Dedicated to my son "Arjyaraj"

DECLARATION

I do hereby declare that the thesis, entitled "Prospect of Intervention of Solar Thermal Energy in Tea Leaf Withering: A Modeling and Experimental Study", is the record of work done by me under the supervision of Dr. Partha P. Dutta, Professor, Department of Mechanical Engineering, Tezpur University, Tezpur. The contents of the thesis represent my original work that have not been previously submitted for any other degree or diploma in any other University or Institute.

This thesis is being submitted to Tezpur University for the degree of Doctor of Philosophy in Mechanical Engineering.

Date: 09.07.2024

Place: Tezpur University, Tezpur

Anindita Sharma.

(Anindita Sharma) Registration No.: TZ203760 of 2021

TEZPUR UNIVERSITY

CERTIFICATE

This is to certify that the thesis entitled "Prospect of Intervention of Solar Thermal Energy in Tea Leaf Withering: A Modeling and Experimental Study", submitted to the School of Engineering, Tezpur University in partial fulfillment for the award of the degree of Doctor of Philosophy in Mechanical Engineering is a record of research work carried out by Ms. Anindita Sharma (MEP16102) under my supervision and guidance. All help received by her from various sources have been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree or diploma.

Butta

(Supervisor) Prof. Partha P. Dutta Department of Mechanical Engineering, School of Engineering,

Tezpur University,

Tezpur-784028, Assam, India

I extend my heartfelt gratitude to everyone who has supported me throughout my Ph.D. journey at Tezpur University. I am deeply appreciative of the contributions and encouragement from everyone who has been a part of this journey.

At the outset, I would like to express my sincere gratitude to my supervisor, Prof. Partha P. Dutta, Department of Mechanical Engineering, Tezpur University for his scholarly guidance and useful suggestions during the course of my thesis work. I am ever grateful to him for giving his valuable time and support in every phase of my Ph.D. tenure. I offer my gratefulness to my Doctoral Committee members- Prof. Tapan Kr. Gogoi and Dr. Paragmoni Kalita, Mechanical Engineering Department and Prof. Manuj Kr. Hazarika, Department of Food Engineering and Technology for their constructive recommendations while carrying out the research work.

I wish to acknowledge the Head of the Department, Mechanical Engineering for offering me the research facilities and financial aid. I am grateful to Mr. Sasthendra Kumar Nath, Mr. Mitharam Handique, Mr. Khargeswar Rangpi, Mr. Uttam Kumar Nath, Mr. Bhaskar Baruah, Mr. Palash Rabha, Mr. Dipak Gogoi and Mr. Anupjyoti Nath, staff of the Mechanical Engineering Department, for their assistance and support in constructing the experimental setup in the Central Workshop, Tezpur University. I would like to thank Mr. Prabin Kumar Bora, Technical Officer, for his assistance in the various laboratory equipment used. A special mention to Mrs. Dipanjali Sinha and Mr. Maniram Bania for their support and assistance during my tenure. I am grateful to Dr. Dipankar Kalita, Department of Food Engineering and Technology for his help during my experiments. I am thankful to Chenijan tea factory, Jorhat for providing me the necessary details related to my work.

In this special moment of my life, I offer my deepest gratitude to my parents Dr. Kula Nath Sarma and Suniti Sarma, and brother Gaurav Sarma for their unconditional support and encouragement throughout the period. I also thank my parents-in-law Prabhat Ch. Sarma Neog and Bulbul Devi, brothers-in-law Dipankar Sarma Neog and Anupam Krishnatreya, sister-in-law Dr. Sumi Sarma, nephews Subhanga and Shivam, and aunt-in-law Monu Devi for their support.

I am immensely thankful to my husband Subhas Sarma Neog for his continuous motivation and for being the pillar of strength in completing my work. My heartfelt thanks goes to my son Arjyaraj for giving me his love and support during the last days of Ph.D.

I also thank my lab-mates and all my friends for their co-operation and encouragement to complete my Ph.D. A special thanks to Dr. Mayuri Bora for being a strong motivation in all the difficult times.

Finally, I bow down to the Almighty for blessing me always.

Anindita Sharma

LIST OF TABLES

Table	Description	Page No.
No.		
2.1	Studies on polyphenol oxidase (PPO) in tea leaves	23
2.2	Thin layer drying models	29
3.1	List of withering equipment and power consumption	60
3.2	List of maceration equipment and power consumption	63
3.3	List of drying equipment and power consumption	65
3.4	List of fiber extraction equipment and power consumption	66
4.1	Drying models	78
4.2	Drying curve parameters for the withering data	86
5.1	Dimensions/specifications of the set-up	95
5.2	Technical specifications of the instruments used	95
5.3	Equations of the drying models used	105
5.4	Drying curve parameters	106
5.5	Economic analysis of the solar thermal based green tea	109
	withering trough	
6.1	Geometrical parameters of the Al-can absorber plate	114
6.2	Exergy sustainability indicators for Type-1 withering trough	130
6.3	Exergy sustainability indicators for Type-2 withering trough	138
6.4	Uncertainty in the estimated parameters	139
6.5	Embodied energy of the materials	140
6.6	CO ₂ emission and mitigation	141
6.7	Carbon credit earned	142

LIST OF FIGURES

Figure	Description	Page
No.		No.
1.1	Flow chart of a tea manufacturing process	2
1.2	Tea withering	3
1.3	A CTC machine for maceration	4
1.4	Natural fermentation of tea	5
1.5	A conventional dryer	6
1.6	A fluidized bed dryer	7
1.7	A sorting machine	7
1.8	Packaging of tea	8
1.9	Schematic illustration of a simple SAH	11
3.1	Process and energy input for CTC tea manufacturing	59
3.2	Schematic diagram of an enclosed tea withering trough	60
3.3	A Rotorvane	62
3.4	Schematic diagram of a conventional tea dryer	64
3.5	Power consumption versus process	67
3.6	Cost incurred per kg versus Process	68
3.7	Specific energy cost for the industry	68
3.8	Energy consumption in different tea factories of Assam	69
3.9	Energy consumption in South Indian tea industries	70
4.1	Schematic illustration of the EC	75
4.2(a)	The environmental chamber	76
4.2(b)	Tea leaves being withered inside the EC	76
4.3	Fresh tea leaves	80
4.4	Withered tea leaves	81
4.5	Oven-dried tea leaves	81
4.6	MR vs Time (h) at RH = 80%	82
4.7	MR vs Time (h) at RH = 85%	82
4.8	MR vs Time (h) at RH = 90%	83
4.9	MR vs Time (h) at T = 25 °C	84
4.10	MR vs Time (h) at T = 30 °C	84

4 1 1	MD us Time (h) at $T = 25 \ ^{\circ}C$	85
4.11	MR vs Time (h) at T = 35 °C	
4.12	Open sun withering of tea leaves	88
4.13	Specific energy consumption at different temperatures	88
4.14	Total Phenolic Content	89
4.15	Total Flavonoid Content	89
5.1	Schematic diagram of the experimental set-up	94
5.2(a)	Schematic of Corrugated plate	94
5.2(b)	Corrugated SAH	94
5.3	The complete experimental set-up	94
5.4	Instruments used in the experiments	96
5.5	Outlet temperature variations and solar radiation intensity	102
	with time of the day	
5.6	Useful heat gain with time of the day	103
5.7	Thermal efficiency with time of the day	103
5.8	MR variation with time	104
5.9	Drying rate with MC (d.b.)	104
5.10(a)	Pre <i>MR</i> vs Exp <i>MR</i> at 27 °C	107
5.10(b)	Pre <i>MR</i> vs Exp <i>MR</i> at 32 °C	107
5.11(a)	Plot of ln <i>MR</i> with Time	108
5.11(b)	Plot of $\ln D_e$ with $1/T$	108
6.1	Schematic diagram of the tea withering trough with	113
	corrugated plate SAH	
6.2(a)	SAH with cylindrical elements from Al cans	113
6.2(b)	Cylindrical element	113
6.3	Schematic diagram of the tea withering trough with Al-can	114
	plate SAH	
6.4(a)	Arrangement of cylindrical geometry fabricated on the	114
	absorber plate	
6.4(b)	SAH with Al-can absorber plate	114
6.5	Overall loss coefficient at the three mass flow rates for Type-	122
	1 SAH	
6.6(a)	Temperature variation in Type-1 SAH at 0.03 kg/s	123
6.6(b)	Temperature variation in Type-1 SAH at 0.04 kg/s	124

Temperature variation in Type-1 SAH at 0.05 kg/s	124
Useful heat gain and solar radiation in Type-1 SAH at 0.03	125
kg/s	
Useful heat gain and solar radiation in Type-1 SAH at 0.04	125
kg/s	
Useful heat gain and solar radiation in Type-1 SAH at 0.05	126
kg/s	
Thermal efficiency variation with time of day in Type-1 SAH	127
Exergy efficiency variation with time of day in Type-1 SAH	127
Exergy loss during the day in Type-1 withering trough	128
Exergy efficiency variation of the Type-1 withering trough	129
during the day	
Overall loss coefficient at the three mass flow rates for Type-	130
2 SAH	
Temperature variation in Type-2 SAH at 0.03 kg/s	131
Temperature variation in Type-2 SAH at 0.04 kg/s	132
Temperature variation in Type-2 SAH at 0.05 kg/s	132
Useful heat gain and solar radiation in Type-2 SAH at 0.03	133
kg/s	
Useful heat gain and solar radiation in Type-2 SAH at 0.04	133
kg/s	
Useful heat gain and solar radiation in Type-2 SAH at 0.05	134
kg/s	
Thermal efficiency variation with time of day in Type-2 SAH	135
Exergy efficiency variation with time of day in Type-2 SAH	135
Exergy loss during the day in Type-2 withering trough	136
Exergy efficiency variation of the Type-2 withering trough	137
during the day	
THPP of corrugated and Al-can SAH	138
Break-up of mass of the materials	140
Break-up of embodied energy	141
	Useful heat gain and solar radiation in Type-1 SAH at 0.03 kg/s Useful heat gain and solar radiation in Type-1 SAH at 0.04 kg/s Useful heat gain and solar radiation in Type-1 SAH at 0.05 kg/s Thermal efficiency variation with time of day in Type-1 SAH Exergy efficiency variation with time of day in Type-1 SAH Exergy efficiency variation of the Type-1 withering trough during the day Overall loss coefficient at the three mass flow rates for Type- 2 SAH Temperature variation in Type-2 SAH at 0.03 kg/s Temperature variation in Type-2 SAH at 0.04 kg/s Useful heat gain and solar radiation in Type-2 SAH at 0.03 kg/s Useful heat gain and solar radiation in Type-2 SAH at 0.04 kg/s Thermal efficiency variation with time of day in Type-2 SAH Exergy efficiency variation with time of day in Type-2 SAH Exergy efficiency variation with time of day in Type-2 SAH Exergy efficiency variation with time of day in Type-2 SAH Exergy efficiency variation with time of day in Type-2 SAH Exergy efficiency variation of the Type-2 withering trough Exergy efficiency variation of the Type-2 withering trough during the day

NOMENCLATURE

A_E	Edge area (m ²)
A_S	Area of the collector plate (m ²)
ASHRAE	American Society of Heating, Refrigerating and Air-Conditioning
	Engineers
C_p	Heat capacity of air (=1.005 kJ/kg K)
CTC	Crush-Tear-Curl
CV	Calorific value (kJ/kg)
C_w	Cost of fresh tea leaves against 1 kg of withered leaves (\$)
C_{ft}	Cost of fresh tea leaves per kg (\$)
C_{ws}	Cost of withering 1 kg of tea leaves in the trough (\$)
C_s	Cost of solar withering (\$)
C_c	Capital cost of the chamber (\$)
C_{ann}	Annualized cost of the trough (\$)
C_{acc}	Annualized capital cost (\$)
C_{mc}	Maintenance cost (\$)
C_{rfc}	Running fuel cost (\$)
C_{ec}	Running electrical cost (\$)
C_{elc}	Electricity cost per unit (\$)
C_{pw}	Cost of withered tea in the market (\$)
D_e	Effective diffusivity (m ² /s)
D_0	Diffusivity constant
D_r	Drying rate (g water/g solid-h)
E_a	Activation energy (kJ/mol)
E_b	Power consumption of the blower (W)
E_P	Energy payback time
E_m	Embodied energy (kWh)
$E_{a,out}$	annual energy output of the system (kWh/year)
$E_{d,out}$	Daily thermal output (kWh)
ECC	Carbon credit earned (\$)
E_t	Total energy supplied in the EC (MJ)
E_T	Total energy input to the withering chamber (kWh)

\dot{Ex}_i , \dot{Ex}_o	Exergy at inlet and outlet of SAH (kJ)
\dot{Ex}_{ic} , \dot{Ex}_{oc}	Exergy at inlet and outlet of withering chamber (kJ)
Ex _{des}	Rate of exergy destruction (kW)
\dot{Ex}_L	Exergy loss (kJ)
EC	Environmental chamber
Exp	Experimental
GAE	Gallic acid equivalent
HD	Hygrometric difference (°C)
h_{fg}	Latent heat of evaporation (kJ/kg)
Н	Relative humidity (%)
h_1	Total heat transfer coefficients from collector plate to cover $(W/m^2 K)$
h_2	Total heat transfer coefficients from cover to ambient $(W/m^2 K)$
h_b	Heat loss coefficient from the bottom $(W/m^2 K)$
h_i, h_o	Enthalpy at inlet and outlet (kJ/kg)
h_w	Wind heat transfer coefficient (W/m ² K)
I	Rate of irreversibility (kW)
I_S	Solar radiation (W/m ²)
i	Inflation rate (%)
IP	Improvement potential (J)
Κ	Thermal conductivity of air (W/m-K)
Kin	Conductivity of insulation (= 0.03 W/m-K for dry wood)
k	Drying rate constant (s ⁻¹)
k_1, k_2, A, B, N	Drying model constants
L	Spacing between plate and cover (m)
Lin	length of insulation (m)
L_y	Lifetime of the drying system
L_D	Domestic appliance losses
L_T	Transmission losses
m_i, m_o	Mass flow rate of air at inlet and outlet (kg/s)
• Mair	Mass flow rate of air (kg/s)

$M_{(0)}$	Initial moisture content (% w.b.)
$M_{(t)}$	Moisture content at a given time t (% w.b.)
$M_{(e)}$	Equilibrium moisture content (% w.b.)
$M_{L(t)}$	Moisture loss of the leaves at any instant <i>t</i>
m_i, m_f	Initial and final masses of the tea leaves (g)
<i>m</i> _{ft}	Mass of fresh tea leaves per batch (kg)
<i>m</i> _{wt}	Withered tea leaves per batch (kg)
MR	Moisture ratio
MR_{ei}	Experimental MR
MR_{pi}	Predicted MR
MS_r	Residual mean square error
MS_t	Total sum square error
M_w	Mass of water removed (kg)
N_s	Number of sunshine days in a year
Nu	Nusselt number
n	Lifespan of the chamber
Р	Payback period of the solar thermal based tea withering trough
P_i, P_o	Pressure inlet and outlet
Pre	Predicted
QCE	Quercetin equivalent
Q_u	Useful heat gain (W)
Q_h	Rate of exergy received by the solar air heater from solar radiation
	(W)
RH	Relative humidity (%)
R	Ideal gas constant (= 8.314 J/K-mol)
R^2	Coefficient of determination
R^2_{ad}	Adjusted R^2
RMSE	Root mean square error
R_d	Savings per day (\$)
R_n	Annual savings in the n th year (\$)
R_1	Savings in the first year of operation (\$)
SE	Specific energy consumption (MJ/kg)
SI	Sustainability index

SV	Salvage value
S_r	Residual sum square
S_t	Total sum square
S_i, S_o	Entropy at inlet and outlet (kJ/K)
t_0	Half thickness of leaf (m)
t_h	Annual running hours of the blower
t_s	Number of available solar withering trough operating days
t_d	Withering time required per batch (days)
t	Withering time duration (h)
Т	Temperature (°C)
T_e	Ambient temperature (°C)
T_i, T_o	Inlet and outlet temperature (°C)
T_p, T_g	Mean temperatures of plate and glass cover (°C)
T_{sky}	Sky temperature (°C)
T_s	Sun temperature (K)
TFC	Total flavonoid content (mg QCE/g)
TPC	Total phenolic content (mg GAE/g)
U_T, U_B, U_E	Top, bottom and edge losses $(W/m^2 K)$
U_{over}	Overall heat loss coefficient $(W/m^2 K)$
$\mathcal{V}_{\mathcal{W}}$	Wind velocity $(= 1 \text{ m/s})$
V	Annual salvage value (Rs)
WER	Waste energy ratio
x	Rate of interest on the investment (%)
X	Fraction of energy taken from air heater
$\eta_{\scriptscriptstyle SAH}$	Thermal efficiency of the air heater
$\eta_{\scriptscriptstyle over}$	Overall efficiency of the withering trough
${arphi}_{\scriptscriptstyle SAH}$	Exergy efficiency of the SAH
ψ_c	Exergy efficiency of the withering chamber
Δ	Difference
α	Absorptivity (=0.85)
τ	Transmissivity (=0.95)
\mathcal{E}_p	Emissivity of plate $(= 0.9)$

 $ε_g$ Emissivity of glass (=0.88) σ Stefan-Boltzmann constant (= 5.67 × 10⁻⁸ W/m² K⁴)