Candidate's Declaration

I hereby declare that the thesis entitled "Physico-chemical, Antibacterial, Antioxidant, Bio Compatibility, and Biodegradation Studies of Washed and Dyed Eri, Muga, and Pat Silk Fabric" has been submitted to the Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur, Assam in partial fulfillment for the award of the degree of Doctor of Philosophy in Molecular Biology and Biotechnology is an original work undertaken by me. Further, I declare that no part of this work has been previously considered for the award of any other degree from any University, Institute, or other organization.

Date: 14/6/24Place: Tezpur

(Minhaz Ahmed)

TEZPUR UNIVERSITY (A Central University established by an Act of Parliament) Department of Molecular Biology and Biotechnology NAPAAM, TEZPUR-784028, ASSAM, INDIA

Dr. Jyoti Prasad Saikia, *Ph.D.* Assistant Professor Department Molecular Biology and Biotechnology

E-mail: jyoti06@tezu.ernet.in

CERTIFICATE OF THE PRINCIPAL INVESTIGATOR

This is to certify that the thesis entitled "Physico-chemical, Antibacterial, Antioxidant, Bio-Compatibility, And Biodegradation Studies of Washed and Dyed Eri, Muga, And Pat Silk Fabric" submitted to the School of Sciences, Tezpur University in part fulfilment for the award of the degree of Doctor of Philosophy in Department of Molecular Biology and Biotechnology, is a record of original research work carried out by Ms. Minhaz Ahmed under my personal supervision and guidance.

All help received by her from various sources has been duly acknowledged. No part of this thesis has been reproduced elsewhere for the award of any other degree.

Date: 14 6 24 Place: Tezpur

(Jyoti Prasad Saikia)

Acknowledgment

First and foremost, I express sincere gratitude to my supervisor, Dr. Jyoti Prasad Saikia, for trusting me and for giving me the opportunity to pursue my doctoral research under his supervision. I thank him for his constant guidance, encouragement, and patience throughout my Ph.D. There is so much that I have learned from him during this journey that I can never thank him enough.

I take this opportunity to acknowledge Tezpur University and University Grants Commission, Govt. of India for providing me with Institutional Fellowship.

I thank all the Hon'ble Vice Chancellors of Tezpur University for providing all the necessary facilities for education and research on the campus. I thank the entire Tezpur University fraternity for their help and support. I thank Pobitora Madam Curie Women's Hostel for being my home away from home. I extend my heartfelt gratitude to the Department of Molecular Biology and Biotechnology for providing all the necessary facilities for research along with the ambiance of a family. This place has helped me grow as a person and I shall be forever grateful to it. I thank all the faculty members of the department for extending their laboratory facilities. I sincerely thank my doctoral committee members, Dr. Suman Dasgupta and Dr. Pankaj Barah, for their valuable suggestions and recommendations. I also thank all the members of the Department of MBBT for their help and support.

I express my sincere gratitude to our current and previous heads of the department for giving me the opportunity to use all the facilities and addressing to any issue raised.

I would like to thank the SAIC facilities of Tezpur University for providing us with instruments used in carrying out the experiments; special thanks to Mr. Boro and Mr. Shankur. I am thankful to the University Library for its facilities, with special mention to Mr. Jitu Mani Das for his quick response to plagiarism checks or queries.

I thank my previous lab mates Pranjal da, Saurav da, Dhruba da, and Jyotirmoi for their constant presence, and pursuing this work would have been extremely difficult. I thank my present lab mates Joydeep, Monalisha, and Santanu for creating and maintaining a healthy research environment in the lab. I thank all the project students who have worked with me and helped me learn during the process. I thank all my seniors and juniors from Dept. of MBBT for their help and friendship. I thank M.Sc and Int. M.Sc project students Sunita, Romit, Janefa, Sanjibani, Bahnisikha, Bisakha, and Moumita. Special thanks to my batch mate Mayuri, Sayani, Sushmita, Zaved and Pritam.

I thank my friends and seniors, Urbashi, Devalina, Shyamoli, Swapna, Chinmoyee, Upasana, Shabrin, Chinmoyee, Asad, Sumita ba, Mukta, Rimpi, Sonakshi, Tapas, Anshuman, Durlav, Samar, Saurav da, and Pankaj da, for always being there. I also want to express my sincere thanks to Mandakini Mam for her love and presence throughout the journey. Thank you for being there, from endless talks over tea to standing by and holding hands during breakdowns.

I take the opportunity to thank my previous supervisor late Dr. Tapas Medhi for introducing me to the research world. I remember his input toward research and the inclusion of new ideas. Whatever experience I have learned from him has helped me a lot in carrying out my current work successfully.

A special thanks to Dr. Bhupen Hazarika and Zubin Garg for composing amazing songs that helped me as a stress buster in hard times during my journey.

I would like to thank my husband, Narzad, who not only gave me mental support but encouraged me every time I felt low. I thank him for being so understanding towards my research, failures, and all the ups and downs. I extend my heartfelt thanks to my late grandparents and all my aunts and uncles and to my cousins, Munmi Bai, Pakiza, Fauzia, Tazdar, Wasik, Sahin, Sahid, Monsur, Mohsin, and Tauqeer. My special thanks to my inlaws Abba, Amma, Nazli ba, Narsad ka, Nilu bou, Tanaz, and Liyana for their love and trust in me.

Most importantly, I thank my family. I thank Amma, Abba, and Azaz for their unconditional love, support, and faith in me. Thank you for always standing by me in any decision I make. No words can summarize my love for my entire family. Thank you for being there.

LISTS OF TABLES

TABLE No.	TITLE	Page No.
1.1	Amino acid composition of Eri, Muga, and Pat	5
2.1	Price of Raw silk from 2016 to 2022	27
4.1	Changes seen in the SEM images of treated and untreated Eri,	
	Muga, and Pat fabric	77
4.2	Luminosity %, Saturation %, Hue angle, colour code, Fabric colour	
	and associated colour (hex) of Raw (control) and treated Eri samples	79
4.3	Luminosity %, Saturation %, Hue angle, colour code, Fabric colour	
	and associated colour (hex) of Raw (control) and treated Muga	
	samples	81
4.4	Luminosity %, Saturation %, Hue angle, colour code, Fabric colour	
	and associated colour (hex) of Raw (control) and treated Pat	
	samples	83
4.5	FTIR peaks and corresponding functional groups of washed Eri	
	sample	86
4.6	Assignments of FTIR peaks to secondary structure for the protein	
	of control and washed Eri samples	88
4.7	FTIR peaks and corresponding functional groups of washed Muga	
	samples	91
4.8	Assignments of FTIR peaks to secondary structure for protein of	
	control and washed Muga samples	93
4.9	FTIR peaks and corresponding functional groups of washed Pat	
	samples	96
4.10	Assignments of FTIR peaks to secondary structure for the protein	
	of control and washed Pat samples	98
4.11	FTIR spectrum of dyeing and mordant combinations of Eri fabric	121
4.12	FTIR spectrum of dyeing and mordant combinations of Muga fabric	124
4.13	FTIR spectrum of dyeing and mordant combinations of Pat fabric	128
4.14	Zone of clearance created by different chemicals in disc diffusion	
	assay against S. aureus and K. pneumoniae	150

LIST OF FIGURES

Fig. No.	Title	Page No.
1.1	Structure of silk filament (adapted from Sonthisombat and Speakman)	6
1.2	Classification of Eri, Muga, and Pat	9
1.3	Image of untreated thread and fabric of a) <i>Eri</i> ; b) <i>Muga</i> ; and c) <i>Pat</i>	9
3.1	a) Kolakhar b) grinding of Kolakhar c) Filtration of Kolakhar	49
3.2	Filtration of activated charcoal	50
3.3	a) Washing solution of commercial agents and <i>Kolakhar</i> b) Citrus juice wash	51
3.4	a) Rinsing of washed samples of <i>Eri, Muga and Pat</i> fabric b) drying procedure	52
3.5	a) Samples in conical flask for bleaching b) set-up for bleaching procedure	54
3.6	Mordant application on Eri, Muga, and Pat fabric in water bath	55
3.7	Drying method after bleaching, mordanting, and dyeing <i>Eri</i> , <i>Muga</i> , and <i>Pat</i> fabrics	57
3.8	Set-up for light fastness with monitor of humidity and temperature	58
3.9	Washing of samples to check wash-fastness at 42°C	58
3.10	Antioxidant assay set-up of Eri, Muga, and Pat fabrics	60
3.11	a) Inoculating test tubes with fabrics, b) Vortex of the test tubes to detach all the bacteria, c) Complete set-up of antibacterial test	63
3.12	a) Phyta-jars used for soil burial b) serial washing of degraded samples c) drying of washed degraded samples	65
4.1	Microscopic images of <i>Eri</i> fabric at 100X magnification of a) CONTROL b) WATER c) CHARCOAL d) CITRUS e) SUR f) TID g) RIN h) LOCAL i) REVI j) COMF k) EZY l) VOX	70

4.2	Microscopic images of <i>Muga</i> fabric at 100X magnification of a) CONTROL b) WATER c) CHARCOAL d) <i>KOLAKHAR</i> e) SUR f) TID g) RIN h) LOCAL i) REVI j) COMF k) EZY l) VOX	70
4.3	Microscopic images of <i>Pat</i> fabric at 100X magnification of a) CONTROL b) WATER c) CHARCOAL d) CITRUS e) SUR f) TID g) RIN h) LOCAL i) REVI j) COMF k) EZY l) VOX	71
4.4	SEM images of <i>Eri</i> fabric of a) CONTROL b) WATER c) CHARCOAL d) CITRUS e) SUR f) TID g) RIN h) LOCAL i) REVI j) COMF k) EZY l) VOX at 3000X magnification	73
4.5	SEM images of <i>Muga</i> fabric of a) CONTROL b) WATER c) CHARCOAL d) <i>KOLAKHAR</i> e) SUR f) TID g) RIN h) LOCAL i) REVI j) COMF k) EZY l) VOX at 3000X magnification	74
4.6	SEM images of <i>Pat</i> fabric of a) CONTROL b) WATER c) CHARCOAL d) CITRUS e) SUR f) TID g) RIN h) LOCAL i) REVI j) COMF k) EZY l) VOX at 2000X	75
4.7	The total difference in coloration (ΔE) of treated <i>Eri</i> fabric against untreated	78
4.8	The total difference in coloration (ΔE) of Treated Muga samples against untreated	80
4.9	The total difference in coloration (ΔE) of Treated <i>Pat</i> samples against untreated	82
4.10	FTIR spectra of <i>Eri</i> treated with a) non-commercial, b) commercial washing agents	85
4.11	FTIR spectra of <i>Muga</i> treated with a) non-commercial, b) commercial washing agents	90
4.12	FTIR spectra of <i>Pat</i> treated with a) non-commercial, b) commercial washing agents	95
4.13	Scanned image of <i>Eri</i> samples treated with 5 light exposure cycles	100
4.14	Scanned image of Eri samples treated with 5 wash cycles	100
4.15	a) δE (color difference) b) Luminosity graph of light-treated samples of dyed <i>Eri</i> samples	102

4.16	a) δE (color difference) b) Luminosity graph of washed samples of dyed <i>Eri</i> samples	103
4.17	Scanned image of <i>Muga</i> samples treated with 5 light exposure cycles	105
4.18	Scanned image of Muga samples treated with 5 wash cycles	105
4.19	a) δE (Color difference) of light-treated samples with untreated samples b) Luminosity graph of light-treated samples	106
4.20	a) δE (color difference) of wash samples with untreated samples b) Luminosity graph of wash samples	107
4.21	Scanned image of <i>Pat</i> samples treated with 5 cycles of Sunlight	109
4.22	Scanned image of <i>Pat</i> samples treated with 5 wash cycles	109
4.23	a) δE (color difference) of light-treated samples with untreated samples b) Luminosity graph of light-treated samples	110
4.24	a) δE (color difference) of washed samples with untreated samples b) Luminosity graph of washed samples	112
4.25	a) The molecular structures of curcumin with sites for interactions adapted from Gupta et al. b) Mechanism of tannin- protein interaction proposed by Lincoln Taiz & Eduardo Zeiger c) Possible curcumin-silk (protein) reaction d) Possible pre-mordant (tannic acid) dyeing (curcumin) with silk (protein) e) Possible post-mordant (tannic acid) dyeing (curcumin) with silk (protein)	114
4.26	DPPH scavenging activity of treated Eri	116
4.27	DPPH scavenging activity of treated Muga	117
4.28	DPPH scavenging activity of Pat	118
4.29	FTIR spectra of control and <i>Eri</i> treated with a) Bleached and pre-mordants, b) Bleached, dyed, post mordant, and simultaneous dyeing and mordanting	120
4.30	FTIR spectra of control and <i>Muga</i> treated with a) Bleached and pre-mordants, b) Bleached, dyed, post mordant and simultaneous dyeing and mordanting	123

4.31	FTIR spectra of control and <i>Pat</i> treated with a) Bleached and pre mordants, b) Bleached, dyed, post mordant and simultaneous dyeing and mordanting	126
4.32	Scan, microscope and SEM images of degraded Eri samples	130
4.33	Scan, microscope and SEM images of degraded Muga samples	132
4.34	Scan, microscopic and SEM images of degraded pat samples	133
4.35	Weight change percentage of <i>Eri</i> , <i>Muga</i> and <i>Pat</i> post soil burial degradation	136
4.36	Eri pre and Post degradation	138
4.37	Muga pre and post-degradation	142
4.38	Pat pre- and post-degradation	146
4.39	Haemolysis activity of Eri, Muga, and Pat	150
4.40	Disc Diffusion of <i>S. aureus</i> a) DMSO and Curcumin b) Gentamicin (Gen) and Tannic acid and c) Gentamicin + Curcumin (Gen + cur) and Tannic acid + Curcumin (com)	151
4.41	Disc Diffusion of <i>K. pneumonia</i> a) DMSO and Curcumin b) Gentamicin (Gen) and Tannic acid and c) Gentamicin + Curcumin (Gen + cur) and Tannic acid + Curcumin (com)	151
4.42	antibacterial activity of treated <i>Eri</i> samples on a) <i>K. pneumoniae and b) S. aureus</i>	153
4.43	antibacterial activity of treated Muga samples on a) K. pneumoniae and b) S. aureus	154
4.44	antibacterial activity of treated <i>Pat</i> samples on a) <i>K. pneumoniae and b) S. aureus</i>	155
4.45	Raw and treated <i>Eri</i> and <i>Pat</i> samples and their bacterial reduction percentage	158
4.46	Scanned of a) <i>Muga</i> -Raw, b) <i>Muga</i> -Water c) <i>Muga-Kolakhar</i> d) <i>Muga</i> - Act Charcoal e) <i>Muga</i> -Detergent	159
4.47	SEM images at 500X and 2000X of a) <i>Muga</i> -Raw, b) <i>Muga</i> -Water c) <i>Muga-Kolakhar</i> d) <i>Muga</i> - Act Charcoal e) <i>Muga</i> -Detergent	160
4.48	Glossiness value at 20°, 60°, 80° of treated and raw Muga	161

List of abbreviation

Km2	Square kilometre
N	North
E	East
m	Meter
°C	Degree Celsius
0/0	Percentage
GI	Geographical Indication
RBC	red blood cells
HP	percentage of hemolysis
BCE	Before the Common Era
AD	Anno Domini
MT	Metric ton
Rs.	Rupees
GOI	Government of India
Kg	Kilogram
BTCA	butane tetra carboxylic acid
UV	Ultra Violet
SF	silk fibroin
DPPH	2-diphenyl-1-picrylhydrazyl
TEWL	trans-epidermal water loss
SUR	detergent powder
TID	laundry detergent
RIN	detergent bar
LOCAL	indigenous soap ball
REVI	liquid fabric stiffener
COMF	fabric conditioner
EZY	gentle liquid detergents
VOX	detergent booster and stain remover
ACT. CHARCOAL	Activated charcoal
ТА	Tannic Acid
g	gram
ml	milli Liter
rpm	revolutions per minute
MLR	material to Liquid ratio
SEM	Scanning electron microscope
HSL	Hue, Saturation and Luminosity
RGB	Red Green Blue
ΔE	color difference
FTIR	Fourier Transform-Infrared Spectroscopy

D	Dlass had
В	Bleached
BM	Bleached-Mordant
BMD	Bleached-Mordant-Dye (pre-mordant)
BDM	Bleached-Dye-Mordant (post-mordant)
SIM	Simultaneous Dyeing
BMDM	Bleached-Mordant-Dye-Mordant
BD	Bleached-Dye
ISO	International Organization of Standardization
nm	nano meter
PBS	phosphate buffer saline
OD	optical density
DMSO	Dimethylsulfoxide
μm	Micro meter
MTCC	Microbial Type Culture Collection and Gene Bank
CFU	Colony forming Unit
LAF	Laminar Air Flow
AATCC	American Association of Textile Chemists and Colorists
WHC	Water Holding Capacity
keV	kiloelectronvolt
KBr	Potassium Bromide
Del E	Delta E (colour difference)
ROS	Reactive Oxygen Species
Cur+TA	Curcumin + Tannic acid
Gen+Cur	Gentamicin+Curcumin
GU	Glossiness Unit