore 
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models have been developed to determine these electrical parameters. These unknown 

cell parameters can be extracted from the three base points under STC. These points 

are the Voc (open circuit condition), Isc (short-circuit condition), and Imp and Vmp 

(maximum power point condition) and can be obtained from the manufacturer 

datasheet [29, 105, 106]. A comparative review of different analytical of single-diode 

models and computational techniques of single-diode and double-diode models for 

different PV module technologies has been reported [107]. A current source is 

connected in parallel to a diode in a single-diode model, and its output is directly 

proportional to the amount of light that strikes the cell. Three parameters, Isc, Voc and n 

are all that needed for this model to fully describe the IV curve. Thus, this model 

simple and requires less computational time. While the PV cell is more precisely 

represented by the double-diode model, where one diode represents the diffusion 

current in the p-n junction and the other diode represents the space-charge 

recombination. At lower irradiance level, the double-diode model yields more accurate 

findings. This model can attain more precision, but it needs seven parameters 

including Iph, Io1, Io2, Rs, Rsh, n1 and n2, where Io1 and Io2 are the diode saturation 

current of diode 1 and diode 2, respectively and n1 and n2 depicts the ideality factor of 

diode and diode, respectively [108]. The series resistance signifies the ohmic loss and 

loss due to impurity concentration along with junction depth. While shunt resistance is 

related to leakage current across the junction [109]. The electrical circuit of the 

double-diode and single-diode model is depicted in Figure 2.2. 

 

 

   (a)      (b) 

Figure 2.2 The electrical circuit of solar cell with (a) double-diode and (b) single-diode 

models [110]. 

There are numbers of reported methods and techniques to solve this 

expression. Some authors have converted the implicit I-V equation to an explicit 
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equation using Lambert W-function to numerically solve the single-diode I-V equation 

of the cell in order to extract the electrical parameters of the cell. They also 

implemented the Newton-Raphson method to solve the non-linear equation of the cell 

[102]. Moreover, the annual energy yield from the designed PV model was simulated 

using transient system simulation (TRNSYS) [111]. Ortiz-Conde et al. [112] 

determined the intrinsic and extrinsic parameters using the co-content function in 

terms of Lambert W-function under the cell‘s illuminated I-V characteristics. Yadir et 

al. [113] used analytical methods, concluding that the developed model 

correspondence with the model of Ortiz- Conde et al. [112]. Cuce et al. [114] 

experimentally and statistically determined the electrical cell parameters of m-Si and 

p-Si. The study was carried out at a solar intensity level range of 200-500 W/m
2
 and a 

temperature range of 15-60°C. They defined a term called solar intensity coefficient, 

which is the ratio of current (A/m
2
) and solar intensity (W) to correlate the solar 

radiation with the current parameters of the PV module. However, this study was 

conducted indoors in controlled environment. Pindado et al. [115] proposed an explicit 

equation from the manufacturer datasheet using power-voltage (P-V) curve. This 

model consists of two equations, first for the voltage values lower than the voltage at 

MPP and second for voltage values higher than the voltage at MPP.  

In some approaches researchers have applied analytical methods [116, 117], 

and numerical methods, namely, Newton-Rapshon method [102], Gauss-Seidel 

method [105]; and few other have used artificial neural network [118, 119] has been 

used to estimate the cell parameters. Chan et al. [116] analytically evaluated the 

electrical parameters of single-diode and double-diode solar cells. The percentage 

error was obtained to be less than 10% for all the parameters evaluated. Cubas et al. 

[117] used an analytical method to extract the electrical parameters of a 1-diode/2-

resistor PV module. The boundary condition applied to this model is that the first 

derivative of the power with respect to the voltage output is considered to be zero. 

Villalva et al. [29]  developed a model single-diode PV array to determine the 

electrical parameters of the I-V expression. Picciano et al. [120] solved the electrical 

parameters using empirical data. The approximate data obtained are processed under 

the iterative trial-and-error method. Phang et al. [121] and Blas et al. [122] developed 

a simple analytical methodology to extract parameters that defined PV behavior 



Chapter 2: Review of Literature 

   Page | 27  

 

equations. Boutana et al. [123]  have predicted the J-V behavior of the PV 

technologies  multi-Si, CIGS, and CdTe, incorporating a comparison with the ones 

given in datasheet and the experimental results. They have compared different models 

developed by seven from the literature to explain the implicit and explicit modes of 

calculation. Bouzidi et al.  [124]  developed a model using a non-linear least-squares 

optimization algorithm based on the Newton method modified through the Levenberg 

parameter [125] to obtain the electrical parameters considering a series resistance and 

shunt conductance. Chenche et al. [107] compared the electrical parameters, 

coefficient of determination (R
2
), and mean absolute percentage error (MAPE) value 

of monojunction and multijunction solar cells extracted by different researchers who 

have used different analytical and empirical methods to solve these parameters. They 

have concluded that the model proposed by Blas et al. [122] and Xiao et al. [126] are 

the best for monojunction and multijunction cells, respectively. Et-torabi et al. [105] 

implemented an iterative method (called Gauss-Seidel) using MATLAB on a single-

diode model and an analytical method on a double-diode model to determine the cell 

parameters of monocrystalline silicon, multicrystalline silicon, and thin film PV 

modules. Models were also developed using MATLAB/Simulink. Stefan [127] 

developed a MATLAB/Simulink model using the fsolve function to numerical extract 

the electrical parameters of the PV module. They highlighted that out of the different 

optimization algorithms, Lavenberg-Marquardt algorithm is found provide the best 

results. Xiao et al. [126] developed Simulink model of CIG, monocrystalline silicon 

and multicrystalline silicon modules to obtain the parameters. They compared the 

obtained simulation parameter values with the constant parameter model (CPM), with 

visibly less deviation of simulation data compared to actual data.  Li et al. [128] 

proposed a transient Multiphysics simulations in ANSYS CFX and MATLAB using 

compound parabolic concentrator (CPC) to obtain the six parameters under varying 

climatic conditions. 

Various approaches have been adopted to accurately predict the performance 

of PV modules. The cell parameters, such as the ideality factor, linearly decrease with 

a rise in cell temperature, and the fill factor exponentially increases and linearly 

decreases with the intensity of light and cell temperature, respectively. Both series and 

shunt resistances have an inversely linear relationship with the cell temperature [114]. 
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In one of the other methods, n is initially obtained from the diode characteristics of the 

I-V curve, and then the Io is extracted using the n and open circuit condition. Next, the 

ideal I-V curve parameters were determined, substituting n and Io values into the solar 

cell equation. The Rs and Rsh values were calculated using the value of the R
2
. This 

value converges Rs and Rsh to optimum; if  R
2
 converges above 0.99, extraction of 

parameters is terminated, or else the procedure repeats [106]. Another method uses an 

optimization model, where the Rsh value is determined, and for each Rsh value, the 

other four unknown parameters are evaluated [110]. Studies have considered the fixed 

irradiance and temperature values to conduct a comparative study between the data 

provided by the manufacturer at different fixed conditions and the simulated results 

performed. The relative errors were determined on peak power voltage and peak 

power for copper indium diselenide (CIS), multicrystalline silicon, and 

monocrystalline silicon PV module technologies [129]. However, literature also 

showed work that does not use these three reference points but instead uses arbitrary 

points of the I-V curve. For example, an algorithm was introduced where the number 

of pairs of ideality factor and series resistance is used to extract the other three 

unknown cell parameters using a 3 by 3 linear system of equations. This method is 

independent of the usage of any assumptions on the parameters, calculations on 

slopes, and specific points of the I-V curve [130]. 

2.1.3 Thermal modeling of photovoltaic module 

The cell temperature acts as an important parameter in the calculation of the 

efficiency of the PV module. The operating temperature of the PV module is a function 

of the PV cell technology, the physical properties of the PV cell, the environmental 

conditions, and the electrical loadings to the PV system [59, 60, 131-133]. The main 

environmental conditions that affect the temperature distribution in PV are solar 

irradiance, ambient temperature, and wind speed [134, 135]. Around 6-20% of the 

incident solar radiation is converted into electrical energy based on the type of solar 

cells and climatic conditions, whereas the remaining part acts as a source of heat 

generation in the cell [41]. Therefore, analysis of the thermal behavior of the PV under 

actual conditions is an essential concern. Thermal models have been developed to 

understand the effect of temperature on PV performance in terms of efficiency, power 
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output, or energy generation. The relative change in Voc, Isc, FF, and Pmax is reported to 

be -0.0025/°C, 0.002/°C, -0.0013/°C, and -0.002/°C, respectively, due to cell 

temperature for monocrystalline silicon solar cell [136]. The significance of 

temperature on PV performance has been widely studied experimentally and using a 

computational model [29, 42, 134, 135, 137-143]. Some of the adopted methods 

include explicit equations [144], simulations using various software such as MATLAB 

[145], numerical analysis using finite element heat transfer module with COMSOL 

Multiphysics [137-139, 146], using Galerkin finite element method to flow and energy 

equations with implicit convections [147], ANSYS [133, 135]. Also, some have 

developed thermal models using the energy balance of the PV module [59, 132, 134, 

148]. Thermal models of PV systems with different dimensions have been proposed as 

1D [101], 2D [60], and 3D [133, 137, 148]; the lower dimension model reduces the 

complexity of the model whereas to obtain higher accuracy from the model it is 

necessary to design a higher dimension model [149]. PV module is a multilayer, and 

heat exchanges occur between the layers and between the surfaces and the surrounding. 

The conduction heat exchange takes place between each layer of the PV module, while 

convection and radiative heat exchanges occur between the PV surfaces and the 

surrounding environment [139]. Figure 2.3 represents various physics within the 

structure and with the surroundings. 

 

Figure 2.3 Heat exchanges and physical phenomena in a photovoltaic module [139]. 

A model has been developed based on finite differences for a double-glass 

multicrystalline PV module and experimentally validated to obtain root mean square 

error (RMSE) of 1.3°C for cell temperature. Here 22 different convection coefficient 
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formulations were tested to find the best corresponding configuration [131]. 

Photovoltaic thermal (PV/T) system having monocrystalline PV panels with parallel-

plate thermal collectors attached at the back has been modeled. The results highlighted 

that the power output and efficiency increase by 0.29 W and 0.05%, respectively, per 

1°C decrease in cell temperature [146]. Barroso et al. [101] designed an electrical 

model using a particle swarm optimization algorithm and a 1D finite difference model 

for thermal modeling. The temperature and electrical efficiency of the PV panel under 

the influence of meteorological conditions were analyzed. Lee et al. [150] used finite 

element thermal analysis in order to understand the temperature distribution in different 

layers of the PV module (top glass cover, solar cells, bus bars, ethyl vinyl acetate 

(EVA), and Tedlar back sheet). Singh et al. [151] studied the performance of electrical 

parameters (Voc, Jsc, FF, and ƞ) subjected to change in the temperature ranging from 

273K to 523 K. It was mentioned that an increase in temperature increases reverse 

saturation current Io with which Voc decreases. Therefore, FF decreases, and hence the 

efficiency decreases. On the other hand, the band gap of the material decreases with a 

rise in temperature, which increases the short-circuit current density (Jsc), efficiency 

enhancement. Therefore, these two conditions shown by the electrical parameters Voc 

and Jsc, the solar cell efficiency decreases with increasing temperature since the rate of 

decrease (-dVoc/dT) is much higher than due to Jsc. Kim et al. [152] evaluated the 

thermal characteristics of the PV module considering the varying ambient temperature 

throughout the day using the numerical analysis method. It was observed that the power 

of the PV module falls at a rate of around 0.5 %/°C and efficiency at 0.05 %/°C as 

ambient temperature rises. Mattei et al. [134] designed an electrical and temperature 

model with the employment of atmospheric variables, including solar irradiance, 

ambient temperature, and wind speed, using a simple energy balance method. Zondag 

et al. [149] also developed a 3D dynamic and 1D, 2D and 3D steady-state model to 

examine the thermal and electrical output of a PV-thermal collector. Aly et al. [60] 

developed a thermal model using the transient 2D finite difference method; the 

designed model had modified radiation, heat transfer, and thermal networks to increase 

the accuracy level. The designed model took into account the front glass cover, EVA 

binder, PV cells, and tedlar back sheet, where ARC (anti-reflective coating) and back 

contact did not take part in heat transfer. It was pointed out that negligence of heat 
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transfer from the sides of the PV panel and heat generation in the front glass cover 

consideration does not make a remarkable difference. Their model was validated using 

a commercial FD-based numerical package ANSYS and experimental results. Barykina 

et al. [153] evaluated the thermal behavior of four different modules at five different 

sites having different climatic zone using the Faiman model. Bayrakci et al. [154] 

developed two models (temperature-dependent and temperature independent) using 

TRNSYS to investigate the influence of  temperature variation on the PV system, 

considering the USA as the location for the study. Chander et al. [136] studied 

regarding the solar cell temperature controling the quality and performance of the 

multicrystalline silicon solar cell.  Chander et al. [141] presented the influence of 

temperature on performance of PV mainly focusing the series and shunt connections of 

monocrystalline silicon. They experimentally illustrated using a solar simulator to 

generate constant light intensity 550 W/m
2 

with cell temperature between 25-60°C. A 

temperature control unit consisting of a heater and temperature sensor, and 

monocrystalline silicon solar cell as a power source was used. The electrical parameters 

like Voc, Pmax, FF, and ƞ are inversely proportional to the cell temperature, whereas Isc 

slightly increases. This attributes to an increase in charge carrier generation with cell 

temperature [41].  The main parameters affecting the performance significantly are 

light intensity, tracking angle, and cell temperature. The typical operating temperature 

lies around 45°C ± 2°C in accordance with the nominal cell operating temperature. 

Tina et al. [142] designed an electrical-thermal model subjected to ambient 

temperature, wind speed, wind direction, relative humidity and electrical operating 

points to predict the energy production. For electrical modeling Least-square fitting has 

been used to calculate the equivalent model characteristics with the measured one. Du 

et al. [138] developed a time-dependent thermal model to examine the performance of 

PV modules with two configurations of glass-glass (GG) and glass-back sheet (GB). A 

heat transfer model was implemented using a COMSOL Multiphysics environment to 

investigate the thermal performance of the PV module. The heat transfer from the side 

boundaries, variations of heat capacities, and latent heat with temperature were 

neglected in the designed model. They have concluded that the GG configuration 

shows a better uniformity in the temperature distribution and heat dispersion compared 

to the GB configuration. However, the former has a slightly higher temperature. Dubey 
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et al. [41] reviewed the significance of temperature on the PV module efficiency and 

power output linear relationship. They have presented different correlations for cell 

temperature defined by different authors and have checked its applicability to freely 

mounted PV arrays, PV/thermal collectors and building-integrated photovoltaics 

(BIPV) installations. Jones et al. [59]  developed the energy balance model of PV cell 

under consideration of climate diversion. They noted the non-steady behavior of 

module temperature variation with respect to time. Weiss et al. [139] presented the 

radiative-heat transfer model to illustrate its significance on the module temperature. 

They have used SMARTS2 model for spectral modeling and COMSOL Multiphysics 

environment for thermal modeling. Kaplani et al. [155] determined the f coefficient that 

bridges the intensity of the global solar radiation on a PV plane and the PV 

temperature. They experimentally studied the effect of wind velocity, wind direction, 

and PV inclination angle on the temperature of the PV module. Their conclusion 

implied that on parallel wind flow on the PV module, the heat convection from the PV 

module reduces. Park et al. [156] examined the electrical and thermal model of the 

semi-transparent PV module, noting that the property of glass used in the PV module 

has a role to play in the temperature behavior and electrical performance of the PV 

module. Siddiqui et al. [133] developed a 3D thermal model considering the cooling 

and without cooling subjected to varying atmospheric conditions. Caluianu et al. [147] 

investigated the effect of free convection on the thermal behavior of the PV module.  

Armstrong et al. [35] designed a thermal model to estimate the temperature response 

model of the PV panel under the varying atmospheric conditions. 

Some of the assumed sets of hypotheses undertaken by different authors while 

performing the thermal analysis were:  

 The part of solar irradiance which is not used in electricity production in PV 

modules is the source of heat [131, 137, 138, 148]. 

 The thermophysical properties of each layer of the PV module are 

homogeneous and isotropic [135, 137, 138, 148]. 

 The reflections and transmissions between the components, namely between 

PV cells and front glass, and the radiative transfer from PV cells to front glass 

are neglected [137, 138, 148]. 
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 Solar irradiance is equally distributed over the PV surface [137, 138, 148]. 

 Conductive, convective, and radiative heat transfer takes place between the 

environment and the PV module [137, 138, 148]. 

 The radiation from the module to the environment is negligible [137, 138, 

148]. 

 Heat transfer from the sides and edges of the PV module is neglected [131, 

137]. 

 Heat transfer between the PV cell and EVA is neglected because of the 

extremely small area [137, 138, 148]. 

 The ambient temperature and wind speed surrounding the PV module are 

uniform [137, 138, 148].  

 The module is considered to have five uniform layers because the difference in 

the width of the area between the cells is comparatively much smaller than the 

PV surface [137, 138, 148]. 

 The effect of dust or any other agent that is deposited on the surface is 

neglected [137, 138, 148]. 

For simplification, some heat transfers are neglected in the thermal model; for 

instance, convection heat transfer in both front and back surfaces and radiative heat 

transfer only at the front surface is considered [145]. Mettei et al. [134] coupled the 

electrical and thermal models to determine the PV output power against the solar 

irradiance, ambient temperature, and wind speed. The hypothesis considered were (i) 

the temperature difference between the PV cells and the front glass is neglected, (ii) 

the temperature is uniformly distributed in the module, and (iii) the radiative heat 

transfer is neglected.  They reported an RMSE of 2.24°C. Kant et al. [148] reported a 

difference of 5-7% between the simulation and experimental data. 

A detailed study on the effect of wind on developed thermal performance has 

been carried out by considering wind and without wind conditions. The calculated 

statistical errors R
2
 and RMSE are 0.98 and 1.12°C for wind conditions and 0.96 and 

1.7°C for those without wind conditions, respectively [157]. Skoplaki et al. [158] 

reviewed the implicit [159] and explicit correlation of the cell temperature with the 

irradiance, irradiance at nominal operating cell temperature (NOCT), ambient 



Chapter 2: Review of Literature 

   Page | 34  

 

temperature, the temperature at NOCT, and wind speed from the literature. Skoplaki 

et al. [160] reviewed the correlation between the power output and efficiency of the 

PV module, operating cell temperature, and environmental parameters. Some of the 

defined correlations for the cell temperature of the PV module with respect to the 

environmental parameters are as follows: 
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Some researchers conducted experimental tests for thermal analysis, i.e., the 

effect of temperature on the electrical characteristics of semi-transparent PV module 

was evaluated. They observed a decrease in power generation of 0.48% per 1°C rise in 

temperature under the standard test condition except for temperature value and a 

decrease of  0.52% per 1°C rise in temperature under outdoor conditions (irradiance of 

500 W/m
2
) [156]. 

The heating effect of a PV module depends on the solar irradiance and the 

Joule heating effect [138]. However, the studies by [138, 162] showed that under the 

operating condition, solar irradiance is the main attribute of heating of a PV module, 

and minimal attribute of Joule heating effect is reported.  A steady-state thermal model 

of a PV system cannot be justified due to the dynamic nature of the temperature 

response with fluctuating irradiance and changing atmospheric parameters  [59, 132]. 

The dynamic model reduced the errors (RMSE and WMAE) by 50% compared to the 

steady-state model and conventional approaches (based on NOCT) [163]. The 

behavior of the thermo-electric model of a PV module can be characterized by the 

dynamic models when the actual weather data are input [163]. Thus, the numerical 
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model helps in accurately predicting the PV output subject to the environmental 

conditions before installing the system in a particular location.  

2.1.4 Integrated model for photovoltaic performance analysis  

The integration of the electrical-thermal model has been developed by some 

researchers to obtain higher prediction level of the energy yield from the PV modules. 

Nagae et al. 2006 [87] evaluated the power output under the influence of solar 

spectrum and temperature variation for silicon-based PV modules such as p-Si, a-Si 

and three-stacked a-Si. Bliss et al. 2010 [164] carried out performance evaluation of 

amorphous solar cells under varying irradiance, temperature, and spectrum using solar 

simulator. A spectrum-dependent electrical-thermal model was developed, with 

limited values of air mass (AM) (AM1D to AM15D), ambient temperature (25°C to 

45°C) and convective heat transfer coefficient only at the back surface (1200 W/m
2
.K 

to 1600 W/m
2
.K). This modeling was performed considering concentrating solar cell 

[24]. 

2.2 Effect of soiling on the photovoltaic module 

The phenomenon of dust deposition on the surface of the PV module, known as 

soiling, depends on atmospheric parameters and the PV materials. The deposition of 

dust particles onto the surface of the PV modules blocks the incident solar radiation 

from reaching the module surface, thereby reducing the generation of charge carriers 

and an overall reduction in the power output. Figure 2.4 shows the light transmission, 

reflection, and absorption phenomena that take place on the glass surface of the PV 

module. Dust is made of solid particles having minute size with diameters as less as 

500 m, including soil, salt, snow, industrial carbonaceous dust, leaves, pollen, bird 

droppings, bacteria, fungi, microfibers from fabrics, etc. [34, 57, 68, 165]. Dust can be 

a mix of organic and inorganic solids. The inorganic part may be composed of 

abrasive minerals like silica (sand), which can scratch the surface, and bird droppings, 

leaves, pollen grains, soot, etc., are considered organic dust [165]. Local 

environmental factors take into account the built environment, vegetation cover of the 

area, and weather conditions [68]. Various factors affect the deposition of dust on 

modules, such as wind speed and direction, relative humidity, rainfall, the orientation 

of modules and properties, and the concentration of dust particles and the surface of 
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the module [34, 166, 167]. Soiling has a significant impact on change in the 

transmitted spectrum; therefore, the spectral effect of dust deposition should not be 

underestimated. There are several works on the effect of soiling on the performance of 

the PV module [168-173], on power output from the PV module [174-176], and on 

energy losses associated with dust deposition [177]. The spectral effect on different 

PV modules due to dust deposition has been investigated using the spectral 

transmittance of the glass sample [178]. The wavelength range of the spectrum has 

been estimated, which can predict the soiling loss associated with different types of PV 

module technologies [179]. The electrical losses of soiling are caused by the  

 

 

Figure 2.4 Variation in transmittance and reflectance of incident light on the front glass of PV 

due to soiling (courtesy: Al Hicks/NREL) [180]. 

reduction in transmittance, in some cases even higher than 50%, due to absorption and 

scattering phenomena [178, 181]. Many researchers have investigated the impact of 

soiling on PV technologies [48, 73, 182-184]. Shehri et al. [185] investigated the effect 

of dust accumulation on the transmittance of glass by exposing glass samples to the 
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outdoor environment of Thuwal, Saudi Arabia, for one week. The maximum reduction 

reported on the first day was 2% with respect to the clean glass. Gholami et al. [186] 

experimented in Isfahan, Iran, and reported a decrease of 25% in the transmittance of 

the PV module‘s surface due to dust deposition over 70 days. Boyle et al. [187] 

observed a reduction in light transmission of 11% through the glass cover under 

natural dust deposition during 5 weeks in a rural and mixed industrial and residential 

area in Colorado, USA. In that case, the glass was covered with a roof preventing 

rainfall from cleaning the samples. El-Nashar [188] observed a 10-18% drop in the 

transmittance of the glass due to dust deposition on the evacuated tube collectors in a 

desalination plant installed in Abu Dhabi, UAE. In addition to reducing its broadband 

value, soiling has also a significant impact on the transmitted spectrum of the sunlight. 

The loss is indeed more enhanced in the blue region, and this may result in a variation 

of power output loss for different PV materials [178, 180]. Elminir et al. [45] found 

that with the increase in dust deposition density from 4.48 g/m
2
 to 15.84 g/m

2
, 

transmittance reduces from 12.38% to 52.54%. Guan et al. [189] conducted field test 

experiment in Chang‘an District, Xi‘an concluded that with increase in the dust 

deposition density, the relative transmittance decreases logarithmically and relative 

power output decreases linearly.  

Various atmospheric parameters such as relative humidity, rainfall, rain 

frequency, ambient temperature, dew point temperature, particulate matter, wind 

speed, wind direction, properties, and concentration of suspended particles affect the 

deposition of particles on the PV module‘s surface [34, 55, 166, 167, 186, 190]. 

Studies on the combined effect of atmospheric parameters on light transmittance were 

reported, including wind velocity and airborne dust concentration [191]; wind speed 

and humidity [192, 193]; and suspended particulate matter, rain, wind, and relative 

humidity [190]. The atmospheric parameters influencing soiling typically also have 

some seasonal trends that also reflect the loss profile. El Nashar et al. [194] 

investigated the seasonality of the transmittance loss of a glass tube for solar 

desalination in an arid, dry, and dusty location in the UAE. Csavina et al., 2014 [193] 

analyzed the effect of relative humidity and wind speed on the semi-arid locations: 

Green Valley, Arizona, USA, and Mexico (Juarez, Chihuahua). They pointed out that 

wind speed and relative humidity are not only the determinant factors of dust scattered 
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but also the factors such as wind direction and wind gusts need to be considered. 

Figgis et al. 2016 [192] analyzed the dependence of wind speed and humidity on dust 

deposition. Analysis test for 10 days in Doha proved that wind speed is the main 

parameter for dust deposition whereas dust removal depends on wind speed and 

humidity. Tanesab et al. [195] studied the influence of the seasonal change of PV 

soiling in different locations in Indonesia. They concluded that sites with high relative 

humidity, a long dry season, and a low tilt angle are more susceptible to dust 

deposition. Micheli et al. [196] studied the contribution of the seasonal trends of 

rainfall and particulate matter on the soiling losses for locations in the U.S. Recently, 

Javed et al. [69] reported that in Qatar, the highest soiling deposition rates occur in the 

colder season, followed by summer. They were lowest in the rainy season.  

 Ideally, if the correlation between the soiling and the significant atmospheric 

parameters were known, this could be used to predict the soiling based on the 

atmospheric parameters of a location. A regression model is a useful statistical tool to 

determine the relationship between the independent variables (such as the atmospheric 

parameters) and the dependent variables (soiling in this case). The regression model is 

used to generate a linear function between the independent variables and the 

parameters connected to soiling loss [166, 167, 186, 187, 192, 197, 198]. Javed et al. 

[167] used the multi-variable linear regression (MLR) method to predict the daily 

soiling loss (in terms of clearness index) from atmospheric parameters such as wind 

speed, relative humidity, and particulate matter (PM10) in Doha, Qatar. However, 

suggestions were made to consider other atmospheric parameters for better accuracy in 

the prediction of the soiling loss [199]. A strong correlation between soiling to 

particulate matter concentrations and frequency of rainfall was found for different sites 

in the  United States when the long-term average losses were estimated [200].  Jiang et 

al. 2015 [201] illustrated the effect of dust accumulation on the module under 

thermophoresis (temperature gradient) experimentally. The ratio of energy output 

tends to rise from 0.947 to 0.971 with the rise in temperature. Thus, dust accumulation 

has an impact on the reduction of the surface temperature. A linear relation was 

developed between the amount of dust accumulated and transmission loss using linear 

regression with an R
2
 value of 0.69 [187]. MLR model has been used to predict the 

soiling loss in terms of power output reduction by the particle size at a certain 
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irradiance level in Shekhawati, India [197]. Piedra et al. 2018 [181] have used the 

MLR model to predict the soiling loss in terms of power output reduction considering 

the particle size at a certain irradiance level. 

 A significant difference in the energy output of a PV plant compared to its 

estimated value can be observed if soiling is not taken into consideration [202]. 

Location-specific studies of soiling losses are therefore important to determine the 

power production at the highest accuracy, particularly for lower tilt angles ≤ 30° [203]. 

In a PV system, soiling losses contribute significantly to the reduction of the glass 

surface transmittance leading to a reduction in radiation from reaching the solar cells, 

which ultimately results in low output power. The negligence of the dust effect will 

generate a strong gap between the actual field and the estimated energy output of a PV 

power plant [202]. Location-specific study of soiling losses is important for accurately 

determining power production and for providing proper solutions for cleaning. These 

kinds of studies are essential to the effective saving of the installation cost of the PV 

system in a particular location. Therefore, potentially maximize the energy yield and 

the financial revenues for a PV plant. 

2.3 Seasonal performance analysis of photovoltaic module 

There are numerous reported works that have considered the seasonal trend 

while evaluating the energy output or power output of the PV module. Some studies 

on the evaluation of the energy output of different PV technologies, such as crystalline 

silicon, CIGS, amorphous silicon, CdTe [204], CPV [205], monocrystalline silicon 

[206], and amorphous silicon, hybrid, and crystalline silicon under season variation 

[207]. Ye et al. 2014 [208] discussed the effect of the solar spectrum on various thin-

film PV modules considering Singapore's climatic condition.  The seasonal variability 

in the thermal performance is analyzed in a study conducted at TUT Solar PV Power 

Research Test Plant in Tampere, Finland. It is observed that there is less than a 2% of 

deviation in the simulated module temperature compared to the measured module 

temperature during summer. Also, the model is reported to have an average accuracy 

of 1.63°C [132]. Jha et al. [137] developed a thermal model using finite element 

computation and experimentally validated it for different seasons of the year for the 

environmental condition of the Kharagpur, India. The operating temperature of the PV 
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module obtained from the simulation/model is compared with the NOCT model. The 

results from the FE model are reported to have a better accuracy level compared to the 

NOCT model as different statistical errors MAE = 39.1%, MRE = 40.0%, and RMSE 

= 41.8% for FE model are calculated to be lower than the NOCT model. This is 

attributed to the reason that the FE model accounts for the daily dynamic solar 

radiation and heat exchanges, whereas the NOCT model considers only the 

specification provided by the manufacturer. 

Eke et al. [92] reviewed the influence of seasonal solar spectrum variation on 

PV modules under outdoor conditions. Different spectrum indicators such as Spectral 

Mismatch Factor (MMF), Useful Fraction (UF), and Average Photon Energy (APE) 

that are used in spectral characterization are discussed. The influence of spectrum 

varies with the type of PV module consideration. Energy yield prediction gives the 

expected energy outcome of a specific PV at a particular location. Energy rating, on 

the other hand, provides the performance of the different PV modules at realistic under 

standardized conditions. The data set based on the climatic zones of the location of 

interest it is possible to check the relevance of various PV technologies for that 

particular location. So data set of European countries has been designed for the energy 

rating of the PV modules [209]. Alonso-Abella et al. [210] investigated the impact of 

solar spectrum distribution on a monthly and an annual basis in energy generation 

from a PV technology in a specific site is crucial for PV consumers. However, their 

study has not considered the impact governed by cell temperature and incident 

irradiance level. The spectral-mismatch loss, which includes sub-bandgap and 

thermalization loss, accounts for more than 50% of the overall heat generation and 

results in the dissipation of more than 60% of incident sunlight. The energy loss in the 

solar cell and from cell to module is reported to be 71.1% and 14.6%, respectively, for 

studies conducted on a typical sunny day [211]. Louwen et al. [212]  investigated the 

seasonal and annual performance of different PV technologies, namely, 

monocrystalline, polycrystalline, amorphous, CdTe, copper indium (gallium) selenide, 

and silicon heterojunction have been analyzed under varying operating conditions such 

as irradiance, operating temperature, spectral composition in terms of average photon 

energy, and angle of incidence. The study considered the environmental conditions of 

North-Western European locations. They concluded that varying operating 
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temperature of PV module leads to a significant change in the seasonal performance of 

all the considered PV modules. However, the magnitude of the effect will depend on 

the temperature coefficient of the PV module. The performance during summer 

decreases compared to winter; this is attributed to high operating temperatures. As the 

power output of the PV module drops with the rise in temperature, this is because 

electrical properties depend on the thermal properties of the solar cell [137]. Despite 

the fact that the energy yield during winter is lower compared to summer because of 

low solar insolation. The impact of average photon energy is also observed on the 

seasonal performance of the PV module, mainly for the amorphous silicon PV module. 

Similarly, the seasonal performance of solar power plant (20 kWp) was experimentally 

investigated under the climatic conditions of the Indian Institute of Science, 

Bangalore, India. For different seasons, a decrease in module efficiency with the rise 

in operating temperature is reported. For operating temperatures greater than 45°C, 

35°C, and 38°C during summer, monsoon, and post-monsoon, the module efficiency 

reduces by 0.08%, 0.04%, and 0.06% per degree rise in temperature. During winter, 

the drop in efficiency with respect to temperature was very low, and maximum 

efficiency was obtained at an operating temperature of 55°C. The reason for this is 

lower ambient temperature. They also considered the capacity utilization factor (CUF) 

and performance ratio (PR) as the determining factors. The average PR varies 

inversely with operating temperature. The higher value of maximum PR was obtained 

during winter and post-monsoon compared to summer and monsoon. The attributing 

factors are the lower ambient and operating temperatures in winter and higher solar 

insolation during post-monsoon. However, average PR is higher in monsoon and post-

monsoon since monsoon experiences random rainfall which encourages the cooling of 

PV surfaces, and post-monsoon season have a higher number of day with clear sky 

condition [213].  

Recently, Gholami et al. [214] reviewed the existing electrical, thermal, and 

optical models of PV systems and provided the trend of these studies carried out since 

2000 to date, as shown in Figure 2.5. They recommended that even with a number of 

considerable research on this specific area, there still exists an opportunity for 

modeling the electrical behavior of the PV. Also, most of the models have good 
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prediction levels for the conditions under the STC. However, if the models are to work 

consistently well and cover a wide range of actual operating conditions, more  

 

Figure 2.5 Trend on the number of studies related to different electrical, thermal, or optical 

modeling of PV [214]. 

enhanced improvements are required. Most of the PV models neglect the spectrum 

involvement and only consider solar broadband irradiance as the source. However, the 

spectral distribution plays a significant role in PV output, also the transient nature of 

the spectrum throughout the day with changes in the air mass value [89, 215, 216]. It 

was also reported that the error could rise up to 17% under the negligence of the 

varying environmental conditions, but considering the impact of soiling on the 

developed model has the potential to improve the prediction level up to 35% [214]. 

Therefore, based on the challenges and recommendations in the literature, the present 

study aims to develop a spectrum-integrated opto-electric-thermal model of PV 

module considering the actual varying environmental conditions with good prediction 

level. 
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