TABLE OF CONTENTS

Content	Page
	No.
Abstract	i-iv
Declaration	v
Certificate	vi
Acknowledgements	vii-viii
Table of Contents	ix-xiii
List of Tables	xiv
List of Figures	xv-xvii
Nomenclature	xviii-xxii
Chapter-1: Introduction	1-17
1.1 History and significance of tea	1
1.2 Tea processing	1
1.2.1 Withering	2
1.2.2 Maceration	4
1.2.3 Fermentation	4
1.2.4 Drying	5
1.2.5 Sorting and packaging	7
1.2.6 Manufacturing of some other types of tea	8
1.3 Energy utilization and environmental impact in tea manufacturing	9
1.4 Solar air heater	11
1.4.1 Working principle of a solar air heater	11
1.4.2 Classification of solar air heaters	12
1.4.3 Solar troughs	12
1.4.4 Artificial roughness elements in solar air heaters	14
1.4.5 Different types of artificial roughness elements	15
1.5 Background of the study	17
Chapter-2: Literature Review	18-57
2.1 Customization in tea withering trough	18
2.2 Effect of withering and drying on different types of tea	19
2.2.1 Impact of withering time	19

2.2.2 Bio-chemical changes due to tea withering	20
2.2.3 Role of drying on tea	24
2.3 Drying mechanism	26
2.4 Drying models	27
2.5 Modeling studies on tea-leaf withering operation	30
2.6 Experimentations on tea drying operation	34
2.7 Solar dryers	38
2.7.1 Types of solar dryers	38
2.7.2 Solar drying of food, agricultural and leafy products	40
2.8 Exergy analysis of solar air heaters and solar drying	45
2.9 Economics and environmental assessment in solar applications	51
2.10 Renewable energy in tea processing industries	53
2.11 Summarization of the literature	55
2.12 Research gap and motivation	55
2.13 Objectives of the work	56
2.14 Structure of the thesis	56
Chapter-3: Assessment of Energy Consumption in a Tea Factory in	58-73
Assam	
3.1 Withering Equipment	59
3.2 Maceration Equipment	61
3.2.1 The Rotorvane	61
3.2.2 The CTC	62
3.3 Fermentation equipment	63
3.4 Drying equipment	63
3.5 Grading equipment	66
3.6 Energy consumption	67
3.6.1 Energy costs	68
3.6.2 Comparison with the South Indian tea industries	69
3.7 Measures for energy management	70
3.7.1 Improvements in the electrical energy utilization	70
3.7.1a Dual speed withering	70
3.7.1b Automatic rollers	71
3.7.1c Implementing solar energy	71

3.7.1d Other methods	71
3.7.2 Improvements in the thermal energy utilization	71
3.7.2a Waste heat recovery	72
3.7.2b Direct fired heaters	72
3.7.2c Recirculation of exhaust air from the dryer	72
3.7.2d Fuel efficient air heaters	72
3.7.2e Other methods	72
3.8 Summary of the chapter	73
Chapter-4: Modeling and experimental withering of tea leaves	74-90
4.1 Materials and methods	7 4
4.1.1 Experimental technique	75
4.1.2 Analysis of withering data	77
4.1.3 Drying models and determination of drying coefficients	78
4.1.4 Specific energy consumption	79
4.1.5 Determination of Total Phenolic Content (TPC) and Total	79
Flavonoid Content (TFC)	
4.1.5a Method of extraction	79
4.2 Results and discussion	80
4.2.1 Withering characteristics	80
4.2.2 Comparison with open sun withering of tea leaves	87
4.2.3 Specific energy consumption	88
4.2.4 Total Phenolic and Flavonoid contents	89
4.3 Conclusions	90
Chapter-5: Performance Studies of Solar Withering of Fresh Tea	91-110
Leaves (Camellia assamica)	
5.1 Materials and methods	92
5.1.1 Scoping design estimations for the bed area of the tea-leaf	92
withering trough	
5.1.2 Experimental studies	93
5.1.3 Working principle of the solar powered tea withering system	96
5.1.4 Energy analysis	97
5.1.5 Analysis of the withering data	98
5.1.6 Activation energy and effective diffusivity	90

5.1.7 Economic analysis	100
5.2 Results and discussion	102
5.2.1 Performance studies of the solar air heater	102
5.2.2 Withering characteristics of the green tea leaves in an enclosed	103
trough	
5.2.3 Fitting of withering data in drying models	105
5.2.4 Estimation of activation energy and effective diffusivity	107
5.2.5 Specific energy consumption of the green tea leaves withering	109
trough	
5.2.6 Economic analysis	109
5.3 Conclusions	110
Chapter-6: Energy, Exergy and Environmental (3E) Assessments of a	111-143
Tea-leaf Withering Trough Coupled with a Solar Air	
Heater with Two Different Absorber Plates	
6.1 Materials and methods	111
6.1.1 Losses in a solar air heater	115
6.1.2 Energy analysis of the SAH	116
6.1.3 Thermo-hydraulic performance parameter	116
6.1.4 Exergy analysis of the SAH	117
6.1.5 Exergy analysis of withering chamber	119
6.1.6 Exergy sustainability indicators	119
6.1.7 Uncertainty analysis	120
6.1.8 Environmental impact assessment	120
6.1.8a Energy payback time	120
6.1.8b Carbon dioxide (CO ₂) emission	121
6.1.8c CO ₂ mitigation	121
6.1.8d Carbon credit earned	122
6.2 Results and discussion	122
	122
6.2.1 Overall loss coefficient of Type-1 SAH	122
6.2.2 Energy and exergy analyses of the Type-1 SAH	123
6.2.3 Exergy analysis of the Type-1 tea withering trough	
6.2.4 Overall loss coefficient of the Type-2 SAH	130

6.2.5 Energy and exergy analyses of the Type-2 SAH	131
6.2.6 Exergetic assessment of the tea withering trough with Type-2	136
SAH	
6.2.7 THPP of corrugated and Al-can SAH	138
6.2.8 Uncertainty analysis	139
6.2.9 Environmental assessment	139
6.3 Conclusions	142
Chapter-7: Summary and Conclusions	144-149
7.1 Assessment of energy consumption in a local tea factory	144
7.2 Withering characteristics of tea leaves in an environmental chamber	145
7.3 Performance evaluation of a solar thermal based tea-leaf withering	146
trough for low-temperature drying of tea leaves (camellia assamica)	
7.4 Energy and exergy analyses of a solar powered tea-leaf withering	146
trough with a corrugated plate SAH	
7.5 Energy and exergy analyses of a solar powered tea-leaf withering	147
trough with an SAH having Al-can protrusions in the absorber plate	
7.6 Environmental assessment of the withering trough with Al-can SAH	148
arrangement	
7.7 Limitations of the work	148
7.8 Future scope	148
Bibliography	150-172
List of Publications	173-174
Appendix	175-176