Dedication

This thesis is dedicated proudly to my guiding stars and soul Father and Mother

whose love, encouragement, and sacrifices have been the motivation for my accomplishments and honors. I hope I was your good daughter, making you proud in every endeavor I pursue.

Hiba Almaadani

तेजपुर विश्वविद्यालय/TEZPUR UNIVERSITY

(संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय)

(A Central University established by an Act of Parliament) संकायाध्यक्ष का कार्यालय, शोध व विकास

Department of Molecular Biology and Biotechnology तेजपुर-784028 :: असम / TEZPUR-784028 :: ASSAM

Prof. Suvendra Kumar Ray, Ph.D., Professor, Department of Molecular Biology and Biotechnology

E-mail: suven@tezu.ernet.in, Phone no: +91-3712-275406

CERTIFICATE OF THE CO-SUPERVISOR

This is to certify that the thesis entitled "Computational investigation on the biomarkers and the role of SHANK3 in Autism Spectrum Disorder" submitted to the School of Sciences, Tezpur University, in partial fulfillment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology is a record of original research work carried out by Ms. Hiba Almaadani under my personal supervision and guidance.

All helps received by her from various sources have been duly acknowledged. No part of this thesis has been reproduced elsewhere for the award of any other degree.

vii

Date: 05 07 2mg Place: Tezpur University, Tezpur

(Prof. Suvendra Kumar Ray) Co-Supervisor

तेजपुर विश्वविद्यालय/TEZPUR UNIVERSITY (संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय) (A Central University established by an Act of Parliament) संकायाध्यक्ष का कार्यालय, शोध व विकास

Department of Molecular Biology and Biotechnology तेजपुर-784028 :: आसम / TEZPUR-784028 :: ASSAM

Dr. Venkata Satish Kumar Mattaparthi, M.Tech., Ph.D., Assistant Professor, Department of Molecular Biology and Biotechnology E-mail: <u>venkata@tezu.ernet.in</u>, <u>mvenkatasatishkumar@gmail.com</u> Phone no: 918811806866/03712-275443 Fax: 03712-267005/267006(O)

CERTIFICATE OF THE PRINCIPAL SUPERVISOR

This is to certify that the thesis entitled "Computational investigation on the biomarkers and the role of SHANK3 in Autism Spectrum Disorder" submitted to the School of Sciences, Tezpur University, in partial fulfillment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology is a record of original research work carried out by Ms. Hiba Almaadani under my personal supervision and guidance.

All helps received by her from various sources have been duly acknowledged. No part of this thesis has been reproduced elsewhere for the award of any other degree.

male

Date: 05072029Place: Tezpur University, Tezpur

D

(Dr. Venkata Satish Kumar Mattaparthi)

Supervisor

Declaration

I hereby declare that the thesis entitled "Computational investigation on the biomarkers and the role of SHANK3 in Autism Spectrum Disorder" has been submitted to Tezpur University in the Department of Molecular Biology and Biotechnology under the School of Sciences for partial fulfillment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology.

I am the sole author of this thesis. This is a true copy of the original work carried out by me including any required final revisions, as accepted by my examiners.

Further, I declare that no part of this work has been reproduced elsewhere for the award of any other degree.

Date: 05/07/2024

Place: Tezpur University, Tezpur

Hiba Almaadani

Registration No.: TZ203949 of 2023

Declaration

I hereby declare that the thesis entitled "Computational investigation on the biomarkers and the role of SHANK3 in Autism Spectrum Disorder" has been submitted to Tezpur University in the Department of Molecular Biology and Biotechnology under the School of Sciences for partial fulfillment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology.

I am the sole author of this thesis. This is a true copy of the original work carried out by me including any required final revisions, as accepted by my examiners.

Further, I declare that no part of this work has been reproduced elsewhere for the award of any other degree.

Date :

Hiba Almaadani

Place: Tezpur University, Tezpur

Registration No.: TZ203949 of 2023

तेजपुर विश्वविद्यालय/TEZPUR UNIVERSITY (संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय) (A Central University established by an Act of Parliament) संकायाध्यक्ष का कार्यालय, शोध व विकास Department of Molecular Biology and Biotechnology तेजपुर-784028 :: असम / TEZPUR-784028 :: ASSAM

Dr. Venkata Satish Kumar Mattaparthi, M.Tech., Ph.D., Assistant Professor, Department of Molecular Biology and Biotechnology E-mail: <u>venkata@tezu.ernet.in</u>, <u>mvenkatasatishkumar@gmail.com</u> Phone no: 918811806866/03712-275443 Fax: 03712-267005/267006(O)

CERTIFICATE OF THE PRINCIPAL SUPERVISOR

This is to certify that the thesis entitled "*Computational investigation on the biomarkers and the role of SHANK3 in Autism Spectrum Disorder*" submitted to the School of Sciences, Tezpur University, in partial fulfillment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology is a record of original research work carried out by **Ms. Hiba Almaadani** under my personal supervision and guidance.

All helps received by her from various sources have been duly acknowledged. No part of this thesis has been reproduced elsewhere for the award of any other degree.

Date :

Place: Tezpur University, Tezpur

(Dr. Venkata Satish Kumar Mattaparthi) Supervisor

तेजपुर विश्वविद्यालय/TEZPUR UNIVERSITY

(संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय)

(A Central University established by an Act of Parliament) संकायाध्यक्ष का कार्यालय, शोध व विकास

Department of Molecular Biology and Biotechnology तेजपुर-784028 :: असम / TEZPUR-784028 :: ASSAM

Prof. Suvendra Kumar Ray, Ph.D., Professor, Department of Molecular Biology and Biotechnology

E-mail: <u>suven@tezu.ernet.in</u>, Phone no: +91-3712-275406

CERTIFICATE OF THE CO-SUPERVISOR

This is to certify that the thesis entitled "*Computational investigation on the biomarkers and the role of SHANK3 in Autism Spectrum Disorder*" submitted to the School of Sciences, Tezpur University, in partial fulfillment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology is a record of original research work carried out by **Ms. Hiba Almaadani** under my personal supervision and guidance.

All helps received by her from various sources have been duly acknowledged. No part of this thesis has been reproduced elsewhere for the award of any other degree.

Date : Place: Tezpur University, Tezpur (Prof. Suvendra Kumar Ray) Co-Supervisor

तेजपुर विश्वविद्यालय/TEZPUR UNIVERSITY

(संसद के अधिनियम द्वारा स्थापित केंद्रीय विश्वविद्यालय)

(A Central University established by an Act of Parliament)

संकायाध्यक्ष का कार्यालय, शोध व विकास

Department of Molecular Biology and Biotechnology तेजपुर-784028 :: असम / TEZPUR-784028 :: ASSAM

TEZPUR UNIVERSITY (A Central University established by an Act of Parliament)Tezpur-784028, Assam, India

CERTIFICATE OF THE EXTERNAL EXAMINER AND ODEC

This is to certify that the thesis entitled "*Computational investigation on the biomarkers and the role of SHANK3 in Autism Spectrum Disorder*" submitted by Ms. Hiba Almaadani to Tezpur University in the Department of Molecular Biology and Biotechnology under the School of Sciences in partial fulfillment of the requirement for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology has been examined by us on and found to besatisfactory.

The committee recommends the award of the degree of Doctor of Philosophy.

Signature of:

Principal Supervisor

Principal Co-Supervisor

External examiner

Date:

Date:

Date:

First and foremost, I extend my heartfelt thanks to my supervisor, Dr. Venkata Satish kumar Mattaparthi, for his unwavering guidance, mentorship, and invaluable support throughout this short journey. His expertise, encouragement, and constructive feedback have been instrumental in shaping my research trajectory.

I am also immensely thankful to my co-supervisor, Prof. Suvendra Ray, whose insights and encouragement have enriched the depth and quality of my work.

I extend my sincere thanks to the members of my Doctoral Committee, especially Prof. Robin Doley and Dr. Rupak Mukhopadhyay, for their insightful comments and suggestions.

I would like to extend my sincere gratitude to Prof. Bolin K. Konwar for his invaluable support and encouragement that have been instrumental in completing this work.

I would like to acknowledge the Indian Council for Cultural Relations (ICCR) for the financial support and for the flexibility they provided me to pursue the research topic.

I extend my sincere thanks to Prof. Chandan Kumar Sharma, Director of the international office, and a heartfelt thank you to Prof. Prasanta K Das for his support and encouragement as exdirector of the international office.

I extend my thanks to my labmates(Dorothy, Priyanka, Chainee, Babli) and special thanks to Pronab sir for his unlimited support. A heartfelt thank you to my friend, Khalifa. Your companionship has been a constant source of strength, turning both the good and the challenging days into memorable experiences. Your support and shared moments have made this journey not just bearable but enjoyable.

To my parents and my siblings, Zainab, Mohammad, Hassan, and Khalid, I am grateful for the bond we share; in your laughter, I find joy; in your embrace, solace; and in your unwavering support, the courage to face any challenge. Your love, encouragement, and sacrifices have been the bedrock of my accomplishments.

Hiba Almaadani

Figure	Title of the figure	Page No.
Chapter 2		
2.1	The manifestations categories of autism spectrum disorder	12
2.2	The various genetic, epigenetic, and environmental risk factors involved in ASD	14
2.3	(A) The structure of the synapse, (B) The various morphology types of dendritic spines, (C) diagram depicts how repetitive synaptic stimulations LTPs are linked to molecular changes	17
2.4	The morphology of the post-synaptic density in excitatory synapses	18
2.5	Schematic illustrates the structure of the SHANK3 gene and the protein partners	20
2.6	The electrostatic interactions between the SPN (pink) and ARR (green) domains.	21
2.7	Diagram showing the potential impacts of reactive astrocytes and microglia in the brain of an ASD patient (A) Under normal physiological conditions. (B) In the case of ASD condition. BBB: Blood-brain barrier	24
Chapter	<u>5</u> 4	
4.1	Schematic exhibiting the primary contribution to the potential energy function	73
4.2	The two dimensional projection of Periodic boundary conditions. The simulation cell (dark color) is surrounded by translated copies of itself (light color)	78
4.3	Schematic representation of TIP3P water model	80
4.4	Schematic representation of the steps involved in MD simulation	81
4.5	schematic representation of the Different phases of a molecule during the minimization of its energy	82
4.6	A line search is used to locate the minimum in the function in the direction of the gradient	84
4.7	Representation of the ClusPro algorithm: the number of structures	88

	retained after each step is shown in a blue box	
4.8	Wiring diagram presents the secondary structures in the SHANK3 protein (5G4X pdb). Helices are labelled as H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, H11, H12, H13 and H14.	90
4.9	Surface topology diagram delineates the distribution of structural motifs: helices, beta turns, and gamma turns in SHANK3 protein (5G4X pdb).	91
4.10	Construction of SHANK3 mutants using UCSF Chimera software	95
Chapte	r 5	
5.1	The MD simulation analysis RMSD plot for (A) SHANK3 WT, (B) Three domains of SHANK3 WT, (C) SHANK3 E71S mutant, (D) Three domains of SHANK3 E71S mutant.	112
5.2	The RMSF analysis plots (A) SHANK3 WT, (B) Three domains of SHANK3 WT, (C) SHANK3 E71S mutant, and (D) Three domains of SHANK3 E71S mutant.	113
5.3	The radius of gyration analysis Rg, (A) SHANK3 WT protein, (B) SHANK3 E71S mutant.	114
5.4	The distance between SPN and ARR domains analysis, (A) SHANK3 WT protein, (B) SHANK3 E71S mutant.	116
5.5	The docking interaction between (A) SHANK3 WT protein and αCaMKII, (B) SHANK3 E71S mutant and αCaMKII.	116
5.6	The interactions between (A) SHANK3 WT protein (chain A) with α CaMKII (chain B), (B) SHANK3 E71S mutant (chain A) with α CaMKII (chain B).	117
5.7	The intramolecular hydrogen bonds analysis, (a) SHANK3 WT protein, (b) SPN domain of SHANK3 WT, (c) Linker domain of SHANK3 WT, (d) ARR domain of SHANK3 WT.	119
5.8	The intramolecular hydrogen bonds analysis, (a) SHANK3 E71S mutant, (b) SPN domain of SHANK3 E71S, (c) Linker domain of SHANK3 E71S, (d) ARR domain of SHANK3 E71S.	120
5.9	The number of hydrogen bonds between SPN and ARR for 200 ns trajectory, (A) SHANK3 WT protein, (B) SHANK3 E71S mutant.	122

Secondary structure analysis (A) SHANK3 WT, (B) SPN domain, (C) ARR domain. Secondary structure probability score of residue index: (D) SHANK3 WT, (E) SPN domain, (F) ARR domain.	123
Secondary structure analysis (A) SHANK3 E71S mutant, (B) SPN domain, (C) ARR domain. Secondary structure probability score of residue index: (D) SHANK3 E71S mutant, (E) SPN domain, (F) ARR domain.	124
r 6	
The MD simulation analysis RMSD plot for (A) SHANK3 WT, (B) Three domains of SHANK3 WT, (C) SHANK3 N52R mutant (D) Three domains of SHANK3 N52R mutant	135
The RMSF analysis plots (A) SHANK3 WT, (B) Three domains of SHANK3 WT, (C) SHANK3 N52R mutant, and (D) Three domains of SHANK3 N52R mutant.	136
The radius of gyration analysis (A) SHANK3 WT protein, (B) SHANK3 N52R mutant.	137
The distance between SPN and ARR domains analysis, (A) SHANK3 WT protein, (B) SHANK3 N52R mutant.	138
The intramolecular hydrogen bonds analysis, (A) SHANK3 WT protein, (B) SPN domain of SHANK3 WT, (C) Linker domain of SHANK3 WT, (D) ARR domain of SHANK3 WT.	139
The intramolecular hydrogen bonds analysis, (A) SHANK3 N52R mutant, (B) SPN domain of SHANK3 N52R, (C) Linker domain of SHANK3 N52R, (D) ARR domain of SHANK3 N52R.	140
Number of hydrogen bonds between SPN and ARR for 200 ns trajectory, (A) SHANK3 WT protein, (B) SHANK3 N52R mutant.	141
Secondary structure analysis (A) SHANK3 WT, (B) SPN domain, (C) ARR domain. Secondary structure probability score of residue index: (D) SHANK3 WT, (E) SPN domain, (F) ARR domain.	142
The Secondary structure analysis for (A) SHANK3 N52R mutant, (B) SPN domain of SHANK3 N52R, (C) ARR domain of SHANK3 N52R.	143
The docking interaction between (A) SHANK3 WT protein and αCaMKII, (B) SHANK3 N52R mutant and αCaMKII.	144
	 (C) ARR domain. Secondary structure probability score of residue index: (D) SHANK3 WT, (E) SPN domain, (F) ARR domain. Secondary structure analysis (A) SHANK3 E71S mutant, (B) SPN domain, (C) ARR domain. Secondary structure probability score of residue index: (D) SHANK3 E71S mutant, (E) SPN domain, (F) ARR domain. r 6 The MD simulation analysis RMSD plot for (A) SHANK3 WT, (B) Three domains of SHANK3 WT, (C) SHANK3 N52R mutant (D) Three domains of SHANK3 N52R mutant The RMSF analysis plots (A) SHANK3 WT, (B) Three domains of SHANK3 N52R mutant, and (D) Three domains of SHANK3 N52R mutant. The radius of gyration analysis (A) SHANK3 WT protein, (B) SHANK3 N52R mutant. The distance between SPN and ARR domains analysis, (A) SHANK3 WT protein, (B) SPN domain of SHANK3 WT, (C) Linker domain of SHANK3 WT, (D) ARR domain of SHANK3 WT. The intramolecular hydrogen bonds analysis, (A) SHANK3 N52R mutant. The intramolecular hydrogen bonds analysis, (A) SHANK3 N52R mutant, (B) SPN domain of SHANK3 N52R, (C) Linker domain of SHANK3 WT, (D) ARR domain of SHANK3 N52R. Number of hydrogen bonds between SPN and ARR for 200 ns trajectory, (A) SHANK3 WT protein, (B) SHANK3 WT protein, (B) SHANK3 WT, protein, (B) SHANK3 WT, Protein, (B) SHANK3 WT, (B) SPN domain of SHANK3 N52R. Number of hydrogen bonds between SPN and ARR for 200 ns trajectory, (A) SHANK3 WT protein, (B) SHANK3 N52R mutant. Secondary structure analysis (A) SHANK3 N52R mutant, (B) SPN domain, secondary structure probability score of residue index: (D) SHANK3 WT, (E) SPN domain, (F) ARR domain. The secondary structure analysis for (A) SHANK3 N52R mutant, (B) SPN domain of SHANK3 N52R, (C) ARR domain of SHANK3 N52R. The docking interaction between (A) SHANK3 WT

6.11	The interactions between (A) SHANK3 WT protein with αCaMKII, (B) SHANK3 N52R mutant with αCaMKII.	145
Chapte	pr 7	
7.1	The plot of RMSD for (A) SHANK3 WT protein, (B) Three domains in SHANK3 WT, (C) SHANK3 L270M mutant, (D) Three domains in SHANK3 L270M mutant, (E) SHANK3 P141A mutant, (F) Three domains in SHANK3 P141A mutant.	159
7.2	RMSF plots for the (A) SHANK3 WT protein, (B) Three domains in SHANK3 WT, (C) SHANK3 L270M mutant, (D) Three domains in SHANK3 L270M mutant, (E) SHANK3 P141A mutant, (F) Three domains in SHANK3 P141A mutant.	161
7.3	The radius of gyration plots, (A) SHANK3 WT protein, (B) SHANK3 L270M mutant, and (C) SHANK3 P141A mutant.	162
7.4	The distance between SPN and ARR domains analysis, (A) SHANK3 WT protein, (B) SHANK3 L270M mutant, (C) SHANK3 P141A mutant.	163
7.5	The intramolecular hydrogen bonds analysis, (A) SHANK3 WT protein, (B) SPN domain, (C) WT Linker domain, (D) WT ARR domain.	165
7.6	The intramolecular hydrogen bonds analysis, (A) SHANK3 L270M mutant, (B) SPN domain, (C) WT Linker domain, (D) WT ARR domain.	166
7.7	The intramolecular hydrogen bonds analysis, (A) SHANK3 P141A mutant, (B) SPN domain, (C) WT Linker domain, (D) WT ARR domain.	167
7.8	The docking interaction between (A) SHANK3 WT protein and αCaMKII, (B) SHANK3 P141A mutant and αCaMKII, (C) SHANK3 L270M protein and αCaMKII.	168
7.9	The interactions between (A) SHANK3 WT protein (chain A) and α CaMKII (chain B), (B) SHANK3 P141A mutant (chain A) with α CaMKII (chain B), (C) SHANK3 L270M mutant (chain A) with α CaMKII (chain B).	169
7.10	The number of H-bonds between SPN-ARR domains for 200 ns MD simulation, (A) SHANK3 WT, (B) SHANK3 L270M mutant, (C)	173

	SHANK3 P141A mutant.	
7.11	Secondary structure analysis (A) SHANK3 WT Protein. Secondary structure probability score of residue index: (B) SHANK3 WT protein.	175
7.12	Secondary structure analysis (A) SHANK3 L270M mutant. Secondary structure probability score of residue index: (B) SHANK3 L270M mutant.	175
7.13	Secondary structure analysis (A) SHANK3 P141A mutant. Secondary structure probability score of residue index: (B) SHANK3 P141A mutant.	176
Chapte	r 8	
8.1	Differential expression genes using the Volcano plot. (A) The brain datasets show 581 significant genes (P-value < 0.01 and $1 < Log2FC < -1$ as thresholds) in red dots left. (B) The blood monocytes dataset showed 60 DEGs in red dots.	187
8.2	Enriched GO and KEGG analysis of brain dataset. (A) points to the biological process category, (B) to cellular components, and (C) to molecular function. The Padj-value (FDR) is used to color-code the bars ranging from blue to red, and (D) the bar plot represents the KEGG pathways enriched by DEGs.	210
8.3	Enriched GO of the blood dataset. (A) points to the biological process category and (B) to molecular function.	211
8.4	KEGG analysis of blood dataset. The bar plot depicts the KEGG pathways enriched by DEGs (P-value 0.01).	211
8.5	Venn map represents the eight common genes crossing among two datasets.	212

List of Tables

Table No.	Title of the table	Page No.	
	Chapter 5		
5.1	The interface statistics in SHANK3 WT protein with αCaMKII.	118	
5.2	The interface statistics in the SHANK3 E71S mutant αCaMKII.	118	
5.3	The interface statistics in SHANK3 WT protein with α-Fodrin	121	
5.4	The interface statistics in the SHANK3 E71S mutant with α -Fodrin	121	
5.5	Secondary structure content in SHANK3 WT protein and SHANK3 E71S mutant.	125	
	Chapter 6		
6.1	TaThe interface statistics in the SHANK3 N52R mutant α -Fodrin	138	
6.2	Secondary structure content in SHANK3 WT protein and SHANK3 N52R mutant.	144	
6.3	The interface statistics in SHANK3 WT protein with αCaMKII.	146	
6.4	The interface statistics in the SHANK3 N52R mutant with α CaMKII.	146	
	Chapter 7		
7.1	The interface statistics of the SHANK3 WT protein with α CaMKII protein	170	
7.2	The interface statistics of the SHANK3 P141A mutant with α CaMKII protein	170	
7.3	The interface statistics of the SHANK3 L270M mutant with α CaMKII protein	170	
7.4	The interface statistics of the SHANK3 P141A mutant with α -Fodrin protein	172	
7.5	The interface statistics of the SHANK3 L270M mutant with α -Fodrin protein	172	
7.6	Secondary structure content of the SHANK3 WT protein and two	174	

List of Tables

	mutant forms, SHANK3 L270M and SHANK3 P141A	
	Chapter 8	
8.1	The differential expressed genes DEGs of brain dataset (Log2FoldChange > 1, P-adj < 0.01)	188
8.2	The differential expression genes DEGs of blood dataset (P-value $< 0.01, -1 > Log2FC > +1$)	206
8.3	Eight common genes are shared between the brain dataset and the blood dataset	213
8.4	Significantly enriched KEGG of eight common genes.	215

List of Scheme

Scheme	Title of the scheme	Page No.
7.1	The domain architecture of SHANK3. The positions of the N-terminal mutations subjected to MD simulation are highlighted.	155
8.1	The flowchart shows the meta-analysis workflow.	186

1CSSI	One-Character Secondary Structure Information
3DFFT	Three-Dimensional Fast Fourier Transform
A	Alanine
Å	Ångstrom
aa	Amino acids
AD	Autism Disorder
ADDM	Autism and Developmental Disabilities Monitoring
ADHD	Attention-Deficit/Hyperactivity Disorder
AMBER	Assisted Model Building with Energy Refinement
AMPA	Glutamatergic α-Amino-3-hydroxy-5-Methyl-4-isoxazole Propionic Acid
AMPAR	Glutamatergic α-Amino-3-hydroxy-5-Methyl-4-isoxazole Propionic Acid Receptor
ARR	Ankyrin Repeat Region
ASD	Autism spectrum disorder
atm	Atmosphere pressure
ATP	Adenosine Tri Phosphate
BBB	Blood-Brain Barrier
BP	Biological Processes
Ca ²⁺	Calcium ion
αCaMKII	Ca2+/calmodulin-dependent kinase IIα
CAF	Cafeteria diet
CC	Cellular Components
CCL2	C-C motif chemokine ligand 2
CDC	Centers for Disease Control and Prevention
CDCS	Cri-Du-Chat Syndrome

CNS	Central Nervous System
CSF	Cerebrospinal Fluid
CSPGs	Chondroitin Sulfate Proteoglycans
CTNND2	delta-catenin
CXCL12	C-X-C motif chemokine ligand 12
DAVID	Database for Annotation, Visualization, and Integrated Discovery
DEGs	Differentially Expressed Genes
DLPFC	DorsoLateral Prefrontal Cortex
DNA	Deoxyribonucleic acid
DSSP	Dictionary of Secondary Structure for Protein
Е	Glutamic acid
E/I	Excitatory/Inhibitory
EAATs	Excitatory Amino Acid Transporters
ERK	Extracellular signal-Regulated Kinases
FDR	False Discovery Rate
ff99SBildn	force field 99 with the Smith and Barber modifications and improved side- chain torsion potentials
FFT	Fast Fourier Transform
FMR1	Fragile X Mental Retardation 1
FXS	Fragile X syndrome
GABAergic	Gamma-Aminobutyric Acid
GEO	Gene Expression Omnibus
GFAP	Glial Fibrillary Acidic Protein
GFP-SPN	Green Fluorescent Protein is fused to the SPN domain
GO	Gene Ontology
GRIP	Glutamate Receptor Interacting Protein

GSEA	gene set enrichment analysis
GTPases	Guanosine TriphosPhate hydrolase
GWAS	Genome-Wide Association Studies
НА	Hydrogen Acceptor
HD	Hydrogen Donor
IFN-γ	Interferon gamma
IL-1	Interleukin-1
IL-1β	Interleukin-1 beta
IL-2	Interleukin-2
IL-6	Interleukin-6
INDT-ASD	INCLEN Diagnostic Tool for Autism Spectrum Disorder
INDT-ASD	INCLEN Diagnostic Tool for Autism Spectrum Disorder
K	Kelvin
KEGG	Kyoto Encyclopedia of Genes and Genomes
КО	knock-out
L	Leucine
LFC	log-fold change
LPS	Lipopolysaccharide
LTCCs	L-type calcium channels
LTD	long-term depression
LTP	long-term potentiation
М	Methionine
M1	Microglia classical activation state
M2	Microglia alternative activation state
МАРК	Mitogen-activated protein kinase

МС	Monte Carlo simulation
MCP-1	Monocyte Chemoattractant Protein-1
MD	MD= Molecular Dynamics
MF	Molecular Function
MIA	Maternal Immune Activation
N	Asparagine
NF-κB	NuclearKappa Factor B
NIH	National Institutes of Health
NMR	Nuclear Magnetic Resonance
No	Number
NPT	Constant number (N), pressure (P), and temperature (T)
ns	nanosecond
NVE	Microcanonical Ensemble
NVT	Constant number (N), volume (V), and temperature (T)
ORA	over-representation analysis
Р	Proline
PBC	Periodic Boundary Conditions
PDB	Protein Data Bank
PDD-NOS	Pervasive Developmental Disorder- Not Otherwise Specified
PDZ	PSD-95/Discs large/ZO-1 domain
РМВ	Post-Mortem Brain
PME	Particle Mesh Ewald
PPIs	Protein-protein interactions
ps	picosecond
PSD	Post-Synaptic Density

P-valueProbability valueRArginineRBVIResource for Biocomputing, Visualisation, and InformaticsRCSBResearch Collaboratory for Structural BioinformaticsRgRadius of gyrationRMSDRoot Mean Square DeviationRMSFRoot Mean Square FluctuationRNARibonucleic acidROSReactive Oxygen SpeciesSSerineSAMSterile Alpha Motif;SAPAP1SAP90/PSD-95-Associated Protein 1SCFAShort-Chain Fatty Acid	
RBVIResource for Biocomputing, Visualisation, and InformaticsRCSBResearch Collaboratory for Structural BioinformaticsRgRadius of gyrationRMSDRoot Mean Square DeviationRMSFRoot Mean Square FluctuationRNARibonucleic acidROSReactive Oxygen SpeciesSSerineSAMSterile Alpha Motif;SAPAP1SAP90/PSD-95-Associated Protein 1	
RCSBResearch Collaboratory for Structural BioinformaticsRgRadius of gyrationRMSDRoot Mean Square DeviationRMSFRoot Mean Square FluctuationRNARibonucleic acidROSReactive Oxygen SpeciesSSerineSAMSterile Alpha Motif;SAPAP1SAP90/PSD-95-Associated Protein 1	
RgRadius of gyrationRMSDRoot Mean Square DeviationRMSFRoot Mean Square FluctuationRNARibonucleic acidROSReactive Oxygen SpeciesSSerineSAMSterile Alpha Motif;SAPAP1SAP90/PSD-95-Associated Protein 1	
RMSDRoot Mean Square DeviationRMSFRoot Mean Square FluctuationRNARibonucleic acidROSReactive Oxygen SpeciesSSerineSAMSterile Alpha Motif;SAPAP1SAP90/PSD-95-Associated Protein 1	
RMSFRoot Mean Square FluctuationRNARibonucleic acidROSReactive Oxygen SpeciesSSerineSAMSterile Alpha Motif;SAPAP1SAP90/PSD-95-Associated Protein 1	
RNARibonucleic acidROSReactive Oxygen SpeciesSSerineSAMSterile Alpha Motif;SAPAP1SAP90/PSD-95-Associated Protein 1	
ROSReactive Oxygen SpeciesSSerineSAMSterile Alpha Motif;SAPAP1SAP90/PSD-95-Associated Protein 1	
S Serine SAM Sterile Alpha Motif; SAPAP1 SAP90/PSD-95-Associated Protein 1	
SAM Sterile Alpha Motif; SAPAP1 SAP90/PSD-95-Associated Protein 1	
SAPAP1 SAP90/PSD-95-Associated Protein 1	
SCEA Short Chain Eatty Aaid	
SCFA Short-Chain Fatty Acid	
SHANK3 SH3, and multiple ankyrin repeat domains 3	
SNPs Single Nucleotide Polymorphisms	
SPCE Extended Simple Point Charge model	
SPN Shank/ProSAP N-terminal domain	
TD Typically Developing	
TIP3P Transferable Intermolecular Potential with 3 Points	
TNF-α Tumour Necrosis Factor alpha	
TSPO Translocator Protein 18 kDa	
Ubl Ubiquitin-Like	
UCL University College London	
UCSF University of California, San Francisco	

WT	Wild Type
αCaMKII	α-subunit of the calcium-/calmodulin dependent kinase II
βυρ	beta-Ureidopropionase enzyme

- Almaadani, H. K., and Mattaparthi, V. S. K. Impact of E71S Mutation on SHANK3 Conformational Dynamics at the SPN-ARR Interface. *Biointerface Research in Applied Chemistry* (officially accepted for publication on 11th of May, 2024).
- Almaadani, H. K., and Mattaparthi, V. S. K. Effect of N52R mutation at the SPN-ARR interface on the conformational dynamics of SHANK3. *Current Proteomics* (officially accepted for publication on 16th of June, 2024).
- **3.** Almaadani, H. K., and Mattaparthi, V. S. K. Computational investigation on the impact of point mutations on the N-terminal domain of SHANK3, indicating distinct synaptopatheies in Autism Spectrum Disorder. *Indian Journal of Biochemistry & Biophysics* (officially accepted for publication).

List of Publication under communication

1. Almaadani, H. K. The role of neuroinflammation pathomechanism on autism spectrum disorder and unraveling potential biomarkers for early detection. *Cytokine*.

List of Conferences

Almaadani, H. Baruah, S. "Early detection of autism spectrum disorder: Meta-analysis of RNA-seq to determine the role of cytokines in ASD pathogenesis" National Seminar on "Emerging trends in biological sciences: A North East India perspective" held at NIH University, Shillong, India on 28th Febreuary-01th March, 2023. (Poster Presentation)