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2. Introduction 

2.1. Autism spectrum disorder 

Autism spectrum disorder (ASD) is a group of neurodevelopmental conditions that affect 

the development of neurological pathways. According to a recent report, the prevalence 

rate for ASD is 1 in 100 children [1]. Prior systematic analyses have indicated that the 

documented increase in ASD prevalence estimates over time may be associated with 

enhancements in diagnostic criteria, improved research quality, methodological 

classifications, heightened availability of diagnostic and support services, and elevated 

awareness of ASD [2]. Furthermore, ASD demonstrates an uneven gender distribution, 

with males being four times more susceptible to developing the disorder compared to 

females [3]. Numerous hypotheses have been released to understand this differential 

prevalence, including that females require a higher genetic dose “defect” than males, 

which is compatible with the assumption that protective genetic factors have a crucial 

role in disease progenesis. Moreover, a relationship between the risk of ASD and 

testosterone levels in males is likely attributed to dramatically elevated inflammatory 

responses [4], resulting in alterations in neuronal development and influencing the 

connectivity among various brain regions [5, 6].  

2.2. The manifestations of ASD 

ASD is characterized by a broad spectrum of manifestations rooted in two fundamental 

domains of behavior, including: 

1. Social deficits encompass a deficiency in social reciprocity and an impaired 

ability to improve loving relationships through interpersonal communication. In 

addition, impairments in language and interactions manifested by echolalia, 

pronominal reversal, and atypical language usage [7]. 

2. Stereotypical repetitive types of behavior, including obsessed routines habits, 

abnormal preoccupations, limited interest patterns, abnormal attachments to items, 

unique motor stereotypies, and idiosyncratic reactions to sensory stimuli [8]. 

Moreover,  seizure disorders often coexist in individuals diagnosed with ASD and 

cognitive delays. Additionally, ASD is frequently accompanied by hyperactivity, 

impulsivity, attention impairment, as well as symptoms of anxiety. The diverse array of 

manifestations observed in ASD underscores its multifaceted etiology, which involves 
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complex interactions between genetic and environmental factors [9], as shown in Figure 

2.1. 

 

Figure 2.1. The manifestations categories of autism spectrum disorder (modified from 

[10]). 

 

2.3. The etiology of ASD 

2.3.1. Non-genetic factors associated with ASD 

Epidemiological research continue to pinpoint numerous environmental agents, 

encompassing biological, chemical, and infectious factors, which independently or 

synergistically elevate the risk of ASD in affected individuals in conjunction with genetic 

susceptibility [11, 12]. Numerous studies have revealed various exogenous factors, 

including the rubella virus and medications such as valproate, which have been revealed 

to heighten the risk of ASD hundreds of times [13, 14]. Moreover, it has been indicated 

that maternal infection throughout pregnancy caused by influenza, stress, obesity, and 
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maternal old age may elevate the incidence of ASD [15-17]. Furthermore, exposure of 

the mother to chemical or biological substances, like environmental pollutants and 

pesticides used in agriculture, during the initial phase of fetal neurological development 

has been associated with a notably  

increased likelihood of ASD [18, 19]. However, several clinical epidemiological reports 

are hampered by methodological constraints and a lack of understanding regarding the 

cellular and molecular pathways affected by environmental agents implicated in ASD 

onset. As a consequence, environmental investigations emphasize the crucial need to 

comprehend the neurobiological basis of ASD, particularly in identifying susceptibility 

gene transcription through early neurodevelopmental stages. 

2.3.2. Genetic factors of ASD 

The precise etiology and ASD pathogenesis remain mainly unknown; however, a 

substantial proportion of ASD cases are attributed to genetic factors. Molecular genetic 

investigations have revealed a significant genetic predisposition, as evidenced by higher 

concordance rates among monozygotic twins compared to dizygotic twins (0.98 and 

0.53, respectively) [20, 21]. Investigations involving diverse families and various 

twinning types underscore the significant role of genetics in ASD etiology. A 

comprehensive review encompassing over two million individuals from six hundred and 

eighty thousand families across multiple nations estimated heritability at 80%. This 

finding revealed the potential of genomics as a valuable medical indicator for ASD [22]. 

The heterogeneity observed in ASD, likely driven by various genetic factors, 

encompasses monogenetic syndromes such as Fragile X syndrome (FXS). FXS stands 

out as a notable monogenic contributor to ASD, often exhibiting a significant prevalence 

of ASD-like manifestations in affected individuals. FXS is primarily linked to a 

deficiency in the expression of the Fragile X Mental Retardation 1 (FMR1) gene located 

on the X chromosome [23]. Additionally, Rett syndrome has been linked to many cases 

of ASD [24]. The considerable genetic heterogeneity observed in ASD underscores the 

absence of any singular genetic mutation responsible for more than 1–2% of ASD cases. 

Moreover, the polygenetic type of inheritance, as evidenced by numerous studies, adds a 

layer of complexity to unraveling the underlying genetic mechanisms associated with the 

disorder. [25]. Scientists have utilized both traditional and innovative research methods 

to confront these complex conditions. Chromosomal abnormalities have been identified 
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in approximately 3–7% of ASD cases, with the most common abnormalities including 

maternal duplication of 15q11-q13, duplication of 17p11.2, deletion of 2q37, deletion of 

22q13.3, and deletion of 22q [26-29]. On the contrary, genome-wide association studies 

(GWAS) and linkage studies have identified numerous loci or putative regions/genes 

potentially linked to ASD. Besides this, they underlined the relevance of single 

nucleotide polymorphisms (SNPs) in the heredity of ASD 

 [25, 30, 31] (Figure 2.2). In accordance with the aforementioned studies, a myriad of 

genetic loci have been implicated in pathomechanisms of  ASD [32]; however, they 

converge to many molecular pathways that have been engaged in the neurobiology of 

ASD [33]. Synaptopathies and neuroinflammation are the most common neuronal 

trajectories associated with ASD [34, 35]. 

 

Figure 2.2 The various genetic, epigenetic, and environmental risk factors involved in 

ASD (modified from [36]). 

 

 



CHAPTER 2 | 2024 
  

15 | Hiba Almaadani 

 

2.4. The pathomechanisms implicated in ASD 

2.4.1. Synaptopathy 

Synaptogenesis is a complicated and precisely controlled process essential for conserving 

neuronal homeostasis and ideal brain function [37]. Accurate regulatory systems guide 

this mechanism to guarantee the proper development and alteration of synapses. 

Dysfunction, even in a single component as part of this complex architecture, may result 

in a group of neurological conditions defined by synaptic malfunction, collectively 

pointed out as synaptopathies [37, 38].  

2.4.1.1. Dendritic Spines  

Dendritic spines emerge from filopodia extensions originating from dendritic branches of 

neuronal cells, seeking axonal connection and hosting the required mechanism for post-

synaptic functionality [39]. The establishment and maturation of connectivity with the 

axonal element shape the formation position of the excitatory synapses [39]. This 

connection serves as a focal point for numerous dynamic processes, especially during the 

developmental stages of the juvenile brain [40], and decreases during adolescence [41]. 

The post-synaptic component of the majority of excitatory synapses within the CNS is 

termed a dendritic spine [42]. The diversity of dendritic spines, which exhibit various 

morphologies across distinct developmental stages, has been highlighted by early 

investigations [43], as displayed in Figures 2.3A and 2.3B. These morphologies have 

been described as maturing mushroom spines with a short neck and distinctly defined 

spine head or as thin, juvenile spines [39, 44]. The dynamics of the spine play a crucial 

role in all stages of synapse development, maintenance, and removal [45]. Investigating 

the regulation of spine plasticity is vital due to its association with several 

neurodevelopmental, cognitive impairments, and neurological conditions, including ASD 

[46]. Nevertheless, regulating dendritic spine dynamics is a complicated system 

associated with actin dynamics and encompasses numerous signaling mechanisms [47]. 

2.4.1.2. Synaptic plasticity  

Neuronal synaptic connections have the ability to endure long-lasting modifications in 

their strength [48]. Synaptic plasticity refers to the bidirectional capacity of synapses to 
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enhance or diminish their strength in response to predictable patterns of synaptic activity. 

This phenomenon is believed to be the fundamental mechanism underlying learning and 

memory at the cellular level. The alterations that take place precisely at each synapse are 

able to be observed through experiments as either long-term potentiation (LTP) or long-

term depression (LTD) [49, 50]. Long-term potentiation (LTP) is a lasting increase in the 

strength of synaptic between neurons caused by short, intense stimulation at a high 

frequency. This process involves an increase in the size of synapses and the addition of 

Glutamatergic α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) 

receptors. On the other hand, long-term depression (LTD) is a lasting reduction in the 

strength of synaptic between neurons resulting from longer periods of low-frequency 

stimulation that leads to the shrinking or elimination of synapses [49, 51-53] (Figure 

2.3C). Since the dysregulation of excitatory/inhibitory (E/I) neuronal synaptic is 

implicated in various neurological disorders such as epilepsy and ASD, there is a precise 

regulation of the size and quantity of excitatory and inhibitory neuronal synaptic. 

Additionally, long-term plasticity in glutamatergic and GABAergic synaptic transmission 

takes place coordinately to modulate the harmony of E/I synaptic transmission [54, 55].  

Moreover, one of the complicated structures that plays a critical role and serves as a 

structural scaffold in synaptic plasticity is postsynaptic density [56].  
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Figure 2.3 (A) The structure of the synapse, (B) The various morphology types of 

dendritic spines [57], (C) diagram depicts how repetitive synaptic stimulations LTPs are 

linked to molecular changes [58]. 

2.4.1.3. The post Synaptic density  

The postsynaptic density (PSD) represents an intricate protein structure situated within 

dendritic spines, predominantly positioned at the spine head in close proximity to the 

presynaptic active area. Comprising an array of proteins such as scaffolds, receptors, and 

signal transmitter molecules, the PSD orchestrates synaptic transmission by ensuring the 

alignment of neurotransmitter receptors opposite the active zones. This organizational 

mechanism facilitates the efficient release of neurotransmitters into the synaptic 

transmission via vesicle exocytosis from clusters of synaptic vesicles attached to the 

active area in the presynaptic  [59-61]. The PSD is depicted under microscopy as an 

electrons-dense thickened in the postsynaptic cytoplasmic membrane. However, new 

research employing super-resolution imaging techniques have explored the molecular 

structure of synapses and found that the key postsynaptic proteins are arranged into 

nanoclusters in the PSD [62-64]. One pivotal protein that plays a role within the 

postsynaptic density of excitatory glutamatergic synapses is the SHANK3 gene [65], as 

illustrated in Figure 2.4. 
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Figure 2.4 The morphology of the post-synaptic density in excitatory synapses (Taken 

from [61]) 

2.5. Shankopathies 

One of the extensively investigated scaffolds of excitatory synapses is the family of 

SHANK gene, which has engaged in the etiology of diverse neurodevelopmental and 

psychiatric conditions, including ASD. The SHANK1, SHANK2, and SHANK3 genes 

encode SHANK proteins [65]. Although primarily associated with the central nervous 

system (CNS), SHANK expression extends beyond the CNS. Specifically, the SHANK3 

gene demonstrates ubiquitous expression across various human tissues [66]. In 

glutamatergic synapses, SHANK3 is a vital element of the pallial layer within the PSD, 

where it forms subsynaptic clusters or nanoregions [62].  

The deficiency of SHANK3, resulting in reduced function of synapses and impaired 

inter-neuronal communication, may be implicated in developmental delay, intellectual 

disability, and the absence or severe delay of speech [67]. Mutations in the SHANK3 

gene have also been identified in individuals diagnosed with ASD. Many of these 

mutations lead to a decrease in SHANK3 protein levels or alter its function, thereby 
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disrupting neuronal communication. This dysregulation is believed to play a significant 

role in the development of ASD [68]. 

Moreover, SHANK3 has been implicated in synaptic dysfunction. Prior research 

indicates that synaptic malfunction can trigger microglial activation, potentially 

influencing neuronal communication [69, 70]. Excessive microglial activation may 

induce chronic neuroinflammation, which could impact various physiological processes, 

including angiogenesis [71]. Previous studies have observed signs of neuroinflammation 

and deficits in angiogenesis in several instances of ASD [72, 73]. Therefore, these 

pathological disturbances may significantly contribute to the pathogenesis of ASD [17]. 

While these observations highlight correlations, it is essential to note the dynamic nature 

of the field, necessitating ongoing research to elucidate the precise pathways and 

processes linking mutations in SHANK3, synaptic malfunction, and neuroinflammation 

in ASD. The interaction between genetic and environmental agents is intricate, and 

forthcoming investigations are likely to offer more comprehensive insights into this 

association. 

2.5.1 The structure of the SHANK3 gene 

SHANK3 is located within the crucial region of 22q13.3 [74]. SHANK3 is structured 

into several distinct domains along with a proline-rich segment, housing binding sites for 

various proteins such as homer1 and cortactin. These domains encompass a 

SHANK/ProSAP N-terminal (SPN) domain, an ankyrin repeat region (ARR), a Src 

homology 3 (SH3) domain, succeeded by a PSD-95/Discs large/ZO-1 domain (PDZ), 

and a C-terminal sterile alpha motif (SAM) [65]. The SH3 and PDZ domains of 

SHANK3 have been demonstrated to link with the C-terminal segment of the voltage-

gated L-type Ca2+ channel Cav1.3. This interaction has been established as essential and 

adequate for the synaptic clustering of Cav1.3 [75]. The PDZ domain of SHANK3 has 

been found to interact with additional binding partners, such as SAPAP1 and the GluA1 

subunit of AMPARs [76]. Furthermore, the proline-rich stretch, situated between the 

PDZ and SAM domains and containing binding sites for homer1 and cortactin, functions 

as a crucial connector to the spinous F-actin cytoskeleton and other scaffolds within the 

PSD [77]. Ultimately, the SAM domain plays a vital role in directing the localization of 

SHANK3 to dendritic spines and facilitating activity-dependent oligomerization in the 

PSD [78, 79], as shown in Figure 2.5. 
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Figure 2.5 Schematic illustrates the structure of the SHANK3 gene and the protein 

partners (Taken from [80]). 

2.5.2 The structure and function of the SHANK3 N-terminus 

Recently, the structure of an N-terminal SHANK3 fragment comprising the residues 2 - 

347 (PDB: 5G4X), including the SPN and ARR domains, has been solved and provided 

insights into the potential role of point mutations located in this region [66]. The SPN 

domain constitutes one of the essential domains of SHANK3 and adopts a conformation 

resembling a ubiquitin-like (Ubl) domain analogous to the F0 domain of the Talin 

domain. The SPN interacts with signaling proteins relevant to the regulation of F-actin 

structure and dynamics, such as R-Ras, H-Ras or Rap1, all belonging to the Ras 

superfamily of small GTPases [66, 81]. This interaction was shown to inhibit integrin 

activation by sequestration of active Rap1 and R-Ras [66]. In contrast, the ARR domain 

interacts with cytoskeletal proteins such as α-Fodrin, the cell adhesion protein δ-catenin 

or sharpin (a cytosolic signaling protein), a component of the linear ubiquitin chain 

assembly complex [82]. In the three-dimensional structure, the seven ankyrin repeats of 

SHANK3 are linked (by a 19 amino acid long linker region) to the 90 amino acid 

conserved SPN domain. This structure confirms biochemical data indicating that the 
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SHANK3 SPN domain is engaged in an intramolecular interaction with ARR and forms a 

large interface with this region [83].  

2.5.3. The Intra-Domain Interaction between the ARR and SPN 

Domains 

Previous investigations have shown that the ARR and SPN domains interact, and this 

interaction is critical to a possible autoregulatory mechanism between the domains [83]. 

It was previously identified that at the interface of the SPN and ARR domains, there are 

several polar and charged residues that oppose one another, that could form electrostatic 

interactions between the two domains [66], as shown in Figure 2.6. The linker region 

between the ARR and SPN domains is also likely to be closely associated with the two 

domains. This flexible linker region would allow for a dynamic interaction between the 

domains, acting like a hinge in the ‘open’ conformation, further supporting this as a 

regulatory mechanism [83, 84]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 The electrostatic interactions between the SPN (pink) and ARR (green) 

domains. Polar and charged side chain residues at the interface are colored as yellow 

sticks. The linker region is depicted in grey. 
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2.5.4. SHANK3 N-terminus protein partners 

Numerous interaction partners link to SPN, ARR domains, or even the loop structure 

between SPN and ARR, which serves as a specific site for the interaction with protein 

mediators. Recent reports have highlighted the involvement of the linker domain 

connecting both regions, along with a segment of the SPN, in establishing a binding 

surface for Ca2+/calmodulin-dependent kinase IIα (αCaMKII) which is a crucial element 

in synaptic plasticity and learning processes, plays a pivotal role in decoding synaptic 

Ca2+ oscillations, regulate calcium concentrations, PSD assembly, and dendritic spine 

morphology. This binding occurs in its inactive state, non-phosphorylated, and requires a 

closed configuration of the SPN-ARR tandem [85, 86]. Furthermore, the SPN domain 

has been proven to have a strong affinity for various Ras group G-proteins, including 

Rap1a and Rap1b, with two binding sites for Rap1 situated on the N-terminus SHANK3. 

The interaction between signalling proteins and SPN is crucial in regulating the structure 

of F-actin [66, 81]. 

On the other hand, α-Fodrin, sharpin, and δ-catenin have established interactors with the 

ARR domain. An emergent association involves δ-Catenin as a novel interacting partner 

of Shank3, specifically binding to the ARR domain [82]. SHANK3 assumes a pivotal 

role in the postsynaptic localization and stabilization of Catenin proteins, wherein δ-

Catenin-mediated regulation of spine density necessitates interactions facilitated by 

SHANK3 [87]. δ-catenin is expressed in excitatory synapses and functions as an anchor 

for the glutamatergic AMPA receptor (AMPAR) GluA2 subunit in the postsynaptic 

density [88]. Conversely, the absence of δ-Catenin results in a reduction in both overall 

excitatory synapse density and active synapses expressing the GluA subunit of the AMPA 

receptors [89, 90]. Notably, CTNND2 is a δ-Catenin gene, and its deletion is associated 

with the cri-du-chat syndrome (CDCS), characterized by severe cognitive and language 

impairments, motor delays, and behavioral challenges [91]. Moreover, CTNND2 has 

emerged as a candidate ASD gene, as loss-of-function mutations in this gene, such as 

deletions and unbalanced translocations, are linked to severe ASD [92, 93]. Furthermore, 

earlier research indicated that intramolecular interaction prevents α-Fodrin from 

accessing its location on the ARR domain in SHANK3 [83] since the α-Fodrin protein 

provides another link to the actin cytoskeleton by direct interaction with the ARR 

SHANK3 [94]. 
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2.6. The interactions between genetic alterations in synaptic proteins 

and brain immune activation 

The genetic modifications occurring in synaptic proteins may stimulate the brain's 

immune system, leading to an activated state known as "immune‐synaptopathy." In this 

context, dysfunctional synapses or circuits may emit signaling cues to other brain cells 

possessing immune functions, such as microglia and astrocytes, through molecular 

signaling, thereby triggering immune system activation. The potential interpretation of 

this immune system activation as a compensatory response to address impaired synapses 

or circuits presents an interesting area that is worthy of further investigation. 

2.4.2. Neuroinflammation 

Neuroinflammation is an intricate process that occurs when the brain reacts to various 

stimuli. It is a significant hallmark of numerous clinical disorders [95]. Microglia are a 

primary responders to any insult to the brain parenchyma, translating the signals into 

diverse molecules. These microglia-derived molecules can regulate the stimuli-dependent 

reactivity of astrocytes. Once activated, astrocytes, in turn, can control microglia 

phenotypes [96]. Recent evidence indicates that the crosstalk between these glial cells 

plays an important role in delaying or accelerating neuroinflammation and overall 

disease progression [96-98]. Persistent neuroinflammation plays a pivotal role in the 

progression of various neurodevelopmental conditions by instigating an excessive release 

of proinflammatory cytokines, which in turn triggers significant pathological alterations 

and neurobehavioral complications [99]. Increasing evidence suggests that 

neuroinflammation serves as a fundamental contributor across a spectrum of conditions, 

spanning from neurodevelopmental disorders like ASD to neuropsychiatric conditions 

such as schizophrenia. While the accurate pathophysiological mechanisms underlying 

ASD remain incompletely understood, growing research supports the involvement of 

neuroinflammation in the etiology of ASD disorder [100-102]. This is evidenced by 

sustained activation of microglia and astrocytes observed in postmortem brains [103-

105], along with elevated levels of cytokines and chemokines detected in cerebrospinal 

fluids (CSF) [106-108], as illustrated in Figure 2.7. 
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Figure 2.7 Diagram showing the potential impacts of reactive astrocytes and microglia 

in the brain of an ASD patient (A) Under normal physiological conditions. (B) In the 

case of ASD condition. BBB: Blood-brain barrier (Taken from [73]). 

2.4.2.1. Microglia 

Microglia, the first type of glial cells, originate in the brain from the embryonic yolk sac 

[109, 110] and migrate along the course of the fibers of the corpus callosum to all parts 

of the brain [111]. Microglia act as the primary immune cell in the CNS and form the 

first line of defence by regulating immunological and inflammatory responses [112]. The 

activation of microglia is a phenotypically and functionally diverse process that depends 

on the type of stimulus and cellular contexts [113]. Microglia can be induced into two 

distinct types of activation, M1 (classical activation state) and M2 (alternative activation 

state), which might lead to different phenotypic characteristics and secretion profiles 

from those of macrophages [114] M1-like microglia (so-called pro-inflammatory 

microglia) and M2-like microglia (so-called anti-inflammatory microglia) exert 

respectively detrimental and beneficial effects, depending on their intrinsic properties 

and the interaction with cellular microenvironments [115] M1-like microglia generate a 

detrimental microenvironment for neurons by producing inflammatory cytokines and 

reactive oxygen species (ROS) [116], while M2-like microglia produce a supportive 
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microenvironment for neurons by producing anti-inflammatory cytokines and 

neurotrophic factors [117, 118]. Although this type of dichotomic classification provides 

a framework for exploring the diverse functions of microglia, this classification appears 

to oversimplify the activation status of microglia [119]. Emerging studies indicate the 

activation of microglia as a dynamic process, which occurs in the form of a continuum 

across the M1 and M2 phenotypes [120]. Microglia perform a wide range of 

physiological functions in the healthy brain, involving the development of synaptic 

networks [121, 122], stimulation of developmental apoptotic[123], positioning of 

neurons within the developing cortex and secretion of growth factors for neuronal 

survival [124]. The biological significance of microglia engagement can be either 

neuroprotective or neurotoxic, depending on the balance between their anti-inflammatory 

versus pro-inflammatory activities [125], leading to containment or aggravation of 

disease progression [113]. Consistent with this variety of functional roles, microglia can 

take on a range of phenotypes, including ramified, primed, reactive and amoeboid 

microglia [126]. The morphological changes indicate that the microglia have detected a 

change in homeostasis, but they do not specify a particular response state or type of 

activity in any given disease [121]. Increasing evidence highlighted the significant 

involvement of microglia in the pathophysiology of neuroinflammation especially 

through their ability to interact with mast cells, neurons, and other glia [127]. Although 

astrocytes also have some of these properties [128]. Astrocytes and microglia are, 

however, highly dynamic and in addition to regulating neuroinflammation they are 

involved in homeostatic processes such as synapse formation, pruning and plasticity [73]. 

Besides, the activation of microglia has been implicated in the pathogenesis of various 

disorders, ranging from neuropsychiatric disorders such as schizophrenia to 

neurodevelopmental disorders such as ASD [129]. 

2.4.2.2. Astrocyte 

Astrocytes are critical in maintaining physiological homeostasis within the CNS, with 

important roles in supporting neuronal function, glial transmission and signalling via 

Ca2+ release and uptake [130]. For example, astrocytic glutamate release can affect both 

pre- and post-synaptic neuronal activity. The idea that astrocytes are integral to pre- and 

post-synaptic function has led to the concept of a ‘tripartite’ synapse and places 

astrocytes amongst the central pathways of neuronal function [131]. Cytokines released 
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during the initiation of the immune response stimulate astrocytes to undergo reactive 

gliosis characterized by upregulation of astrocyte intermediate filament proteins, most 

notably glial fibrillary acidic protein (GFAP) [132]. Similar to microglia, reactive 

astrocytes undergo morphological changes and proliferate to mount an immune response. 

In contrast with microglia, however, they extend rather than retract their processes and 

undergo hypertrophy to enable this process [133]. Astrocytes and microglia express 

different biochemical markers. Specifically, astrocytes express excitatory amino acid 

transporters (EAATs) 1-5, whereas microglia lack EAAT4 [134]. Moreover, astrocytes 

express a larger number of EAATs than microglia and as a result, glutamate uptake by 

astrocytes plays a significant role in maintaining extracellular glutamate levels [135]. A 

prominent role in glutamate uptake enables astrocytes to facilitate precise spatial and 

temporal transmission of glutamatergic neurotransmission, thus regulating the activity of 

surrounding synapses[136]. Astrocytes are also less morphologically reactive than 

microglia, potentially indicating a secondary role in responding to infiltrating stimuli. 

Indeed, it has been a point of controversy as to whether microglia or astrocytes are the 

initial responders to external threats to the immune system, with recent evidence 

suggesting that reactive microglia drive the induction of neuroprotective effects [137] or 

neurotoxic activity [138] in a subset of reactive astrocytes. Nonetheless, both microglia 

and astrocytic populations are also modulated via bidirectional communication [96]. 

 

2.4.2.3. The impact of cytokines and chemokines released through 

microglia-astrocytic communications 

Bidirectional communication exists between microglia and astrocytes, and it modulates 

CNS inflammation through the inflammatory mediator and secretion of multiple 

cytokines. Consequently, the basis of neuronal function and dysfunction is microglia–

astrocyte crosstalk [139]. Activated microglia secrete a variety of cytokines and 

chemokines that can induce astrocyte reactivity [140]. Indeed, the majority of cytokines, 

such as IL-1, IL-2, IL-6, Tumour Necrosis Factor alpha (TNF-α), and Interferon gamma 

(IFN-γ), have been reported to cause reacting astrogliosis in newborn mice when 

administered into stab wound regions via evaluated the presence of GFAP positivity 

[141]. Conversely, reactive astrocytes release adenosine triphosphate (ATP) to initiate 

microglial activation. Reactive microglia and astrocytes work together to form a glial 

scar at the location of an injury. This scar acts as a physical barrier to prevent additional 



CHAPTER 2 | 2024 
  

27 | Hiba Almaadani 

harm and induce the healing of the tissue [142]. Post CNS damage, astrocytes increase 

the production of chondroitin sulfate proteoglycans (CSPGs), which constitute a 

significant part of the glial scar [143]. CSPGs enhance the signaling pathways associated 

with the recruitment of reactive microglia and other immunological cells to the injury 

position, indicating a potential role of heightened astrocyte activity in microglial 

recruitment post-injury [144] suggesting that increased astrocyte activity can signal to 

further recruit microglia following injury. The ongoing interaction between reactive 

microglia and astrocytes, facilitated by bidirectional communication, leads to the 

prolonged release of pro-inflammatory molecules and reactive ROS that can induce 

vascular-endothelial malfunction and structural harm within the surrounding CNS tissue 

environment [145]. These agents collectively contribute to heightened permeability of 

BBB through various mechanisms, including modulation of expression and 

reorganization of cytoskeletal and tight junction proteins constituting BBB [146]. 

Peripheral immune cell infiltration is promoted by the production of chemokines on 

endothelial cells, such as CXCL12, which interact with leukocyte receptors to stimulate 

adhesion and transmigration across the blood-brain barrier [147]. Increased pro-

inflammatory stimuli cause microglia to coordinate the flow of immunological cells from 

the blood vessels, thereby escalating the CNS inflammatory response [113]. Astrocytes 

subsequently assume a protective function by releasing various regulatory factors, 

including glial-derived neurotrophic factor and transforming growth factor β, that 

connect with endothelial cells to prevent the influx of peripheral leukocytes and 

macrophages across the damaged BBB and promote its repair [148]. Consequently, the 

sustained activation of microglia-astrocyte interactions, often persisting for days or 

months, is considerable as a pathological characteristic of neuroinflammation. 

Scope and aim of the Thesis: 

Studying SHANK3 mutations in ASD is of paramount importance due to the critical role 

SHANK3 plays in synaptic function and neuronal communication. Mutations in the 

SHANK3 gene have been implicated in a subset of ASD cases, leading to alterations in 

synaptic structure and function. Understanding the impact of point mutations on the 

dynamics, stability, folded conformation, and interactions with protein partners of 

SHANK3 protein was an unmet challenge in experimental studies. Consequently, the 

computational approach is essential for elucidating the underlying pathophysiology of 
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SHANK3 point mutations in ASD. Furthermore, insights gained from studying SHANK3 

mutations may pave the way for the development of targeted therapeutic interventions 

aimed at restoring synaptic function and ameliorating the core symptoms of ASD.  

Moreover, Investigating biomarkers from various types of tissues in ASD is crucial for 

enabling early diagnosis and intervention. ASD is a complex neurodevelopmental 

disorder characterized by heterogeneous symptomatology, making early identification 

challenging. Prior research have been successfully predicted biomarkers from brain 

tissues. Nevertheless, the genes may not possess predictive value if they are not 

expressed or modified in accessible tissues. Conversely, many high-risk genes were 

detected in various obtainable tissues, such as blood, saliva, and placenta, without 

confirming their crucial roles in the brain of ASD patients. In order to address the defined 

aims of this study as stated above, the following objectives have been framed: 

[1] To investigate the impact of E71S mutation on SHANK3 conformational dynamics at 

the SPN-ARR interface. 

[2] To investigate the effect of N52R mutation at the SPN-ARR tandem on the 

conformational dynamics of SHANK3. 

[3] To investigate the impact of two point mutations P141A and L270M in the N-terminal 

of SHANK3 in post-synaptic function in ASD. 

[4] To investigate the ASD-susceptibility risk genes and their potential role in 

neuroinflammation and unraveling potential biomarkers for early detection. 
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