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4. Materials and Methods: 

4.1. Tools and techniques: 

Several experimental methodologies have been utilized to assess the effects of point 

mutations on the structure and functionality of SHANK3. Molecular dynamics (MD) 

simulation has been our approach to investigate the stability, flexibility, and 

intramolecular interactions within the N-terminal region of SHANK3. Moreover, R 

programming is utilized to explore the significant differentially expressed genes in ASD 

samples and to identify potential biomarkers for early detection. The fundamental 

procedures involved in MD simulation and R programming packages are elaborated upon 

below: 

4.1.1. Molecular Dynamics (MD) Simulation: 

Proteins constitute essential components of living organisms, playing a key role in 

critical cellular processes necessary for life, including molecular recognition, signal 

transduction, protein localization, and enzyme catalysis [1]. These biological activities 

are governed by protein movements and physical interactions with other molecules like 

ligands, peptides, proteins, and nucleic acids. Recent advancements in structural biology 

and biophysical characterization techniques, such as X-ray crystallography, nuclear 

magnetic resonance (NMR), and cryo-electron microscopy, have led to a vast expansion 

in the number of available three-dimensional structures for proteins, protein-ligand 

complexes, and protein-protein complexes. However, observing the dynamic behavior 

of individual atoms and manipulating them at the atomic level poses significant 

challenges. An appealing alternative is employing atomic-level computer simulations of 

relevant biomolecules [2], facilitating the study of protein dynamics at an atomic scale. 

The introduction of molecular dynamics (MD) simulation to molecular biology has 

revolutionized researchers' ability to visualize microscopic biological processes [3-5]. 

Molecular dynamics simulations forecast the movement of every atom within a protein 

or molecular system over time based on a comprehensive model of the physics 

governing interatomic interactions [5]. These simulations capture a broad spectrum of 

crucial biomolecular phenomena, including conformational changes, ligand binding, 

protein stability, and protein folding, providing detailed atomic positions with 

femtosecond temporal resolution. Importantly, such simulations predict how 

biomolecules will react—at an atomic level—to various perturbations like mutations, 
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phosphorylation, protonation, or the addition/removal of ligands. When integrated into 

the drug discovery pipeline, these applications empower researchers to identify essential 

interactions required for the favorable binding of small molecules, peptides, and proteins 

to binding pockets or protein-protein interfaces. 

4.1.1.1. History of simulation: 

Alder and Wainwright are credited as the forerunners of molecular dynamics (MD) 

simulation, having pioneered this methodology in the late 1950s to investigate the 

interactions of hard spheres [6, 7]. In 1964, Rahman conducted the initial simulation 

utilizing a realistic potential for liquid argon [8]. Subsequently, the first simulation of a 

realistic system, specifically liquid water, was accomplished in the 1970s [9]. 

Furthermore, the initial simulation of proteins was applied in 1977 [3]. Subsequently, 

during the 1980s, advancements were made in simulating protein interactions with small 

molecules, elucidating their thermodynamics through free energy calculations, and rapid 

computation of biomolecules [10]. In 1998, Duan and Kollman demonstrated the folding 

mechanism of a small sub-domain of villin through a microsecond-scale simulation 

[11]. Notably, in 2013, Martin Karplus, Michael Levitt, and Arieh Warshel were 

awarded the Nobel Prize in Chemistry for their contributions to the development of 

multi-scale models for complex chemical systems, enabling simulations of molecular 

behavior across various scales, from individual molecules to proteins. The growing 

significance of MD simulation has stimulated the development of numerous techniques, 

including potential sampling methods, advancements in force fields, and the availability 

of high-performance computational resources, enabling simulations spanning 

microseconds to milliseconds. MD simulation emerges as a valuable tool for 

investigating biomolecular dynamics. However, effective utilization of MD simulation 

necessitates the development of optimal models capable of accurately representing the 

cellular environment, as well as physical methodologies to induce motion within the 

model, alongside substantial computational resources. Nevertheless, recent progress has 

seen the extension of MD simulations to cellular scales, facilitating simulations 

encompassing entire cells [12]. Further refinement of algorithms and theoretical 

frameworks for modeling, docking, scoring, and energy calculations promises to 

enhance the efficacy of MD simulation methodologies. 
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4.1.1.2. Theory of MD simulation: 

The cornerstone of MD simulation hinges upon Newton's law of molecular mechanics 

[13], which embodies Newton's second law of motion: F = ma, where ‘F’ represents the 

force applied on a particle, ‘m’ denotes its mass, and ‘a’ defines its acceleration. This 

essential equation underpins the MD simulation methodology. When the forces acting 

on individual atoms are known, it becomes feasible to compute the acceleration for each 

atom within the system. Integration of the motion equations generates a trajectory that 

delineates the positions, velocities, and accelerations of particles over time. From these 

trajectories, insights into the average values of particle characteristics can be inferred. 

Notably, this approach is deterministic, allowing for the prediction of system states in 

past, present, or future time frames once the velocities and positions of all atoms are 

established. 

Despite the deterministic nature of MD simulation, its application can be resource-

intensive, necessitating significant time and computational resources. Nonetheless, with 

the increasing affordability and speed of computers, simulations for solvated proteins 

have been extended to the millisecond time scale. Furthermore, studies have reported 

simulations conducted within the millisecond timeframe for various molecular systems. 

Newton's law-based equation of motion is as follows: -                                 

                             Fi =  miai … … … … … … … … … … … … … … . (𝟒. 𝟏)    

  

                                     �⃗� = 𝑚𝑎 … … … … … … … … … … … … … … … … . . (𝟒. 𝟐) 

                          

                         𝐹 = −
𝑑

𝑑𝑟
 𝜇 … … … … … … … … … … … … … … … … (𝟒. 𝟑)     

            

In this equation, Fi defines the force exerted on particle i, mi as the mass of particle i, 

and ai as the acceleration of particle I, which have been derived from the potential 

energy μ(r N), where r N = (r1, r2 . . . r N) denotes the entire set of 3N atomic 

coordinates. 

The Newton’s force, Fi can also be expressed as the potential energy gradient, 

                              

Fi =  −∇iV … … … … … … … … … … … … … … (𝟒. 𝟒) 

The two equations can be combined,  
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−
𝑑𝑉

𝑑ri
= mi

𝑑2 ri
𝑑𝑡2 

(1 + 𝑥)𝑛

= 1 +
𝑛𝑥

1!
+

𝑛(𝑛 − 1)𝑥2

2!
+ ⋯ … … … … … … … … … (𝟒. 𝟓) 

 

In this context, the system's potential energy, denoted as V, is elucidated. A 

relationship exists between Newton's equation of motion and the derivative of 

potential energy, which serves to elucidate changes in position over time. 

The primary aim of numerically integrating Newton's equation of motion is to 

creat a formula that delineates the position, ri (t+∆t at time t+∆t, based on the 

known positions at time t. The Velocity Verlet method utilizes positions and 

accelerations at time t, along with positions from time t-∆𝑡, to determine the 

new positions at time t+∆𝑡. Direct computation of velocities is not entailed in 

this procedure; however, their calculation is essential for determining the 

kinetic energy, K. Throughout this process, the total energy, E=K+U, must be 

conserved.  

The position of each atom is computed at every Δt time step: - 

  

                                  

 𝑅𝑖(𝑡 + 𝛥𝑡) =  
𝑟𝑖(𝑡) + 𝑣𝑖(𝑡)𝛥𝑡 +  1 𝑎𝑖(𝑡)𝛥𝑡)2 

𝑡
… … … … … … . (𝟒. 𝟔) 

                                   

The velocity is utilized just as a half time step: - 

                                               

𝑟𝑖(t +
∆t

2
) = 𝑟𝑖 (t −

∆t

2
) + 𝑟𝑖(𝑡)𝛥𝑡 … … … … … … … … … . (𝟒. 𝟕)     

 

The velocities can be calculated from the Δt time step: - 

 

𝑟𝑖(t) =
𝑟𝑖(t +

∆t
2 ) + 𝑟𝑖(t −

∆t
2 ) 

2
… … … … … … … … … . (𝟒. 𝟖)     

 

It is important to note that velocity rescaling is necessary when kinetic energy is needed 

at time t. Furthermore, the required atomic sites are acquired from:          
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                𝑟𝑖(𝑡 + ∆t) = 𝑟𝑖(𝑡) + 𝑟𝑖 (𝑡 +

∆t

2
) ∆t … … … … … … … … … . (𝟒. 𝟗)           

Force fields are employed to depict the alterations in bond angles, bond lengths, 

torsions, as well as non-bonding van der Waals and electrostatic interactions among 

atoms over time. Comprising interconnected constants and equations, this force field 

endeavors to emulate the molecular geometry and distinctive attributes of the examined 

structures. 

4.1.1.3. Force field: 

A force field, in the context of molecular modeling, is a mathematical equation utilized 

to characterize the dependence of the energy system on the positions of its constituent 

particles. It typically comprises an analytical interatomic potential energy function, 

denoted as U(r1, r2,... rN), along with other contributing factors. The parameters of a 

force field are often determined through fitting procedures to experimental data obtained 

from various sources, such as neutron, X-ray, and electron diffraction, NMR, infrared, 

Raman, and neutron spectroscopy, or alternatively from ab initio or semi-empirical 

quantum mechanical calculations. Essentially, a force field provides a simplified model 

of a collection of atoms bound together by basic elastic (harmonic) forces, which is valid 

within the simulation domain as a substitute for the true potential energy landscape.  

V(𝑟𝑁) =  ∑ 𝑏𝑜𝑛𝑑𝑠 
k𝑖

2
 (l𝑖 − l𝑖 , 𝑜)2 + ∑

k𝑖

2
 (θ𝑖 − θ𝑖, 𝑂)2

𝑎𝑛𝑔𝑙𝑒𝑠

 

+ ∑ 𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠 ∑
V𝑛

2
 (1 + cos(𝑛∅ − ∅𝑜))  

𝑡𝑜𝑟𝑠𝑖𝑜𝑛𝑠

+ ∑ ∑ 4𝜀𝑖𝑗  [(
σ𝑖𝑗

r𝑖𝑗
)

12

−
𝑁

𝑗=𝑖+1

𝑁

𝑖=1
(

σ𝑖𝑗

r𝑖𝑗
)

6

]

+  
q𝑖q𝑗

4πε0ε𝑟r𝑖𝑗

⬚

) … … … … … … … . . …  (𝟒. 𝟏𝟎)   

 

Here, 

V (rN): potential energy as a function of the positions (r) of N atoms; 

ki: force constant; 

l ,l0: current and reference bond lengths; 
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θ, θ0: current and reference valence angle: 

Vn: barrier height of rotation; 

Ø: torsion angle; 

n : Multiplicity defines the number of energy minima throughout a complete rotation 

σij: collision diameter for i and j, the two atoms interacting;  

qi, qj: partial atomic charges on the atoms i and j;  

εij: well depth of the Lennard-Jones potential for the i-j interaction; 

rij: The present distance between atoms i and j; 

ε0, εr: relative permittivity of the environment and the permittivity of the 

vacuum, respectively; 

Ø0: phase factor that determines the torsion angle's energy minimum at every 

position. 

The majority of the potential energy function comprises bond lengths, angles, and 

rotations, along with non-bonded interactions such as van der Waals and electrostatic 

interactions. An illustrative depiction of these diverse interactions is provided in Figure 

4.1. 

 

 

Figure 4.1. Schematic exhibiting the primary contribution to the potential energy 

function. (Right) potential energy terms in a force field, and (Left) energy function used 
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to derive atomic forces for molecular movement. r is the bond length; θ is the atomic 

angle; ϕ is the dihedral angle; ω is the improper dihedral angle; rij is the distance in 

between atom i and j; kr, kθ, kϕ, and kω are force constants; req, θeq, and ωeq are 

equilibrium positions; the dihedral term is a periodic term characterized by a force 

constant (kω), multiplicity (n), and phase shift (γ); εij is related to the Lennard–Jones well 

depth; rm is the distance at which the potential reaches its minimum; qi and qj are the 

charges on the respective atoms; and ε0 is the dielectric constant[14]. 

 

The initial four terms within the equation denote the local or intramolecular factors 

influencing the total energy, encompassing aspects. The last two terms of the equation 

delineate the repulsive van der Waals interactions and Coulombic contacts, with this 

instance employing a 12-6 Lennard-Jones potential. 

4.1.1.4. Long range interaction: Ewald sum: 

In computational simulations of condensed-matter systems, the electrostatic interactions 

are commonly computed employing the Ewald Summation method  [15]. The Ewald 

Sum construction,   errors stemming from truncating the infinite real- and Fourier-space 

lattice sums are tested. An optimal choice is determined for the Fourier-space cutoff, 

typically set at a screening parameter of 7. However, it is apparent that a certain level of 

precision is associated with a scaling factor of 7/3, irrespective of the number of vectors 

encompassed in the Fourier space. Nevertheless, by prevailing the efficient computation 

parameters for Ewald sums, this proposed methodology can be employed to evaluate the 

quality of Ewald-sum implementations and compare various implementations. In MD 

simulations, this methodology may be implemented most frequently to evaluate long-

range interactions. The Ewald sum is predicated on the analysis of a charge distribution 

for the opposite sign of every single site. The additional charge distribution reveals the 

interactions between all surrounding atoms. The threshold scheme can control the 

interactions, albeit in their restricted range. To make up for the excess charge 

distribution, the identical charge distribution with the opposite sign and short-range 

interaction is built up in the reciprocal space. It is straightforward to retrieve the input for 

the electrostatic potential at a particular position ri produced by an ensemble of screened 

charges since the electrostatic potential resulted from the screened charge is a fast 

diminishing function of r. The aforementioned formula furnishes the total potential 

energy for the long-range Coulomb interaction: 
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μ𝑐 = μ𝑞(α) − μ𝑠𝑒𝑙𝑓(α) +  ∆μ(α) … … … … … … … … … … . (𝟒. 𝟏𝟏)   

 

More sharp distributions are generated by higher values of α in the formula; to boost 

precision for such large numbers, K summations are added. A higher value for α, on the 

contrary, minimizes the filtered potential range and permits us to choose a lower 

threshold radius. Consequently, there is room for optimization of the value of α between 

the two factors in order to maximize both efficiency and accuracy. The Ewald 

summation is represented by N2 solely in the aforementioned scales. However, by 

choosing the right values for α and K for the k-space summation cutoff, Finchman was 

able to optimize the summing that scales as N (3/2). Additionally, by evaluating the 

reciprocal summation with the Fast Fourier Transform (FFT), this Ewald summation 

method can be enhanced. On the other hand, the particle mesh-based solution relies on 

the usage of an estimated reciprocal space sum based on FFT that grows as N log (N) 

and a set cutoff for the direct space sum. The infinite-range Coulomb interaction is 

efficiently calculated by this method under periodic boundary conditions (PBC). 

Furthermore, there is a version called Particle Mesh Ewald (PME) that accelerates the 

Ewald reciprocal sum to almost linear scaling by using the three-dimensional fast 

Fourier transform (3DFFT). Under PBC, particle i inside the unit cell interacts 

electrostatically with every other particle j inside the cell, with every periodic image of j, 

and with each of its own periodic pictures because of the infinite range of the Coulombic 

interaction. The total Coulomb energy of a system consisting of N particles in a size L 

cubic box and all of their infinite duplicates in PBC is given by equation 4.12:  

𝑈 =  
1

2
 ∑ ∑ ∑

𝑞𝑖𝑞𝑗

𝑟𝑖𝑗,𝑛 

𝑁

𝑗=1

𝑁

𝑖=1

𝑁

𝑛
… … … … … … … … … … … . . (𝟒. 𝟏𝟐)   

Ewald reformulated a single slowly and conditionally converging series, 

equation (4.13), as the product of two rapidly convergent series plus a constant 

term, 

 

U𝐸𝑤𝑎𝑙𝑑 = U𝑟 + U𝑚 + U0   … … … … … … … … … … . (𝟒. 𝟏𝟑)   

Therefore, the total of these three elements—the real (direct) space sum (Ur), the 

reciprocal (imaginary, or Fourier) sum (Um), and the constant term (U°), also known as 

the self-term denotes the Ewald sum. 
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4.1.1.5. SHAKE algorithm: Dealing with molecules: 

The choice of time step is limited by the many time scales related to vibrational degrees 

of freedom, such as bond vibration, angle stretching, or torsional modes inside a 

molecular system. The integration time step is limited to 1 fs due to the bonds involving 

hydrogen atoms having a faster vibrational state. To necessitate a longer time period, 

however, one can restrain these rapid degrees of freedom while addressing the 

unconstrained degrees of freedom. Since hydrogen bonds have the greatest frequency, 

the SHAKE technique, created by Ryckaert et al., can restrict dynamics for these types 

of bonds [16]. Relaying the unconstrained equations of motion of the atomic system is 

the first step in the SHAKE algorithm. The fundamental idea behind the SHAKE method 

is to use the Lagrange multiplier formalism to enforce bonding distances to remain 

constant. Given Nc, the constraint is provided by: 

 

a𝑘 = r2
𝑘1 𝑘2 − 𝑅2

𝑘1 𝑘2 = 0, 𝑤ℎ𝑒𝑟𝑒 𝑘 = 1,2,3 … … . N𝐶 … … (𝟒. 𝟏𝟒)                 

                         

The distance between the atoms of k1 and k2 is thought to be limited by the parameters 

Rk1k2. The following defines the modified constrained equation of motion: 

 

 

𝑚𝑖  
 d2𝑟𝑖(𝑡)

dt2 
= − 

∂

∂𝑟𝑖
[𝑉 (𝑟1 … . 𝑟𝑁)

+ ∑ τ𝑘(t) α𝑘(𝑟1 … … 𝑟𝑁)]
𝑁𝑐

𝑘=1
… … … … … … . . (𝟒. 𝟏𝟓) 

 

In this case, τ𝑘 represents the unknown Lagrange multiplier for the kth constraint, and mi 

is the mass of the ith particle. Nc quadratic coupled equations can be used to solve this 

modified restricted equation of motion for an unknown multiplier. Ultimately, the 

motion equation 4.16 that follows has been determined. 

𝑟𝑘1(𝑡 + ∆t)  =  𝑟𝑘1
𝑢𝑐(𝑡 + ∆t)

− 2(∆t)2 𝑚𝑘1
−1 τ𝑘 (t)𝑟𝑘1𝑘2(t) … … … … … … … … . (𝟒. 𝟏𝟔)  

 

The position updates with unconstrained force solely are represented by ruc in the 

equation 4.16. But this method is repeated if the specified tolerance is not provided. 
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Instead of explicitly inverting the matrix, the SHAKE algorithm approach modifies the 

particle coordinates periodically until the system satisfies all requirements within a 

certain tolerance. Constraint decay, or the increase in departure from the ideal lengths 

caused by the accumulation of numerical errors, is a factor that constraint algorithms 

must take into consideration in addition to maintaining the rigid bonds. However, since 

the convergence of each time step must happen, iterative algorithms enable accurate 

constraint decay automatically within a certain tolerance. The constrained distance 

deviations from the initial values undergo frequent inspections and fixes. Non-iterative 

algorithms required a deliberate strategy to counter constraint deterioration since they 

lacked a natural feedback mechanism for detecting changes in distance. 

4.1.1.6. Periodic Boundary conditions: 

To explain the periodic boundary conditions, we will construct a system consisting of N 

interacting particles in a volume V and at a temperature T. The system must be tied by 

copies of itself in order for us to guarantee periodic limits on boundaries that are similar 

to the 2D Using system. Consequently, it can be observed that, given a system of 

particles, a particle must rejoin the central box on the opposite side where it departs. The 

atoms of the molecules are organized, as shown in Figure 4.2, in a hypothetical box 

bounded by translated copies of their coordinates. Particle 1 inside the middle box may 

potentially interact with many copies of particle 3 that are present there, as shown in 

Figure 4.2. Furthermore, considering a particular interaction between particles 1 and 3 is 

suitable, and selecting the interaction that results in the smallest interatomic distance 

makes sense. This method is referred to as the closest image convention. There is 

evidence that a periodic 3-dimensional array encircles the inner cell. An atom gets 

replaced when it passes through a barrier and enters the opposite side at the same speed. 

The particles in the core box have a fixed volume after this. However, in order to handle 

non-bonded interactions, a non-bonded cutoff is typically used, allowing each atom in 

the system to interact with just one image of each and every other atom in the system. 
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Figure 4.2. The two dimensional projection of Periodic boundary conditions. 

The simulation cell (dark color) is surrounded by translated copies of itself 

(light color). 

 

4.1.1.7. Temperature and Pressure computation control: 

Multiple strategies are being investigated at the moment to achieve the isothermal MD 

simulations. Adding a fictitious heat bath to the system in order to maintain the average 

temperature T at a certain target temperature T0 is theoretically equivalent to utilizing a 

thermostat. However, the heat bath still matters for a particular particle I since it might 

alter the particle's velocity or modify Newton's equation of motion: 

𝑚𝑖  
 d2𝑟𝑖

dt2 
= 𝐹𝑖(𝑟𝑖) … … … … … . . (𝟒. 𝟏𝟕) 

The system usually evolves according to the above-described equation 4.17, which has 

a micro-canonical (NVE) energy distribution in the absence of temperature control. This 

micro-canonical ensemble provides the value of "real" dynamics, such as classical 

Newtonian dynamics, for a system described by an individual force field at the precision 

level limited by the integration method and the force calculations. By attaching the 

system to a Berendsen thermal bath, the starting temperature of the system is 

determined. The bath serves as a source of thermal energy by adding or removing heat 

from the system as needed. The following equation 4.18 is used to adjust the system 

temperature T(t) that differs from the bath temperature T0: 
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𝑑𝑇(𝑡)

𝑑𝑡
=  

1

τ
 {𝑇0 − 𝑇(𝑡)} … … … … … … … … … (𝟒. 𝟏𝟖) 

 

Where the intensity of the coupling between the bath and the system is determined by the 

time constant, or τ. The system's temperature is adjusted by dividing each step's atom 

velocities by a fraction χ, which is given by equation 4.19: A change in the time 

constant τ can alter the coupling's strength. 

χ = [ 1 + 
Δt

τT
[ 

𝑇0

𝑇(𝑡)
− 1]] … … … … … … … … … … . (𝟒. 𝟏𝟗)  

The temperature control method and the pressure control approach are comparable. The 

system may be connected to a barostat, and by periodically scaling the atomic locations 

and simulation cell size by μ, the pressure can be kept constant: equation 4.20 

μ = 1 − ω
Δt

τ𝑝
 (𝑃 − 𝑃0) … … … … … … … … … … … (𝟒. 𝟐𝟎) 

 

Here, ω is the isothermal compressibility, P0 is the barostat pressure, P is the momentary 

pressure at time t, ∆t is the step time, and 𝛕p is the relaxation constant. The AMBER 14 

standard simulation software is used. The MD is carried out using the PMEMD one 

module of AMBER [17]. 

4.1.1.8. Water molecule model: 

Three-site water models were followed by the development of four-site water models. 

The Bernal and Fowler model is the first of the four-site models. It was created in 1933 

and is currently only sometimes used, but it is significant historically [18]. As on the 

negative charge is moved from the oxygen and towards the hydrogens in that particular 

model at the bisector of the HOH angle, which is 0.15 Å from the oxygen atom. In either 

case, the centre of the Lennard Jones interaction site contains the oxygen atom. Ten 

distances, as opposed to nine, are needed to evaluate the interaction function for a three-

site model. Numerous levels of approximation (such as quantum vs classical, flexible 

versus rigid) and the intricacy of water characteristics have resulted in the suggestion of 

hundreds of theoretical and computational models for water [19]. Among the classical 

water models, the rigid non-polarizable models that represent water as a collection of 

point charges at fixed locations relative to the oxygen nucleus are the most 
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straightforward and computationally efficient. These models are the class that is 

employed in the great majority of biomolecular investigations conducted today. The 

most often used models in this class, such as the triple point charge (TIP3P) [20] (as 

shown in Figure 4.3) and SPCE [21] 3-point models, the four point charge (TIP4Pew) 

[22] 4-point model, and the TIP5P [23] 5-point model, have generally succeeded in 

striking a fair balance between speed and accuracy, albeit they are far from ideal. The 

basic TIP4P water model is re-parameterized for use with Ewald methods, offering a 

worldwide increase in water characteristics overall when compared to a number of 

widely-used polarizable and non-polarizable water potentials. The new TIP4Pew potential 

has a density maximum at approximately 1°C and reproduces experimental bulk 

densities and the enthalpy of vaporization with an absolute average error of less than 1%, 

from -37.5 to 127 °C at 1 atm, using high precision simulations and careful application 

of standard analytical corrections [23].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Schematic representation of TIP3P water model (Adapted from [23]) 

 

(a) 

(b) 
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It takes 10 distances instead of nine to evaluate the interaction function for a three-site 

model. As an example, the ST2 model requires 17 participants in a five-site strategy.  

The TIPS2 and TIP4P potentials were later developed by Jorgensen and associates using 

just the BF water model as a basis [24]. A negative charge is further provided to a site 

located on the bisector of the HOH angle in a manner similar to the TIP4P water model. 

Both the hydrogen sites and the oxygen are impacted by the Lennard Jones' interaction 

encounter unlike the other two water models. In order to accurately depict the ice and 

liquid water surrounding the melting point, a six-site water model was created. Ice and 

water close to the melting point were properly modeled in terms of their structural and 

thermodynamic properties. 

4.1.1.9. Molecular Dynamics steps: 
 

To establish the molecular system involved in the four phases (Figure 4.4):  

1. Energy Minimization  

2. Heating Dynamics 

3. Equilibration Dynamics 

4. Production Dynamics 
 

Figure 4.4. Schematic representation of the steps involved in MD simulation. 



CHAPTER 4 | 2024 
   

82 | Hiba Almaadani 
 

1. Energy Minimization 

Energy minimization is used to replicate the data from MC or MD simulations. Despite 

being crucial for determining entropy and thermodynamic averages, MC structures and 

dynamical ensembles are too numerous to thoroughly examine at the microscopic level. 

The reduced structures are an important and helpful place to start for structural study, 

even though they depict the underlying configurations related to the fluctuations that 

happen during dynamics [25, 26]. Locating a stable point or minimum on the potential 

energy surface using the force field assigned to the system's atoms is required to start 

dynamics. The net force acting on each atom disappears on the surface of the least 

potential energy. Limitations can be applied in the dynamics as well as minimization 

processes. These restrictions can be imposed by a template to force a ligand to find the 

structure that is structurally closest to a target molecule, or they can be obtained from 

data, such as NOEs from an NMR experiment. A function (provided by the force field) 

and an initial estimate or set of coordinates are needed for minimization. The direction 

and size of a step (i.e., change in coordinates) required to approach a minimal 

configuration may be determined using the magnitude of the first derivative. 

Convergence can be rigorously described by its magnitude in addition to the size of the 

first derivative. There are two steps involved in the energy reduction of a molecule 

structure. The first stage is to create and evaluate an equation for a given conformation 

that describes the energy of the system as a function of its coordinates. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. A schematic representation of the Different phases of a molecule during the 

minimization of its energy (Adapted from [27]) 
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Figure 4.5 illustrates the several stages that an energy-saving operation might go 

through. Our goal is to identify the bioactive conformer since we are curious about the 

behavior of bioactive compounds. Research has indicated that the bioactive conformer 

may not be the same as the most active conformer despite the latter appearing to be 

physiologically potent. The bioactive conformer, however, continues to be in a zone in 

proximity to the most active conformer. The conformation of a ligand attached to a 

receptor pocket, as established by experimental studies such as X-ray crystallographic 

analysis, is generally regarded as the bioactive molecular arrangement or conformation 

if the cocrystal geometry of the molecule is present. The bioactive conformer can be 

regarded as the most stable conformer when there is no cocrystal geometric structure. 

            However, the following formulation of the energy minimization problem might be 

used. It must be demonstrated that, given a function f and one or more independent 

variables (x1, x2..... xi), the values of each independent variable can be found by taking 

the minimum value of f. For any variable, the first derivative of the function at its lowest 

point is 0, while its second derivatives are positive: 

∂f

∂𝑥𝑖
= 0; 

 ∂2f

𝜕𝑥𝑖
2 

> 0 … … … … … . . (𝟒. 𝟐𝟏) 

The direction for the energy of the initial derivative determines the position of the 

minimum, while the gradient's magnitude informs the local slope is steep. By allowing 

each atom to move in response to the force applied to it, it is feasible to lower the 

system's energy when the force equals minus the gradient. Together with information 

that may be used to predict when the function will change direction (by passing through 

a minimum or another stationary point), the second derivatives provide information 

about the curvature of the function. The two techniques most commonly used in 

molecular modeling for the first-order minimization processes are the steepest descents 

and conjugate gradient approaches. 

              When the derivatives are near zero, minimum energy converges. It is essential 

to carry out energy reduction on the structure before starting an MD simulation to get rid 

of bad connections that might otherwise cause structural deformation. The three main 

minimization techniques are Newton-Raphson, conjugate gradient, and steepest descent. 
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(i) The Steepest Descents Method: 

 This approach determines which path leads to the minimum by taking the first 

derivative. It travels in a direction parallel to the net force. This direction is represented 

as a 3N-dimensional unit vector with 3N Cartesian coordinates, namely after 

determining the direction of travel, the next step is to determine the distance to be 

travelled along the gradient. In Figure 4.6, the two-dimensional energy surface. The 

gradient's direction from the beginning is along the line. The function will pass through 

a minimum and then rise if we visualize slicing through the surface along the line. 

  

 

 

Figure 4.6.  A line search is used to locate the minimum in the function in the 

direction of the gradient [28]. 

 

(ii) Minimization of Conjugate Gradients:  

In the energy minimization methodology, the conjugate gradient approach yields a set of 

directions that do not display the steepest descents or oscillate behaviour in the narrow 

valleys. In the conjugate gradient approach, the gradients are orthogonal at each point, 

even if the directions are conjugate. Given a quadratic function with M variables, the 

minimum will be found in M steps from a collection of conjugate directions. Beginning 

at point 𝒙𝑘, the conjugate gradient approach proceeds in the direction v𝑘. The gradient at 

the point and the preceding direction vector v𝑘−1 are used to determine v𝑘 [29]. 
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𝑉𝑘  =  𝑔𝑘  +  𝛾𝑘𝑣𝑘−1  … … … … … … … … … … . . (𝟒. 𝟐𝟐)  

The scalar constant γ𝑘 in the above equation 4.22 is provided by:  

𝛾𝑘 =
𝑔𝑘 .  𝑔𝑘

𝑔𝑘−1 .  𝑔𝑘−1
… … … … … . . (𝟒. 𝟐𝟑) 

                                          
 

(iii) The Newton-Raphson method: 

In the Newton-Raphson method, both the first and second derivatives are used. The 

curvature is utilized not just to use gradient information but also to predict where the 

direction will change along the function's gradient. In order to achieve energy reduction, 

this technique requires the greatest amount of computing power. If more water molecules 

are required to increase the system's solubility prior to minimization, they are introduced. 

An expansive container of water that has been preheated to an identical temperature is 

utilized for solvation. All of the system is covered by the water box, which removes any 

water molecules that come into contact with proteins. The mathematical model of 

Newton-Raphson equation 4.24 is as follows: 

 𝑟𝑚𝑖𝑛 = 𝑟0 −  𝐴0
−1.∇V(𝑟0) 

… … … … … . (𝟒. 𝟐𝟒) 

 

Where Ao is the matrix of second partial derivatives of the energy with respect to the 

coordinates at ro (also known as the Hessian matrix), 𝑟𝑚𝑖𝑛 is the anticipated minimum, 𝑟𝑜 

is an arbitrary starting point, and ∇V(𝑟𝑜) is the gradient of the potential energy at ro. 

 

2. Heating Dynamics 

During the heating phase, when each atom in the system is allocated a beginning velocity 

(at 0 K), the Newton's equations of motion, which show the temporal growth of the 

system, are numerically integrated. Following the assignment of new velocities at short, 

predefined intervals that correspond to marginally higher temperatures, the simulation is 

set to continue until the goal temperature of 300 K is attained. Heating causes structural 

stresses to relax, which in turn releases force limitations on different subdomains of the 

simulation system. Constant volume (NVT) is the typical working condition for thermal 

dynamics. 
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3. Equilibration Dynamics 

During the equilibrium phase, a system reaches equilibrium as it changes from its 

starting state. Equilibration should continue continuously, or at least until the values of 

the set of monitored attributes are settled. Together with structural features, the main 

measured attributes are thermodynamic variables like energy, temperature, and pressure. 

Nonetheless, the initial structure of the liquid state simulations is similar to a solid 

lattice. In actuality, it is imperative to arrange the components so that the lattice has 

"melted" prior to the start of the manufacturing process. The reaching point of the liquid 

state can be ascertained by using the order parameters. This order parameter refers to the 

assessment of a system's degree of order. The atoms might, however, remain mostly in 

the same location throughout, preserving a high degree of order while mimicking a 

crystal lattice. Translational dysfunction may result from the species' propensity for 

frequent movement inside a liquid. Solving the equations of motion for an atomic system 

is known as MD. The equation of molecular motion can be solved to determine its 

trajectory and the temporal development of its motions. MD allows for the bridging of 

barriers and the examination of several alternatives, depending on the temperature at 

which the simulation is run. First, velocities need to be assigned in order to start the MD. 

The Maxwell-Boltzmann distribution limitation for the random number generator is used 

to achieve this. The average kinetic energy of the system establishes the temperature, 

according to the kinetic theory of gases. The internal energy of the system is measured in 

U = 3/2 NkT.  

        U = 1/2 Nmv2 gives the kinetic energy of the system. However, the temperature 

may be determined by taking the average of all the atoms' velocities in the system. 

Throughout the simulation, the Maxwell-Boltzmann distribution may be maintained after 

the starting set of velocities is determined. The temperature can be considered to be 

strictly zero Kelvin after energy reduction. Before the system can be heated to the 

required temperature, the dynamics must be initialized. In order to assign velocities at 

low temperatures, dynamics is performed in compliance with the equations of motion. 

The temperature is raised after a number of dynamics rounds, though. A 20 ps timeline 

of progressive heating dynamics is conducted from 0 to 300 K under atomic constraints. 

Velocity scaling is the most often used approach to temperature scaling. A run of at least 

5 ps (5000 time steps) and frequently 10 or 20 ps is necessary for equilibration time steps 

of 1 fs. After heating, dynamic equilibration lasts for 100 ps. 
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4. Production Dynamics: 

For the dynamics of the time period of interest is mostly employed to compute 

thermodynamic averages or sample new configurations. During this step, calculations 

are performed about the thermodynamic properties and further data. The simulated 

system determines most of the parameters, including the kinetic, potential, and total 

energy, velocities, temperature, and pressure, which are used to determine whether or not 

equilibrium has been attained. However, in a simulation of the micro canonical 

ensemble, the total energy remains constant, even though the kinetic and potential 

energies could change. Each of the three directions, x, y, and z, should possess an 

equivalent quantity of kinetic energy, and the velocity components need to fall inside the 

Maxwell-Boltzmann distribution. The system's variable during the production phase is 

the temperature. The system is left to evolve when all counts are reset to zero at the 

beginning of the manufacturing phase. The temperature of the system is now estimated 

because no velocity scaling is carried out while creating a micro canonical ensemble. 

The characteristics are precisely calculated and retained for additional processing and 

analysis throughout the manufacturing phase. If problems occur, it could be required to 

restart the simulation if it’s being closely observed based on its behavior. Additionally, it 

is standard procedure to save configurations' energies, positions, and velocities 

throughout time in order to retrieve the other properties when the simulation is finished. 

Nevertheless, the MD simulation may be performed while the thermodynamic 

parameters are being calculated. The production run is created using a few hundred ps to 

ns or even more. 

 

4.1.2. Molecular docking: 

The computational anticipation of interactions between protein molecules poses a 

formidable task within the domain of structural biology. Accurate and dependable 

prediction of these interactions holds substantial promise for advancing various realms of 

biological research, spanning academia and industry alike. The complexity inherent in 

protein-protein docking lies in the precise alignment of two interacting molecules, 

contingent upon the interactions among constituent residues engaged in the targeted 

interaction. Multiple docking methodologies are currently accessible to address this 

challenge [30-33]. 
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4.1.2.1. ClusPro web server: 

In 2004, the ClusPro web-based server was initially introduced [34 ,  35 ] , subsequently 

undergoing notable refinement and expansion[36-38]. ClusPro facilitates the direct 

docking of two interacting proteins [39], requiring two protein data bank (PDB)-

formatted files for execution. The server employs a three-step computational process for 

docking:  

(i) Rigid body docking is employed to explore billions of conformations.  

 

(ii) Subsequently, 1000 lowest energy structures are clustered based on RMSD to 

identify prominent clusters reflecting plausible complex models; 

 

(iii) Energy minimization is employed to refine selected structures (Figure 4.7). 

During the rigid body docking phase, PIPER, a docking tool, utilizes the FFT 

correlation technique [40].  

Presently, the ClusPro web server has transitioned to ClusPro 2.0, reflecting an updated 

version. 

 

Figure 4.7. Representation of the ClusPro algorithm: the number of structures 

retained after each step is shown in a blue box. Taken from [39]. 
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4.1.3. In silico prediction of protein-protein interaction: 

Protein-protein interactions (PPIs) are an important mechanism that drives a variety of 

cellular physiological functions and are also implicated in the pathophysiology of many 

illnesses [41, 42]. 

 

4.1.3.1. PDBsum server: 

A web-based database called PDBsum provides a visual summary of all the important 

information pertaining to every macromolecular structure that has been submitted to the 

Protein Data Bank (PDB) (http://www.ebi.ac.uk/pdbsum) [43]. Included are extensive 

structural pictures, annotated plots of each protein chain's secondary structure, thorough 

structural analyses, a synopsis of the PROCHECK findings, and schematic diagrams of 

the interactions between proteins and small molecules, proteins and DNA, and other 

molecules. Important structural elements like the protein's domains, PROSITE patterns, 

and interactions between proteins and ligands are highlighted using RasMol scripts. 

Publicly accessible at http://www.biochem.ucl.ac.uk/bsm/pdbsum, PDBsum is updated 

whenever new structures are made available by the PDB. This server produced a PDB 

structural information library, making it the first webserver to utilize the new World 

Wide Web technology. Its main goal was to offer a comprehensive visual encyclopedia 

of the proteins and their complexes included in the PDB. It was first developed in 1995 

at University College London (UCL). These images are made up of many structural 

studies that are either not available or not easily accessible elsewhere. 

Providing each 3-D model's structural information in the most visually appealing way 

possible is the main goal of this server. The molecules that make up each PDB entry, 

such as ligands, metals, protein/DNA/RNA chains, and their interactions, are thus 

shown graphically. Over time, a growing number of new features have been introduced. 

One may painstakingly compile this kind of material for oneself, in addition to the 

references to literature and other links to databases; however, it's preferable to deliver it 

right away. The following features of the PDBsum server include: 

a) Wiring Diagram 

 PDBsum offers a "protein page" with a schematic representation of the protein's 

secondary structure, or "wiring diagram," for each distinct protein chain of a structural 

model (Figure 4.8). 

http://www.ebi.ac.uk/pdbsum
http://www.biochem.ucl.ac.uk/bsm/pdbsum
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Figure 4.8. Wiring diagram presents the secondary structures in the SHANK3 

protein (5G4X pdb). Helices are labelled as H1, H2, H3, H4, H5, H6, H7, H8, 

H9, H10, H11, H12, H13 and H14. 
 

b) Surface topology  

The protein page also includes a topology diagram (Figure 4.9) that illustrates the 

connections and arrangements between the protein's strands and helices. When a protein 

chain includes many domains, the wiring diagram's domain shading is followed in the 

creation of each domain's diagram, which is done independently. Hydrogen bonding 

plots may be converted into topology diagrams using Gail Hutchinson's HERA 

programme [44]. 
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Figure 4.9. The surface topology diagram delineates the distribution of 

structural motifs: helices, beta turns, and gamma turns in SHANK3 protein 

(5G4X pdb). 

 

4.1.4. YASARA tool: 

YASARA tool [45, 46] is an application designed for protein molecular modeling that is 

needed for this kind of computational work. Molecular or homology-based modeling are 

two computer approaches that can produce structural information about the reaction of 

the system. Two particular applications are demonstrated, encompassing both homology 

modeling and molecular modeling techniques like energy minimization, molecular 

docking simulations, and MD simulations. The applications have been selected to 

provide concrete illustrations of how structural information obtained from homology and 

molecular modeling is applied to direct protein modeling research studies. 

 

4.1.5. Analysis of MD trajectory:  

(i) Root Mean Square Deviation (RMSD):  

RMSD is a measurement used to determine a structure’s deviation from a certain 

conformation. It is described as: 

 𝑅𝑀𝑆𝐷 = [
∑ (𝑅𝑖 − 𝑅𝑖

0)𝑁
2

𝑁
]

1/2

… … … … … … … … . . (𝟒. 𝟐𝟓) 

Where Ri is the vector location of particle i (the target atom) in the snapshot, Ri
0 is the 

coordinate vector for reference atom i, and N is the total number of atoms/residues taken 
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into account in the computation. Using backbone atoms and the simulation's first frame 

as a reference, the RMSD was calculated. The RMSD is the product of the number of 

locations (i), the number of strands (j), and the number of angular parameters (k). The 

value of N in equation 4.25 denotes the total number of variables needed to compute 

the RMSD. A radial vector of length r in the structure space denoted by the RMSD 

absolute magnitude is the calculated RMSD. The radial issue is predicated on the idea 

that there is more configurational space volume between a given r and r+dr, the broader 

the radius. The same RMSD value might capture both equivalent and different structures 

at larger r values. Techniques that use significantly lower RMSD values offer a more 

precise way to quantify differences. The existence of two or more structural substrates 

creates a second important problem with the use of RMSD because of the molecule's 

intrinsic flexibility. However, a technique is required to define the dynamic properties 

accurately without compromising the information.                                    

(ii) Root Mean Square Fluctuation (RMSF): 

The measure of divergence between the particle location i and a reference position is 

defined by Root Mean Square Fluctuation or RMSF: 

 

RMSF = [ 
1

T
∑ (

T

t=1
𝑟𝑖(𝑡) − 𝑟𝑖

𝑟𝑒𝑓)2 ]

1/2

… … … … … … … … … (𝟒. 𝟐𝟔)                   

 

T is the desired average time, and ri 
ref is the particle i reference location, as shown in 

equation 4.26. The time-averaged location will serve as the reference location of the 

same particle i, that is, ri 
ref = ri. Root mean square deviation (RMSD) and root mean 

square fluctuation (RMSF) are metrics used to quantify the spatial fluctuations of 

biomolecules in MD simulations. For a given collection of atoms, RMSD is the 

difference between two structures; on the other hand, RMSF is the variation around an 

average, per atom or residue, over a series of structures (e.g., from a trajectory). 

(iii) Radius of gyration (Rg): 

The radius of gyration is computed to determine the structure's compactness: 

Rg =   [ 
∑ |ri|2mii

∑ mii
]

2

… … … … … … … … . (𝟒. 𝟐𝟕) 

  



CHAPTER 4 | 2024 
   

93 | Hiba Almaadani 
 

The mass of atom i is denoted by mi in equation 4.27 and its location in relation to the 

molecule's centre of mass is indicated by ri. 

 

(iv) DSSP plot analysis : Secondary structural content analysis: 

For most of the proteins in the PDB, Kabsch and Sander (1983) created a database of the 

ASA by using a method called Dictionary of Secondary Structure for Protein (DSSP) to 

ascertain the solvent accessibility of the residues [47]. This programme is frequently 

used to create the ASA values for use in prediction algorithms [288-290]. It works by 

primarily classifying secondary structures of proteins based on their backbone H-bonds. 

It also gives information on bond and Cα-pseudo dihedral angles; only the latter is 

required by DSSP in order to determine the LSS of a residue. The electrostatic hydrogen 

bond detection criteria set it apart. Consequently, the unique hydrogen-bond patterns are 

being used to designate the elements of the secondary structure. This method is often 

used to assign secondary structures as a gauge. DSSP is used by many software 

applications to assign secondary structures as needed. For example, a widely used 

visualization tool such as Rasmol assigns repeating structures in a fast way that is 

comparable to the DSSP. Classification of β-bridges is based on non-recurring H-bonds, 

whereas classification of helix or strands is based on repeating patterns of the same type 

of H-bonds [48]. Residues that share the same secondary structure pattern are clustered 

together quite tightly in a Ramachandran plot because the relative orientations of the 

nitrogen and oxygen atoms in the backbone are reflected in the corresponding (φ, ψ) 

backbone tilt angles. The DSSP offers information on the secondary structure of the 

protein on two levels [47]. The one-character secondary structure information (1CSSI) 

code, which at the higher level characterizes the LSS of a residue mostly based on the 

H-bond arrangement of the protein backbone into eight classes, summarises the 

secondary structure from DSSP analysis. The angle that exists between the vectors Cα 

(i) − Cα (i−2) and Cα (i) − Cα (i+2) for each residue is known as the C-pseudo bond 

angle, and it is instead calculated using DSSP. A gap for better discrimination is created 

by DSSP in the event that none of the previously specified conditions are satisfied; this 

gap is represented by the letter "C." These residues, however, correspond to a usually 

straight section of the protein backbone structure and do not contain the backbone H-

bonds required for the formation of secondary structures. 
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4.1.6. 3-D structure visualization tool: 

4.1.6.1. UCSF Chimera: 

University of California, San Francisco (UCSF) Chimera: A highly adaptable instrument 

known as UCSF Molecular structures and related data, including conformational 

ensembles, density maps, sequence alignments, supramolecular assemblies, and docking 

results, may interactively seen and analyzed using Chimera [49]. Chimera is an 

application that was created by the Resource for Biocomputing, Visualisation, and 

Informatics (RBVI) with support from the National Institutes of Health (NIH). (Figure 

4.10) present the steps of construction SHANK3 mutants utilizing Chimera. 

 

STEP 1: Tools → Sequence → Sequence → Select the residue (Cltr + shift + left click) 
 

 

STEP 2: Tools → Structure Editing → Rotamers → Rotamer type → Choose the 

mutant residue  
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STEP 3:  Mutated residue → Apply → Ok 

 

Figure 4.10. Construction of SHANK3 mutants using UCSF Chimera software [49]. 

4.1.7. R programming: 

The R language came into use quite a bit after S had been developed. One key limitation 

of the S language was that it was only available in a commercial package, S-PLUS. In 

1991, R was created by Ross Ihaka and Robert Gentleman in the Department of Statistics 

at the University of Auckland. In 1993, the first announcement of R was made to the 

public [50]. Later, R software became free, and it is critical because it allowed the source 

code for the entire R system to be accessible to anyone who wanted to tinker with it. In 

2000, version 1.0.0 of R was released to the public. 

4.1.7.1. DESeq2 package to detect differentially expressed genes 

(DEGs): 

A fundamental aspect of RNA-seq data analysis involves discerning variances in gene 

expression levels. Typically, count data are organized in tabular form, detailing the 

quantity of sequence fragments attributed to individual genes across different samples. A 

pivotal analytical inquiry pertains to quantifying systematic alterations between 

experimental conditions while considering variability inherent within each condition. 

DESeq2, a software package, offers methodologies for examining differential expression 

through negative binomial generalized linear models. These models leverage data-driven 

prior distributions to estimate dispersion and logarithmic fold changes, facilitating robust 

statistical inference. 



CHAPTER 4 | 2024 
   

96 | Hiba Almaadani 
 

4.1.7.1.1. Theory behind DESeq2 model 

The DESeq2 model for differential expression analysis utilizes a generalized linear 

model of the form [51]: 

𝐾𝑖𝑗 ~ NB (𝜇𝑖𝑗, 𝛼𝑖) … … … … … … … … … … … … … (𝟒. 𝟐𝟗) 

𝜇𝑖𝑗  = 𝑠𝑗 𝑞𝑖𝑗 … … … … . … … … … . (𝟒. 𝟑𝟎) 

log2(𝑞𝑖𝑗)  =  𝑥𝑗∙ 𝛽𝑖 … … … … … … (𝟒. 𝟑𝟏) 

where raw counts 𝐾𝑖𝑗 for gene i, sample j are modeled using a negative binomial 

distribution with fitted mean 𝜇𝑖𝑗  and a gene-specific dispersion parameter 𝛼𝑖. The fitted 

mean is composed of a sample-specific size factor 𝑠𝑗 and a parameter 𝑞𝑖𝑗 proportional to 

the expected true concentration of fragments for sample j [52]. The coefficients 𝛽𝑖 give 

the log2 fold changes for gene i for each column of the model matrix X. The dispersion 

parameter 𝛼𝑖 elucidates the association between the variance exhibited by the observed 

count and its corresponding mean value. Essentially, it quantifies the degree of deviation 

anticipated for the observed count relative to its mean, which is based both on the size 

factor 𝑠𝑗  and the covariate-dependent part 𝑞𝑖𝑗  as previously described. 

Var(𝐾𝑖𝑗) = 𝐸 [(𝐾𝑖𝑗 − 𝜇𝑖𝑗)
2

=  𝜇𝑖𝑗 +  𝛼𝜇𝑖𝑗
2 ] ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ (𝟒. 𝟑𝟐) 

The log2 fold changes in 𝛽𝑖 are the maximum a posteriori estimates after incorporating a 

zero-centered Normal prior – in the software referred to as a β-prior – hence DESeq2 

provides “moderated” log2 fold change estimates. Dispersions are estimated using 

expected mean values from the maximum likelihood estimate of log2 fold changes, and 

optimizing the Cox-Reid adjusted profile likelihood [53, 54].  

4.1.7.1.2.  Hypothesis testing using the Wald test 

The procedure of hypothesis testing commences with the formulation of a null 

hypothesis for each gene. In our context, the null hypothesis posits no discernible 

differential expression across the two sample groups, denoted by a log-fold change 

(LFC) equaling zero. Importantly, this hypothesis formulation is independent of any 

empirical data and is purely conceptual. Subsequently, statistical testing is employed to 

assess the veracity of the null hypothesis based on observed data. Within the framework 

of DESeq2, the Wald test serves as a prominent method for hypothesis evaluation in 
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comparisons involving two groups. This test yields a Wald test statistic, accompanied by 

the computation of the probability that a test statistic as extreme as the observed value 

could arise by chance. Termed the p-value. 

4.1.7.1.3. Log2 Fold Change: 

The determination of fold change entails computing the ratio of normalized read counts 

observed between two distinct conditions under investigation. However, expressions of 

gene level changes are frequently represented as log2 fold change. The utilization of 

logarithmic transformation proves particularly advantageous for visualizing alterations in 

gene expression. Moreover, it facilitates an intuitive understanding, where a log2 fold 

change of 1 signifies a doubling of expression level within a specific condition. In 

contrast, a negative log2 fold change indicates down-regulation of the gene in said 

condition. 

In the latest versions of DESeq2, default settings no longer include shrinkage of log2 fold 

change estimates. Consequently, the log2 fold changes would be the similar to those 

computed by normalized_counts_group1 / normalized_counts_group2, as shown in 

equation (4.33) 

log2(𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑐𝑜𝑢𝑛𝑡𝑠_𝑔𝑟𝑜𝑢𝑝1 / 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑_𝑐𝑜𝑢𝑛𝑡𝑠_𝑔𝑟𝑜𝑢𝑝2) ⋯ ⋯ ⋯ (4.33) 

4.1.7.1.4. The probability value (P-value) 

The P-value is the probability, which signifies the likelihood of observing the test 

statistic under the null hypothesis. A small p-value prompts the rejection of the null 

hypothesis, indicating substantive evidence against it, thereby implying differential 

expression of the gene in question. The conventional practice of employing a p-value 

threshold, often set at 0.05, to discern statistically significant findings is commonplace 

when scrutinizing individual genes. Conceptually, a p-value of 0.05 signifies a 5% 

probability that the observed difference is attributable to chance, thereby denoting a 

false-positive result. However, when examining the transcriptome, wherein analyses 

encompass numerous genes simultaneously, the cumulative risk of encountering false-

positive outcomes escalates significantly. For instance, considering a dataset comprising 

10,000 genes, the potential number of false-positive hits would amount to 0.05 * 10,000 

= 500 occurrences. Such an abundance of ostensibly significant findings undermines the 

reliability of the results, constituting what is termed a multiple-testing problem — 
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wherein the likelihood of obtaining positive outcomes purely by chance increases with 

the number of tests conducted. To mitigate this issue, an alternative metric, termed the q-

value, is utilized in lieu of the p-value. 

4.1.7.1.5. False Discovery Rate (FDR) 

The adjusted p-value, commonly referred to as the q-value or FDR value, is a metric 

derived from the p-value. It is computed to address the issue of multiple testing, wherein 

a large number of statistical tests are conducted simultaneously. The FDR value 

quantifies the proportion of false positives among the results deemed statistically 

significant, considering the entire set of significant findings. A lower FDR value 

indicates greater confidence in the significance of the observed results, as it reflects a 

lower likelihood of false positives among the identified significant findings. DESeq2 

calculates the FDR value using methods such as the Benjamini-Hochberg procedure to 

adjust the p-values obtained from hypothesis testing, thereby controlling the rate of false 

positives while identifying differentially expressed genes. Typically, the 0.05 value 

warrants attention when assessing the presence of differential gene expression. 

4.1.7.2 Enrichment Functional Analysis 

4.1.7.2.1. ClusterProfiler package 

Pathway enrichment analysis constitutes a pivotal endeavor in discerning the underlying 

biological themes inherent in high-throughput sequencing data. The clusterProfiler 

package provides a variety of functions that reveal biological processes and trajectories.  

[55]. In 2012, the clusterProfiler package was initially released [56]. Primarily designed 

to execute over-representation analysis (ORA) [57] utilizing Gene Ontology (GO) [58] 

and Kyoto Encyclopedia of Genes and Genomes (KEGG) [59] annotations across diverse 

model organisms, ClusterProfiler facilitates the comparative examination of functional 

profiles under varying experimental conditions [53]. Over time, clusterProfiler has 

undergone substantial refinement, extending its support to encompass diverse ontology 

and pathway annotations, along with updated gene annotations for thousands of species. 

Additionally, users have the capability to incorporate custom annotation data for novel 

species alongside accommodating emerging annotations. Notably, clusterProfiler 

accommodates both ORA and gene set enrichment analysis (GSEA) [60] are supported. 

A complicated experimental design that enables comparison of functional profiles of 
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diverse circumstances on different levels is supported by an extension of the comparative 

utility. 

(i) Gene Ontology 

The Gene Ontology (GO) categories comprise precisely delineated terms that 

encapsulate various properties of gene products. This ontology is structured across three 

fundamental domains, as elucidated by Ashburner et al. (2000) [58]: 

• Cellular component: Encompasses the constituents of a cell or its extracellular 

environment. 

• Molecular function refers to a gene product's basic molecular functions, including 

interaction and catalysis. 

• Biological process: Signifies operations or collections of molecular events 

characterized by distinct initiation and termination points integral to the 

operational dynamics of integrated living entities, such as cells, tissues, organs, 

and organisms. 

(ii) Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Kyoto Encyclopedia of Genes and Genomes serves as a comprehensive repository of 

genetic and genomic information [59]. Within KEGG, molecular functions are depicted 

through networks of interactions and reactions primarily structured as KEGG pathways 

and modules. A KEGG module is a compilation of functionally defined units, offering a 

coherent representation of biological processes. Notably, both KEGG pathways and 

modules find support within the clusterProfiler package. However, it is noteworthy that 

several software tools supporting KEGG analysis ceased updates following KEGG's 

transition to an academic subscription model in July 2011. Consequently, these tools may 

employ outdated KEGG data, potentially yielding inaccurate or misleading results. 

Fortunately, the KEGG web resource remains freely accessible, mitigating concerns 

associated with outdated data. Notably, the clusterProfiler package circumvents the need 

to package KEGG data internally. Instead, it dynamically queries the latest KEGG 

database online through web API to conduct functional analysis. This approach offers a 

distinct advantage, enabling clusterProfiler to utilize current data while accommodating 

all species endowed with KEGG annotation, exceeding 6,000 species [55]. 
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4.1.7.3. The Database for Annotation, Visualization and Integrated 

Discovery (DAVID) 

DAVID, a freely accessible online bioinformatics resource, has been developed by the 

Laboratory of Human Retrovirology and Immunoinformatics (LHRI) [61, 62]; the suite 

of tools within the DAVID Bioinformatics Resources is specifically designed to facilitate 

the functional interpretation of extensive gene lists stemming from genomic 

investigations, such as microarray and proteomics studies. DAVID's functionalities are 

accessible at https://david.ncifcrf.gov/. 

DAVID provides a comprehensive set of functional annotation tools for investigators to 

understand the biological meaning behind a large list of genes. For any given gene list, 

DAVID tools are able to: 

❖ Identify enriched biological themes, particularly GO terms 

❖ Uncover enriched gene groups associated with specific functional themes. Cluster 

redundant annotation terms 

❖ Visualize gene associations within KEGG pathway maps. 

❖ Explore additional functionally related genes not present in the initial list. 

❖ List interacting proteins 

❖ Link gene-disease associations 

❖ Convert gene identifiers from one type to another. 

DAVID offers a comprehensive array of functional annotation tools tailored to assist 

researchers in elucidating the biological significance underlying large gene lists. 

Specifically, DAVID's tools enable investigators to [59]: 
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