
Chapter 2

Methodology

This chapter presents an extensive survey of methodologies used to investigate

and analyze dusty plasma systems. These approaches include both theoretical and

simulation methods, offering a comprehensive understanding of plasmas and their

properties. In our study, we utilized fluid theory as an analytical tool to derive

expressions for the interaction potential in complex plasmas. Additionally, we have

provided a comprehensive report on the simulation technique used for studying

dusty plasmas, specifically focusing on molecular dynamics (MD) simulations. The

detailed explanation of the principles and procedures involved in conducting MD

simulations allows us to effectively simulate the behavior and dynamics of dusty

plasmas at the individual particle level. Furthermore, this chapter explores the

theoretical background of the Green-Kubo formalism, which serves as the basis

for calculating transport coefficients in molecular systems. The chapter offers a

comprehensive exploration of the fundamental principles and concepts underlying

this formalism, including the core ideas of the fluctuation-dissipation theorem and

its connection to equilibrium fluctuations and transport properties.
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2.1 Fluid equations:
In our study, we have used fluid equations as an analytical tool to derive ex-

pressions for the interaction potential in complex plasmas. Understanding and

analyzing these interaction mechanisms is important for comprehending the dy-

namics and properties of complex plasmas.

Fluid mechanics plays a pivotal role in plasma physics and is useful for investi-

gating both static and dynamic properties of plasma systems. The fluid theory

provides a macroscopic approach to studying plasmas by considering them as a

continuous medium rather than a discrete collection of particles [11]. In fluid the-

ory, plasma is divided into small fluid elements, each containing a large number

of particles. These fluid elements are characterized by averaged properties such

as density, pressure, and velocity [11]. The theory then uses a set of equations,

known as fluid equations, to describe how these properties change over time and

space. These equations are derived from the basic laws of physics, such as the

laws of conservation of mass, momentum, and energy. In the context of plasma

physics, these fluid equations may include additional terms to account for electro-

magnetic forces, as governed by Maxwell’s equations. The fundamental equations

of fluid theory can be described by the following equations:

msns

[
∂vs
∂t

+ (vs.∇)vs

]
= Qsns[E + vs ×B]−∇P + Fother (2.1)

This is the momentum equation. Where, ms: mass of a species s, ns: number

density of a species s, vs: velocity of a species s, Qs: charge of a species s, E:

Electric field, B: Magnetic field and P : pressure. Another important equation

that ensures the conservation of mass of the respective fluids is the equation of

continuity.

∂ns

∂t
+∇ · (nsvs) = 0 (2.2)

Here, ns: Density of a specific species ‘s’ in the plasma. vs: Velocity vector of

species ‘s’. The third equation is Poisson’s equation given by

∇2ϕ = − ρ

ε0
(2.3)
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By solving this differential equation, we can determine the electric potential in

a plasma, which, in turn, provides insights into the electric field and its impact

on charged particle motion. The charge density (ρ) arises from the presence of

ions, dust, and electrons in the plasma, and its non-uniform distribution leads

to variations in the electric potential throughout the plasma. To solve Poisson’s

equation, various numerical and analytical methods are used, including techniques

like Fourier analysis [12]. The solution is often coupled with other plasma equa-

tions, such as the continuity equation and momentum equation, to comprehen-

sively study plasma dynamics.

2.2 Molecular Dynamics (MD) Simulation:
In many-body systems, where the interactions between individual particles or com-

ponents are intricate and interdependent, finding analytical solutions to describe

the system’s behavior becomes extremely complex. As the number of particles

increases, the mathematical equations governing the system become highly non-

linear and difficult to solve explicitly. This is where numerical solutions, such as

Molecular Dynamics (MD) simulation, and other numerical solutions play an im-

portant role. By employing numerical methods, we can approximate the behavior

of the system over time by discretizing the equations and solving them iteratively.

MD simulation allows to simulate the interactions between each particle based on

known physical principles, yielding valuable insights into the system’s collective

behavior and dynamics. Thus, MD simulation becomes a powerful and indispens-

able tool in handling the complexities of many-body systems, offering a practical

and computationally feasible approach to understanding their intricate behavior.

2.2.1 Background:

Molecular Dynamics (MD) simulation is a powerful computational technique used

to study the behavior of atomic and molecular systems over time [123]. It al-

lows us to investigate the dynamic evolution of a system by numerically solving

the equations of motion for each individual particle, taking into account their

interactions and forces. The objective of this chapter is to provide a comprehen-
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sive overview of MD simulation, covering its principles and applications. We will

explore the fundamental concepts underlying MD simulation, including Newton’s

equations of motion, force fields, integration algorithms, and ensemble methods.

We will also discuss various aspects of setting up and initializing simulations, such

as system definition, and equilibration techniques. Furthermore, we will explore

different simulation protocols and techniques, including energy minimization, pro-

duction runs, and the use of thermostats and barostats to control temperature

and pressure. We will also discuss handling boundaries, long-range interactions,

and constraints within MD simulations. An essential aspect of MD simulation

is the analysis and post-processing of simulation data. We will explore various

analysis techniques to extract meaningful information from simulation trajectories,

including radial distribution functions, pair correlation functions, mean squared

displacement, diffusion coefficients, and structural properties. Additionally, we will

discuss visualization techniques to gain insights into the dynamics and behavior

of the simulated system.

2.2.2 Theoretical foundations of Molecular Dynamics Sim-

ulation:

Molecular Dynamics (MD) simulation is based on the fundamental principles of

classical mechanics and statistical mechanics [124]. The technique involves nu-

merically solving the equations of motion for a system of interacting particles.

Understanding the principles of MD simulation is essential for accurately captur-

ing the dynamics and properties of the simulated system. In this section, we will

discuss the key principles of MD simulation.

Particle Interactions and Force Fields

In molecular dynamics (MD) simulations, the precise representation of particle

interactions is vital for obtaining reliable and meaningful results [123]. particle

interactions can be categorized into two types: bonded and non-bonded interac-

tions. These interactions govern the behavior and properties of particles within

a system. Bonded interactions include covalent bonds, angles, and dihedrals (also

known as torsional or rotational bonds) [123]. Covalent bonds represent the shar-
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ing of electrons between atoms and determine the connectivity of atoms within a

molecule. Angles refer to the geometric arrangement of three consecutive atoms,

while dihedrals involve the torsional rotation of a group of atoms around a bond.

Non-bonded interactions, on the other hand, are relatively weaker and occur be-

tween atoms or molecules that are not directly bonded [123]. They can be further

divided into two categories: van der Waals interactions and electrostatic interac-

tions. (a) Van der Waals interactions arise from fluctuating dipoles in atoms or

molecules [124]. These interactions play a significant role in determining the sta-

bility, structure, and physical properties of molecular systems. (b) Electrostatic

interactions result from the presence of charged particles, such as electrons and

ions, within a molecular system. These interactions can be either attractive (be-

tween oppositely charged particles) or repulsive (between particles of the same

charge).

To model these molecular interactions in MD simulations, force fields are em-

ployed. A force field is a mathematical model that describes the potential energy

and forces acting between the particles in the system [125]. It consists of a set

of parameters, including equilibrium bond lengths, bond angles, dihedral angles,

and atom types, along with corresponding force constants and interaction param-

eters [124]. Several widely used force fields in molecular dynamics simulations

include CHARMM (Chemistry at Harvard Macromolecular Mechanics) [126], AM-

BER (Assisted Model Building with Energy Refinement) [127], and OPLS (Op-

timized Potentials for Liquid Simulations) [128]. These force fields are designed

to capture the behavior of specific types of molecules and have been extensively

parameterized and validated against experimental data.

The selection of an appropriate force field depends on the system under inves-

tigation and the level of accuracy required. Careful parameterization of force

fields is crucial to accurately represent molecular interactions. The accuracy of

the force field directly impacts the simulation results and their agreement with

experimental observations. In summary, understanding and properly representing

molecular interactions through force fields are essential for conducting accurate

molecular dynamics simulations. Bonded and nonbonded interactions, along with

their corresponding force field parameters, play a vital role in determining the be-
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havior and properties of molecules within the simulated system. The selection and

parameterization of appropriate force fields are essential steps to ensure reliable

simulation results.

Integration Algorithms

In molecular dynamics (MD) simulations, integration algorithms are employed to

numerically solve the equations of motion for the particles in a system [125]. The

basic algorithm of MD simulation involves solving Newton’s equations of motion

to calculate the positions of particles at different time steps.

mir̈i(t) = −
∑
i ̸=j

∇ϕ+ Fext (2.4)

Here, ri(t) is the position of the particle at time t, ϕ is the interaction potential,

and Fext is the external force. An integration algorithm governs the evolution of

particle positions and velocities over time, enabling the simulation to accurately

capture the dynamic behavior of the system. The Verlet algorithm, leapfrog al-

gorithm, and velocity-Verlet algorithm are commonly used integration schemes in

molecular dynamics simulations [129; 130; 131; 132; 133]. They are numerical

methods that calculate the positions and velocities of particles at each time step

based on the forces acting on them [129; 130].

In the context of the current thesis, our Molecular Dynamics (MD) code imple-

ments the Velocity Verlet algorithm. The velocity Verlet algorithm is an excellent

integrator that approximates the trajectory of particles based on their current po-

sitions, velocities, and accelerations [125]. It is known for its simplicity, numerical

stability, and conservation of energy properties. The algorithm follows a step-by-

step procedure to update the positions and velocities of particles at each time

step. The main steps of the Velocity Verlet algorithm are as follows:

1. Initialization: In this step, the initial positions and velocities of particles

are assigned. This involves specifying the coordinates and velocities of each

particle in the system at the beginning of the simulation. The positions

can be defined based on a given initial configuration or randomly generated

within the simulation box. Similarly, the velocities can be set to specific
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Figure 2.1: The basic algorithm of MD simulation.

values or assigned randomly according to a desired temperature or energy

distribution. Proper initialization is crucial to ensure a realistic starting

state for the simulation and to accurately capture the subsequent dynamics

of the system.

2. Calculation of Forces: In this step, the forces acting on each particle

are determined by computing the gradients of inter-particle potentials and

force field parameters [125]. The forces are computed based on the spatial

arrangement of neighboring particles and their associated potential energy

functions. Efficient algorithms and techniques, such as neighbor lists and

cutoff distances, are utilized to optimize force calculations [125]. Accurate

force calculations are vital for precisely simulating the system’s dynamics

and capturing the interactions between particles.

3. Prediction of Half-Step Velocities: In this step, the velocities of particles

are updated halfway through the time step using their current velocities and

accelerations [125]. By updating the velocities at this intermediate point,
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the simulation can better capture the motion of the particles and maintain

numerical stability and energy conservation. This prediction of half-step

velocities is an integral part of many integration algorithms and plays an

important role in accurately simulating the dynamics of the system.

4. Prediction of Positions: In this step, the positions of particles are up-

dated using the predicted velocities obtained from the previous step. This

step is for maintaining the consistency between particle positions and veloc-

ities throughout the simulation and plays a fundamental role in accurately

simulating the dynamics of the system. Careful consideration of the time

step size is necessary to ensure numerical stability and preserve the simu-

lation’s accuracy. The position update equation used in the Velocity Verlet

algorithm is as follows:

ri(t+∆t) = ri(t) + vi(t)∆t+
1

2
ai(t)∆t2 (2.5)

• ri(t): Position vector of the ith particle at time t.

• vi(t): Velocity vector of the ith particle at time t.

• ai(t): Acceleration vector of the ith particle at time t.

• ∆t: Time step or time increment.

• ri(t+∆t): Updated position vector of the ith particle at time t+∆t.

5. Calculation of New Forces: In this step, the forces acting on particles are

recalculated based on their updated positions. It step involves reassessing

the interactions between particles, considering their new spatial arrangement

and distances. By re-evaluating the inter-particle potentials and force field

parameters, the forces between particles are determined. This recalculation

ensures that the forces accurately represent the current state of the sys-

tem and account for any changes in particle positions. Efficient algorithms

and techniques, such as pairwise summation methods and cutoff distances,

are employed to optimize the force calculations and minimize computational

costs. The accuracy and reliability of the simulation results heavily depend

on the accuracy of the force calculations, making it essential to choose ap-
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propriate force field parameters and employ validated methods. By recalcu-

lating the forces, the simulation accurately captures the evolving interactions

and dynamics of the system, enabling a realistic representation of its be-

havior over time.

6. Prediction of Full-Step Velocities: In this step, the velocities of parti-

cles are updated by taking the average of the predicted velocities from the

half-step and the newly calculated forces [125]. This process combines the

information from the previous half-step velocities with the current forces to

obtain more accurate velocity predictions for the full-time step. By incor-

porating both the particle velocities and the forces acting on them, this

step enhances the accuracy and stability of the simulation. The predicted

full-step velocities are used in subsequent steps to advance the simulation

and accurately model the system’s dynamic behavior. The choice of inte-

gration algorithm and the specific method for updating velocities may vary

depending on the system being simulated and the desired level of accuracy,

with the goal of achieving reliable and meaningful simulation results. The

velocity update equation used in the Velocity Verlet algorithm is as follows:

vi(t+∆t) = vi(t) +
∆t

2

[
r′′i (t) + r′′i (t+∆t)

]
(2.6)

• vi(t): Velocity vector of the ith particle at time t.

• ∆t: Time step or time increment.

• r′′i (t): Second derivative of the position vector ri(t) with respect to

time at time t.

• r′′i (t +∆t): Second derivative of the position vector ri(t) with respect

to time at time t+∆t.

• vi(t+∆t): Updated velocity vector of the ith particle at time t+∆t.

The Velocity Verlet algorithm ensures energy conservation by updating both po-

sitions and velocities in separate steps. This separation avoids issues related to

numerical errors and provides better long-term stability compared to algorithms
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that update positions and velocities simultaneously [125]. The algorithm’s accuracy

is second-order, meaning that the error in the predicted positions and velocities

is proportional to the square of the time step [123]. Thus, reducing the time

step leads to increased accuracy but also increases computational cost. The Ve-

locity Verlet algorithm is widely used in molecular dynamics simulations due to

its simplicity, numerical stability, and conservation properties [134; 135]. It ac-

curately captures the dynamics of molecular systems while efficiently preserving

important physical quantities, such as total energy, during the simulation. Its

effectiveness has been demonstrated in various applications, ranging from study-

ing small molecules to simulating complex bio-molecular systems and materials

[134; 135].

Periodic Boundary Conditions

In molecular dynamics (MD) simulations, periodic boundary conditions (PBC) are

applied to mimic an infinite system by creating replicas of the simulation box

[124]. PBC allows for the simulation of small systems while incorporating the

effects of long-range interactions, ensuring that particles interact as if they were

in an extended system. Under PBC, when a particle moves beyond one face of

the simulation box, it reappears on the opposite face, creating a continuous and

repeating lattice structure as shown in Fig.2.2 [124]. This approach effectively

eliminates surface effects and ensures that particles interact with their periodic

images. To accurately account for long-range electrostatic interactions, Ewald

summation is commonly employed in MD simulations [124].

Ensemble Methods

Ensemble methods play a crucial role in molecular dynamics (MD) simulations

by defining the type of thermodynamic ensemble in which the system is simu-

lated [123]. An ensemble represents a collection of possible states that a system

can occupy, characterized by specific macroscopic properties such as temperature,

pressure, and particle number. The choice of ensemble method in MD simulations

depends on the specific thermodynamic conditions under investigation and the

properties of interest. The three most commonly used ensembles in MD simula-
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Figure 2.2: Visualization of Periodic Boundary Conditions (PBC) in Molecular

Dynamics (MD) Simulation.

tions are the canonical ensemble (NVT), the isothermal-isobaric ensemble (NPT),

and the microcanonical ensemble (NVE).

Canonical Ensemble (NVT):

The canonical ensemble maintains a constant number of particles (N), volume

(V), and temperature (T). In NVT simulations, the system is typically coupled

to a heat bath, which allows for temperature control and ensures that the sys-

tem exchanges energy with the surroundings [123; 136]. Thermostats are used

to maintain a constant temperature by re-scaling the velocities of particles or by

modifying the forces acting on them [123].

Isothermal-Isobaric Ensemble (NPT):

The isothermal-isobaric ensemble maintains a constant number of particles (N),

pressure (P), and temperature (T). In NPT simulations, the system is coupled

to a heat bath and a pressure bath, allowing for both temperature and pressure

control [123; 137]. Barostats are used to maintain a constant pressure by adjusting

the volume of the simulation cell, ensuring that the system can expand or contract

to accommodate changes in pressure [123].
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Micro-canonical Ensemble (NVE):

The micro-canonical ensemble maintains a constant number of particles (N), vol-

ume (V), and total energy (E). In NVE simulations, the system is isolated from

external heat baths or pressure baths, and the total energy of the system is

conserved throughout the simulation [124]. NVE simulations are often used for

studying energy conservation, long-time dynamics, and equilibrium properties.

The choice of ensemble depends on the specific properties of interest and the phys-

ical conditions being simulated. For instance, the canonical ensemble is often em-

ployed for studying equilibrium properties at a constant temperature, such as ther-

modynamics, phase transitions, and structural properties [124]. The isothermal-

isobaric ensemble is useful for simulating systems at a constant temperature and

pressure, which is relevant for studying processes occurring under specific envi-

ronmental conditions or in the presence of solvent molecules [125]. The micro-

canonical ensemble is employed when investigating energy conservation, long-term

stability, and non-equilibrium processes [124; 125; 135].

Thermostat and Barostat Techniques

Thermostat and barostat techniques are essential components of molecular dy-

namics (MD) simulations that enable the control of temperature and pressure,

respectively [124]. These techniques ensure that the simulated system accurately

represents the desired thermodynamic conditions and allow for the study of equi-

librium properties and dynamic behavior under specific environmental conditions.

(i) Thermostat Techniques:

Thermostat techniques are used to regulate the temperature of the system during

MD simulations [138; 139; 140]. One commonly used thermostat is the Berendsen

thermostat, which works by scaling the velocities of particles to achieve the de-

sired temperature. The Berendsen thermostat operates by coupling the system to

an external heat bath, allowing energy exchange between the system and the bath.

Another commonly used thermostat is the Nosé-Hoover thermostat, which uses a

set of additional degrees of freedom to control the temperature by dynamically
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adjusting particle velocities. The Nosé-Hoover thermostat achieves temperature

control by introducing a heat reservoir that interacts with the system, ensuring

that the system reaches and maintains the desired temperature. Other thermo-

stat techniques, such as the Andersen thermostat and the Langevin thermostat,

are also available and provide different mechanisms for temperature control. The

choice of thermostat technique depends on factors such as the desired accuracy,

the nature of the system being simulated, and the computational resources avail-

able.

(ii) Barostat Techniques:

Barostat techniques are used to regulate the pressure of the system during MD

simulations [139; 140; 141]. One commonly used barostat is the Berendsen baro-

stat, which scales the simulation cell size to achieve the desired pressure. The

Berendsen barostat weakly couples the system to an external pressure bath, allow-

ing for the expansion or contraction of the simulation cell based on the pressure.

The Parrinello-Rahman barostat is another widely used technique that employs

a fictitious mass-spring system to control the pressure by dynamically adjusting

the simulation cell dimensions. The Parrinello-Rahman barostat achieves pressure

control by allowing the simulation cell to fluctuate while maintaining the desired

average pressure. Like thermostat techniques, there are other barostat techniques

available, such as the Martyna-Tobias-Klein barostat and the Monte Carlo baro-

stat, which offer different approaches to pressure control.

The selection of thermostat and barostat techniques is important for accurately

reproducing the desired temperature and pressure conditions in MD simulations. It

is important to ensure that the chosen techniques are appropriate for the system

under investigation and the specific research objectives.

Simulation Length and Time Step Considerations

In molecular dynamics (MD) simulations, the choice of simulation length and time

step is critical for obtaining meaningful and reliable results. The simulation length

determines the duration of the simulated dynamics, while the time step defines

the increment at which the equations of motion are numerically integrated.
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1. Simulation Length:

The simulation length refers to the total time span of the MD simulation [123;

125]. The choice of simulation length depends on the specific objectives of the

study. Shorter simulations are suitable for exploring fast processes or obtaining

preliminary insights, while longer simulations are necessary for studying slower dy-

namics or achieving converged statistical averages. The simulation length should

be sufficient to allow the system to equilibrate and reach a steady state, ensur-

ing that the observed properties are representative of the desired thermodynamic

conditions. For systems undergoing transitions, longer simulation lengths may be

required to capture the relevant dynamics adequately. It is important to note that

longer simulation lengths come with an increased computational cost, and a bal-

ance between the desired level of accuracy and available computational resources

should be considered.

2. Time Step: The time step determines the interval at which the equations of

motion are numerically integrated [123; 125]. The selection of the precise time

step is essential for obtaining accurate simulation results. A time step that is

too large can lead to inaccuracies in the integration and cause the simulation

to violate energy conservation and produce unphysical behavior. On the other

hand, an excessively small time step can unnecessarily increase computational cost

without significant improvement in accuracy. The appropriate time step depends

on the dynamics of the system and the frequency of the fastest motions. As a

general guideline, the time step should be small enough to capture the fastest

motions in the system while maintaining numerical stability [123; 124].

In summary, the choice of simulation length and time step in MD simulations

plays a critical role in obtaining accurate and reliable results. The simulation

length should be appropriate to allow for equilibration and convergence of statis-

tical properties. The time step should be selected carefully to balance accuracy

and computational efficiency, considering the system dynamics and the fastest mo-

tions of particles. Validating the chosen simulation length and time step through

energy conservation and other physical properties is essential for ensuring the in-

tegrity of the simulation results.
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2.2.3 Data Analysis:

Data analysis in MD simulations involves extracting meaningful information from

the simulation data to understand the structural, dynamical, thermodynamic, and

specific properties relevant to the system under investigation. This analysis pro-

vides valuable insights into the behavior and properties of the simulated system

and helps in comparing the simulation results with experimental observations or

theoretical predictions. In our Molecular Dynamics (MD) simulation, the following

quantities are being used to analyze and characterize the behavior of particles:

1. Radial Distribution Function (RDF): The Radial Distribution Function,

denoted as g(r), provides information about the average density variation of par-

ticles as a function of distance [142; 143]. It quantifies the structural correlations

between particles and indicates whether they exhibit solid or fluid-like arrange-

ments. The quantity ρg(r), where ρ represents the number density of particles, is

proportional to the probability of finding a particle at a distance ranging from r

to r + dr from a reference particle. In MD simulation, the RDF is computed by

placing particles into histogram bins, which can be visualized as concentric shells

around a reference particle. Each bin has a width of dr and covers a specific

range of distances up to a finite distance rd in space. The resolution of the RDF

is determined by the number of bins used in the calculation. By analyzing the

RDF, we can find the spatial arrangement and organization of particles within

the simulated system. It helps in characterizing the nature of interactions and

the presence of ordering or clustering phenomena.

In a three-dimensional (3D) homogeneous and isotropic system, the pair correla-

tion function, denoted as g(r), is computed by averaging over a spherical region

surrounding a central particle. The mathematical expression for g(r) is defined as

follows:

g(r) =
V

N

N(r, dr)

4πr2dr
(2.7)

Here, V represents the volume of the simulation box, and N(r, dr) denotes the

number of particles within a shell of infinitesimal thickness dr at a distance r from
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the central particle. N represents the total number of particles in the system. For

a two-dimensional (2D) system, the pair correlation function expression is modified

to account for the area A of the simulation box. The modified expression is given

by:

g(r) =
A

N

N(r, dr)

2πrdr
(2.8)

In this equation, N(r, dr) represents the number of particles within a circular

shell of infinitesimal thickness dr at a distance r from the central particle. These

pair correlation functions provide insights into the spatial arrangement and density

fluctuations of particles in the system. They describe the probability of finding a

particle at a specific distance from a reference particle and are useful for under-

standing the structural properties of the system under investigation.

Figure 2.3: A typical plot of the Radial Distribution Function (RDF) depicting

the differences between solid, liquid, and gaseous phases.

2. Lattice Correlation Factor (LCF): The Lattice Correlation Factor (LCF)

is an important diagnostic tool used to assess the presence of long-range order

in a system [125]. It provides a measure of the degree of order and can be

computed based on the positions of particles in the system. The LCF can also

be experimentally determined using techniques such as X-ray scattering. The LCF

serves as an order parameter and is obtained by evaluating the local density at

a finite distance from a reference particle. The local density, denoted as ρ(r), is

calculated by summing the Dirac delta functions over all particles in the system:
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ρ(r) =
N∑
j=1

δ(r − rj) (2.9)

To analyze the LCF in terms of reciprocal space, the expression is Fourier-

transformed, resulting in:

ρ(k) =
1

N

N∑
j=1

exp(−ik · rj) (2.10)

Here, k represents the reciprocal lattice vector, which is determined by the type

of lattice being considered. For a perfectly crystalline state, | ρ(k) | approaches

unity. As the system transitions from an ordered to a disordered state, the value

of LCF decreases from unity. In gaseous states, The typical magnitude of LCF

is < 0.1, indicating increased disorder in the system. The LCF provides valuable

information about the transition from ordered to disordered states in the system.

By analyzing the magnitude of ρ(k), we can assess the level of long-range order

and structural coherence present in the system.

3. Mean Square Displacement (MSD) and Diffusion coefficient: Mean

Square Displacement (MSD) is a commonly used quantity in Molecular Dynamics

(MD) simulations to characterize the diffusive behavior of particles [144; 145]. It

measures the average displacement of particles over time. The MSD is calculated

by computing the squared Euclidean distance between the initial position of a

particle and its position at a later time and then averaging this value over all

particles in the system. Mathematically, it is expressed as:

MSD(t) = ⟨ 1
N

N∑
i=1

|ri(t)− ri(0)|2⟩ (2.11)

Where MSD(t) represents the MSD at time t, N is the total number of particles,

ri(t) is the position vector of the ith particle at time t, and ri(0) is its initial

position. By analyzing the time-dependent behavior of the MSD, it is possible

to gain insights into the diffusion process in the system. In particular, the slope

of the MSD plot at long timescales can provide information about the diffusivity
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of particles and their transport properties. This can be used to characterize the

nature of diffusion, such as Brownian motion or other types of transport mecha-

nisms. In general, MSD(t) ∝ tα where α = 1 for normal diffusion, α < 1 is for

sub-diffusion and α > 1 is for super-diffusion.

The MSD is a versatile tool that can be applied to study diffusive behavior in a

wide range of systems, including liquids, gases, solids, and complex materials. It is

often used in combination with other analysis techniques to explore the dynamics

and properties of particles in MD simulations. The diffusion coefficient can be

estimated from the Mean Square Displacement (MSD) in MD simulations using

the Einstein relation, which relates the MSD to the diffusion coefficient. The

equation for this relationship is:

D =
1

2dt
MSD (2.12)

where MSD(t) is the MSD at time t and D is the diffusion coefficient. By plotting

the MSD as a function of time and fitting the resulting curve to a linear function,

one can extract the slope, which is equal to 6D. Dividing the slope by 6 yields

the diffusion coefficient D. Additionally, it is essential to consider the appropriate

time range for fitting the MSD data. Typically, the linear regime of the MSD

plot at longer timescales, where the displacement is proportional to time, is used

for estimating the diffusion coefficient.

By estimating the diffusion coefficient, researchers can gain insights into the dif-

fusive behavior and mobility of particles in the simulated system. In the specific

case of dusty plasma, it is possible to relate the diffusion coefficient, which repre-

sents a macroscopic property, with the specific properties of dust particles through

Einstein’s theory of Brownian motion. According to Einstein’s theory, the diffusion

coefficient (D) can be expressed as:

D =
KBTd

6πηrd
(2.13)

Here, Td represents the dust temperature and rd represents the dust radius. The

equation shows that the diffusion coefficient is inversely proportional to the dust
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radius (rd) and directly proportional to the dust temperature (Td). The Boltz-

mann constant (KB) and the dynamic viscosity of the medium (η) are constants

that are also involved in the relationship. This relationship allows us to connect

the macroscopic behavior of diffusion with the specific properties of individual

dust particles in the system. It provides a valuable link between the microscopic

and macroscopic aspects of Brownian motion in the context of complex plasma

dynamics and can aid in understanding and predicting diffusion processes in dusty

plasmas.

4. The Lindemann parameter (L)

The Lindemann parameter (L) is an important diagnostic for measuring the struc-

tural deformations of a lattice formed by strongly correlated particles [146; 147].

It quantifies the degree of particle displacement from their equilibrium positions

in the lattice and is computed as the ratio of the root mean square displacement

(MSD) of the particles to the average inter-particle distance (rav). Mathematically,

the Lindemann parameter is given by:

L =

√
MSD

rav
(2.14)

Here, MSD represents the root mean square displacement of the particles and rav

represents the average inter-particle distance. The Lindemann parameter provides

valuable insights into the structural changes and disorder in the lattice due to

particle movements. It serves as a measure of lattice stability and can be used

to characterize phase transitions and melting phenomena in various systems.

2.3 Brownian Dynamics Simulation:

2.3.1 Introduction to Brownian Dynamics Simulations (BD):

Brownian Dynamics simulation is a powerful computational tool used to model

the behavior of particles in a fluid as they undergo random, fluctuating motion -

a phenomenon known as Brownian motion [148]. This motion is named after the
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botanist Robert Brown, who first observed it in pollen grains suspended in water

in 1827 [149]. Brownian Dynamics simulations play a pivotal role in a wide array

of disciplines, most notably within biological and physical systems. By enabling

us to predict the trajectory of microscopic particles in a fluid, Brownian Dynamics

simulations provide key insights into processes such as protein folding, molecular

binding, diffusion of particles, and the dynamics of colloidal suspensions [148;

150; 149]. The power of Brownian Dynamics lies in its ability to capture these

important physical and biological processes, often at scales that are challenging

for direct experimental observations.

2.3.2 The Langevin equation:

The Langevin equation plays a central role in the simulation of Brownian Dy-

namics (BD). Named after French physicist Paul Langevin, the Langevin equation

is a stochastic differential equation that describes the time evolution of a phys-

ical system subject to both deterministic and random forces [151; 152]. In the

context of BD, it describes the motion of a microscopic particle suspended in a

fluid medium.

dv(t)

dt
=

Fint

m
− γv(t) + ξ(t) (2.15)

• The force Fint accounts for the interaction potential between particles.

• −γv(t) is the damping force proportional to the velocity of the particle that

opposes its motion.

• ξ(t) is a Gaussian random variable representing random thermal forces.

In the specific context of dusty plasmas, the frictional force, represented as −γv(t)

in the Langevin equation, arises due to the motion of dust particles through the

surrounding buffer plasma. The friction coefficient, γ, is associated with the col-

lision frequency between the dust particles and the plasma particles. These colli-

sions transfer momentum from the dust particles to the plasma, thereby slowing

down the dust particles. This interaction results in a force that opposes the mo-

tion of the dust particles, acting as a damping force. Therefore, it is an important

effect to account for in simulations of dusty plasmas, as it can significantly in-
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fluence the dynamics of dust particles. In the realm of dusty plasmas, ξ(t) is

accountable for thermal fluctuations. These fluctuations are random movements

and collisions of particles incited by the system’s temperature. This randomness

is typically modeled by presuming that ξ(t) is Gaussian white noise with a zero

mean and a variance decided by the temperature of the system and the friction

coefficient γ [125].

The Langevin equation can be extended to incorporate additional forces acting on

the particles in certain scenarios. For instance, we might consider the presence

of magnetic fields and the influence of other forces as given by the following

equation.

dv(t)

dt
=

Fint

m
− γv(t) + ξ(t) +

Qd

md
(vd ×B) + Fother (2.16)

2.4 Green-Kubo Formalism: Underlying Princi-

ples and Applications in Molecular Systems:
The Green-Kubo formalism is a pivotal tool in computing transport coefficients

and exploring the complex dynamics of molecular systems. This section explores

the principles of this formalism, including the fluctuation-dissipation theorem, and

how it ties together the concepts of equilibrium fluctuations and transport proper-

ties. We highlight the versatile applicability of the Green-Kubo formalism across

diverse molecular systems.

The Green-Kubo formalism is a vital tool in statistical physics, playing a pivotal

role in the exploration of the dynamics of many-body systems, particularly in

the realm of transport properties. It is named after the physicists Ryogo Kubo

and Melville S. Green, who independently developed this approach. At its core,

the Green-Kubo formalism is a theoretical framework that uses time correlation

functions to calculate macroscopic transport properties from microscopic dynam-

ics [153; 154; 155]. These transport properties include but are not limited to,

thermal conductivity, electrical conductivity, and viscosity. The relevance of the

Green-Kubo formalism is its ability to bridge the microscopic and macroscopic

worlds. On one side, it allows us to investigate the microscopic dynamics of
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individual particles within a system. On the other side, it allows us to derive

the macroscopic, bulk properties of the system that we can measure in an experi-

ment. A key reason for the prominence of the Green-Kubo formalism in statistical

physics is its universality. Regardless of the details of the system under investiga-

tion—whether it be a simple gas or a complex, many-body, quantum system—the

formalism holds. This universality makes the Green-Kubo formalism an incredibly

powerful tool for theoretical predictions and computations.

2.4.1 The Fluctuation-Dissipation Theorem:

The fluctuation-dissipation theorem is an essential cornerstone of the Green-Kubo

formalism. This theorem elegantly interconnects two seemingly unrelated phenom-

ena: equilibrium fluctuations and dissipative processes in a system [156; 157; 158;

159].

To put it in simpler terms, an ‘equilibrium fluctuation’ refers to the spontaneous

deviations from the mean behavior of a system when it’s at equilibrium. On the

other hand, ‘dissipative properties’ relate to how a system responds to perturba-

tions and moves towards restoring equilibrium. The fluctuation-dissipation theorem

states that the same microscopic processes that lead to the dissipation of energy

(or in other words, the restoration of equilibrium) are the ones that give rise to

fluctuations when the system is in equilibrium. In essence, the theorem provides a

quantitative relationship between the fluctuations observed in a system at thermal

equilibrium and the system’s response to small external perturbations.

Mathematically, this theorem provides the foundation for the Green-Kubo rela-

tions. It lays the groundwork for expressing macroscopic transport coefficients,

such as viscosity, thermal conductivity, and electrical conductivity, as time inte-

grals of correlation functions of spontaneous fluctuations in the system.
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2.4.2 Viscosity Measurement Using Green-Kubo Formal-

ism:

The viscosity of a fluid, which quantifies its resistance to flow, can be another key

transport coefficient calculated using the Green-Kubo formalism [160; 161]. This

approach offers a fundamental understanding of fluid behavior by exploring its

microscopic dynamics. Mathematically, the Green-Kubo relation for shear viscosity

(η) can be expressed as:

η =
V

kBT

∫
⟨Pij(t)Pij(0)⟩dt (2.17)

Here,

• η is the shear viscosity,

• V is the volume of the system,

• kB is Boltzmann’s constant,

• T is the absolute temperature,

• Pij(t) is the off-diagonal component of the pressure tensor (or stress tensor)

at time t, and

• ⟨Pij(t)Pij(0)⟩ is the autocorrelation function of the off-diagonal component

of the pressure tensor.

Essentially, the shear viscosity can be calculated by integrating the autocorrela-

tion function of the off-diagonal components of the pressure tensor. This relation

enables us to capture the fluid’s response to shear stress and hence measure its

viscosity. The Green-Kubo approach offers a microscopic route to understand the

viscosity of complex fluids such as colloids, polymers, and biological fluids. For in-

stance, it can help uncover how molecular interactions, particle shapes, or thermal

fluctuations contribute to the viscosity in these systems.
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