DECLARATION

I hereby declare that the thesis entitled "**Hydrogeomorphic and land cover dynamics of Manas-Beki river basin with special emphasis on the glacial regime**" submitted to the **School of Sciences**, Tezpur University in part fulfillment for the award of the degree of Doctor of Philosophy in **Environmental Science** is a record of research work carried out by me under the supervision of **Prof. Apurba K. Das**, Department of Environmental Science, Tezpur University, Assam - 784028. No part of this work has been presented for any other degree or diploma earlier.

Suranjare Borne

Date: 12-04-2023 Place: Tezpur (Suranjana Bhaswati Borah) Department of Environmental Science School of Sciences Tezpur University, Assam, India

तेजपुरविश्वविद्यालय/ TEZPUR UNIVERSITY (संसदकेअधिनियमद्वारास्थापितकेंद्रीयविश्वविद्यालय) (A Central University established by an Act of Parliament) तेजपुर-784028 :: असम/ TEZPUR-784028 :: ASSAM

(सर्वोत्तम विश्वविद्यालय के लिए कुलाध्यक्ष पुरस्कार,2016 औरभारत के 100श्रेष्ठ उच्च शिक्षण संस्थानों में पंचम स्थान प्राप्त विश्वविद्यालय) (Awardee of Visitor's Best University Award, 2016 and 5th among India's Top 100 Universities, MHRD-NIRF Ranking, 2016)

Certificate of the Supervisor

This is to certify that the thesis entitled "**Hydrogeomorphic and land cover dynamics** of Manas-Beki river basin with special emphasis on the glacial regime" submitted to the School of Sciences, Tezpur University, in part fulfillment for the award of the degree of Doctor of Philosophy in Environmental Science is a record of research work carried out by Ms. Suranjana Bhaswati Borah under my supervision and guidance.

All help received by her from various sources has been duly acknowledged. No part of this thesis has been submitted elsewhere for award of any other degree.

Date: 12-04-2023 Place: Tezpur University

Jonesku

(Dr. Apurba K. Das) Designation: Professor Department: Environmental Science School: School of Sciences

Acknowledgment

This research work would not have been completed without the help and support of many people who have contributed in some way or the other towards the successful completion of the thesis and it is my pleasure to acknowledge and express my gratitude to each and everyone involved.

In the beginning, I would like to convey my deepest sense of gratitude and sincere thanks to my supervisor Prof. Apurba Kumar Das for his invaluable inspiration, patient guidance, constant encouragement, and constructive criticism throughout the research work. He was more like a close family member beside his role as a guide who helped me overcome all the hurdles that I had to face during my Ph.D. tenure.

I would like to thank Tezpur University for providing me with the opportunity and necessary facilities to pursue my Ph.D. I am grateful to DST-SERB for providing the fellowship during the initial phase of my research work while I was involved with the project titled "Hydrogeomorphic characterization of Manas-Aie and Gaurang river basins–A baseline study of Geomorphic response to observed precipitation change over Indian region" (Grant Number SB/EMEQ-108/2013).

I would like to offer my sincere thanks to my Doctoral Committee members, Retd. Prof. K.P. Sarma, Prof. Sarat Saharia, Prof. R.R. Hoque, and Dr. Sumi Handique for their valuable suggestions and constructive criticism of my work, which helped in shaping the structure of the work in an appropriate way. I also offer my gratitude to the faculty members of the Department of Environmental Science, Tezpur University for their valuable suggestions.

I would like to acknowledge Dr. Anil V. Kulkarni, Divecha Centre for Climate Change, IISc, Bangalore who planted the research idea in my mind and P.L.N. Raju, Ex-Director of North Eastern Space Applications Centre (NESAC), Meghalaya, for sharing new ideas and methods to improve my research.

I would like to especially thank my friends, ex-classmates, and lab mates Dr. Nabajit Hazarika, and Dr. Rajesh Kumar Sah for their endless help and emotional support, and my Tezpur University lab mates Dr. Juri Borbora, Dr. Himolin Basumatary, Ms. Bharati Paul, Ms. Roto Yalyo, Ms. Sabrina Begum, Ms. Debashree Dutta, Ms. Dhriti Kalita, and Mr. Biplab Sarmah for their support throughout my research work. I would also like to extend my sincere thanks to the entire family of the department, who in some way or other, have contributed to this endeavor including all research scholars and office support staff.

Life at Tezpur University was worth living because of a few persons, who have always encouraged and helped me in every possible way, my hostel mates Ruksana, Riju, Hima and Kuntala. I am also thankful to my other friends and work colleagues at USTM, NESAC, and IRRI for always being there and constantly pushing me towards completion. Many other friends and hostel mates remain unnamed because of space constrains and I am grateful for their support in completing my research.

Finally, I am forever indebted to Mom and Dad who believed in me till their last breath and showered me with their unconditional love, motivation, support, encouragement, blessings, and prayer in every step of my life. I am also thankful to my sister and her family for their constant encouragement and support. One person without whom my thesis would not be completed and who has eagerly waited to see me complete my Ph.D. is my better half. I thank him for his constant encouragement, care, physical and moral support to finish my thesis.

(Suranjana Bhaswati Borah)

LIST OF TABLES

Chapter	Table No.	Table caption	Page No.
2	2.1	Details of data used for hydrogeomorphic characterization of Manas-Beki river basin	16
	2.2	Morphometric parameters and their mathematical expressions	17
	2.3	Linear aspect of Manas-Beki river basin	21
	2.4	Areal parameters of Manas-Beki river basin	22
	2.5	Sinuosity values estimated for floodplain reach of Manas-Beki river, 1990-2020	25
	2.6	Total sinuosity values estimated for floodplain reach of Manas-Beki river, 1990-2020	28
	2.7	Channel count index for floodplain reach of Manas- Beki river, 1990-2020	30
	2.8	Thalweg shift between 1990 to 2020 for the Manas-Beki river	33
	2.9	Values of bank line shift between 1990 to 2020 for left and right bank of Manas-Beki river	37
	2.10	Values of channel width at each cross-section from 1990 to 2020 for Manas-Beki river	40
	2.11	Erosion and deposition areas for different reaches of Manas-Beki river during 1990-2020 (Areas in sq km)	44
3	3.1	Details of satellite data used for LULC change analysis in Manas-Beki basin, 1990-2020	59
	3.2	LULC classes adopted for change analysis in Manas- Beki basin	61
	3.3	Criteria used for extraction of snow and ice-covered areas in Manas-Beki basin	65
	3.4a	Confusion matrix for hybrid classification of Manas- Beki floodplain region, 1990	67

3.4b	Confusion matrix for hybrid classification of Manas-	67
	Beki floodplain region, 2000	
3.4c	Confusion matrix for hybrid classification of Manas-	68
	Beki floodplain region, 2010	
3.4d	Confusion matrix for hybrid classification of Manas-	68
	Beki floodplain region, 2020	
3.5	LULC statistics in the floodplains of Manas-Beki river	71
	during 1990, 2000, 2010 and 2020	
3.6a	Change matrix of LULC classes in floodplain of Manas-	72
	Beki river, 1990-2000	
3.6b	Change matrix of LULC classes in floodplain of Manas-Beki	72
	river, 2000-2010	
3.6c	Change matrix of LULC classes in floodplain of Manas-Beki	72
	river, 2010-2020	
3.7	LULC classes in Manas-Beki floodplain affected by	73
	erosion and deposition during 1990-2020	
3.8	Mean NDVI values for different sub-basins in Manas-	74
	Beki basin (1990-2020)	
4.1	Details of satellite data used for analysis of glacier and	99
	high-altitude lakes in Manas-Beki basin	
4.2	Types of changes in glaciers of Manas-Beki river basin	108
	and the affected areas during 1990–2020	
4.3	Types of changes in high-altitude lakes of Manas-Beki	116
	river basin and the affected areas during 1990–2020	

4

LIST OF FIGURES

Chapter	Figure	Figure caption	Page
	No.		No.
1	1.1	Location of the Study Area	6
2	2.1	The schema of methodology used for hydrogeomorphic	17
		characterization of Manas-Beki river basin	
	2.2	Cross-sections and reaches identified for change	19
		analysis, Manas-Beki river	
	2.3	Basin boundary and delineated streams of Manas-Beki river basin	20
	2.4	Hypsometry of Manas-Beki river system	20
	2.5	Distribution of different slope classes in Manas-Beki	23
		river basin	
	2.6(a)	Landsat satellite images showing the foothills region of	24
		the Manas-Beki river	
	2.6(b)	Landsat satellite images showing the confluence region	24
		of the Manas-Beki river	
	2.7	Sinuosity values from 1990 to 2020 for the floodplain	26
		reach of Manas-Beki river	
	2.8(a)	Sinuosity values from 1990 to 2020 for the Manas main	26
		channel	
	2.8(b)	Sinuosity values from 1990 to 2020 for the Beki sub-	27
		section	
	2.9	Total sinuosity values from 1990 to 2020 for the	27
		floodplain reach of Manas-Beki river	
	2.10(a)	Total sinuosity values from 1990 to 2020 for the Manas	29
		main channel	
	2.10(b)	Total sinuosity values from 1990 to 2020 for the Beki	29
		sub-section	
	2.11	Changes in values of channel count index in Manas-	30
		Beki basin from 1990 to 2020	

2.12(a)	Channel count index values from 1990 to 2020 for the	31
	Manas main channel	
2.12(b)	Channel count index values from 1990 to 2020 for the Beki sub-section	32
2.13	River thalwegs from 1990 to 2020 for the (a) upstream	33
2.15	reach of NH crossing, and (b) downstream of NH	55
	crossing	
2.14(a)	Thalweg shifts at each cross-section of main channel	34
	Manas	
2.14(b)	Thalweg shifts at each cross-section of the Beki sub- section	35
2.15	River banklines from 1990 to 2020 for the (a) upstream	36
	reach of NH crossing, and (b) downstream of NH	
	crossing	
2.16(a)	Bank line shifts in the left bank at each cross-section of	38
	main channel Manas	
2.16(b)	Bank line shifts in the left bank at each cross-section of	38
	Beki sub-section	
2.17(a)	Bank line shifts in the right bank at each cross-section	39
	of main channel Manas	
2.17(b)	Bank line shifts in the right bank at each cross-section	39
	of Beki sub-section	
2.18(a)	Changes in channel width at each cross-section of main	41
	channel Manas	
2.18(b)	Changes in channel width at each cross-section of Beki	41
	sub-section	
2.19	Erosion and deposition areas due to changes in river	42
	channel course in Manas-Beki river during (a) 1990-	
	2000 (b) 2000-2010, and (c) 2010-2020	
2.20	Erosion and deposition areas in Manas-Beki river	43
	during 1990-2020	
2.21(a)	Erosion and deposition areas for each reach of Manas	43
	main channel	

2.21(b)	Erosion and deposition areas for each reach of Beki sub- section	43
2.22(a)	Net area change due to erosion and deposition for each reach of Manas main channel	45
2.22(b)	Net area change due to erosion and deposition for each reach of Beki sub-section	45
3.1	Flowchart of overall methodology used for land use and land cover classification and change analysis	59
3.2	LULC classes in the Manas-Beki river basin	60
3.3	Glaciated upper catchments with their areas for	64
	vegetation and snow cover analysis from 1990 to 2020	
3.4	LULC in the Manas-Beki floodplain region for (a) 1990,	69
	(b) 2000, (c) 2010 and (d) 2020	
3.5	Percentage areas under different LULC categories for	70
	1990, 2000, 2010 and 2020 in Manas-Beki floodplains	
3.6	Area change in LULC categories in Manas-Beki	70
	floodplains, 1990-2020	
3.7	Area change in LULC categories due to erosion and	73
	deposition in Manas-Beki floodplains, 1990-2020	
3.8	Mean NDVI values for each sub-basin in Manas-Beki	74
	basin (1990-2020)	
3.9	NDVI difference image (1990-2020) showing change	75
	and no change areas in upper catchments of Manas-Beki	
	basin	
3.10	Vegetation cover area based on NDVI for Manas-Beki	76
	upper catchments (1990, 2000, 2010 and 2020)	
3.11	Vegetation area changes in percentage from 1990-2020	76
	in Manas-Beki upper catchments	
3.12	Snow cover area based on NDSI for Manas-Beki upper	77
	catchments (1990, 2000, 2010 and 2020)	
3.13	Snow cover area changes in percentage from 1990-2020	78
	in Manas-Beki upper catchments	

3

3.14	Seasonal snow cover area in (a)1990 and (b) 2020) for	79
	the Manas-Beki basin	
3.15	Seasonal snow cover area changes in percentage (1990	80
	- 2020) for the Manas-Beki basin	
3.16(a)	Average snow cover (in %) in Mangde Chu Basin for	81
	December (1990-2020)	
3.16(b)	Average snow cover (in %) in Chamkar Chu Basin for	81
	December (1990-2020)	
3.16(c)	Average snow cover (in %) in Kuri Chu Basin for	82
	December (1990-2020)	
3.16(d)	Average snow cover (in %) in Dangme Chu Basin for	82
	December (1990-2020)	
3.17	Vegetation area changes with elevation from 1990-2020	83
	for the Manas-Beki basin	
3.18	Snow cover area changes with elevation from 1990-	83
	2020 for the Manas-Beki basin	
3.19	Snow and vegetation area changes with elevation for the	84
	overlap region in upper Manas-Beki basin, 1990-2020	
4.1	Flowchart of overall methodology used for mapping and	101
	change analysis of glaciers and high-altitude lakes in	
	Manas-Beki basin	
4.2	Distribution of glaciers in upper catchment of Manas-	104
	Beki river basin based on satellite data of 2020	
4.3	Types of glaciers in the Manas-Beki basin	104
4.4	Changes in glacier count and area in sub-basins of	105
	Manas-Beki river (1990-2020)	
4.5	Percentage change in glacier count and area in sub-	105
	basins of Manas-Beki river (1990-2020)	
4.6	Glaciers identified in Manas-Beki basin in 1990 and	107
	2020 with type of changes; glacier in 1990 (a)	
	disappeared in 2020 (a'), glacier in 1990 (b) decreased	
	in 2020 (b'), glacier in 1990 (c) fragmented in 2020 (c')	

4

xvi

4.7	Area covered by glaciers (primary axis, bars) and	109
	number of glaciers (secondary axis, lines) under	
	different size categories in sub-basins of Manas-Beki	
	river basin in 1990 and 2020	
4.8	Percentage change in glacier coverage area based on	110
	different glacier sizes in Manas-Beki basin (1990-2020)	
4.9	Glacier sizes under different elevation zones of Manas-	111
	Beki basin in (a) 1990 and (b) 2020	
4.10	Altitudinal distribution of glacier area in the sub-basins	112
	of Manas-Beki river basin in 1990 and 2020	
4.11	Distribution of glaciers in different aspects for the sub-	113
	basins of Manas-Beki river basin (1990 – 2020)	
4.12	Distribution of glaciers in different slopes for the sub-	114
	basins of Manas-Beki river basin (1990 – 2020)	
4.13	Distribution of high-altitude lakes in upper catchment of	115
	Manas-Beki river basin based on satellite data of 2020	
4.14	Types of high-altitude lakes in the Manas-Beki basin	115
4.15	Distribution of lake types in 1990 and 2020 in sub-	118
	basins of Manas-Beki basin	
4.16	Changes in high-altitude lakes for sub-basins of Manas-	119
	Beki basin (1990-2020)	
4.17	Altitudinal distribution of high-altitude lakes in sub-	119
	basins of Manas-Beki basin (1990-2020)	
4.18	Monthly mean temperature (^{0}C) during monsoon season	121
	from 1990 to 2020 in sub-basins of Manas-Beki river	
	basin	
4.19	Monthly mean temperature (⁰ C) during winter season	122
	from 1990 to 2020 in sub-basins of Manas-Beki river	
	basin	
4.20	Monthly total precipitation (mm) during monsoon	123
	season from 1990 to 2020 in sub-basins of Manas-Beki	
	river basin	

xvii

4.21 Monthly total precipitation (mm) during winter season 124 from 1990 to 2020 in sub-basins of Manas-Beki river basin

ACRONYMS

ASTER	Advanced Spaceborne Thermal Emission and Reflection Radiometer
DEM	Digital Elevation Model
ECMWF	European Centre for Medium-Range Weather Forecasts
ESA	European Space Agency
ETM	Enhanced Thematic Mapper
GEE	Google Earth Engine
GIS	Geographical Information System
GLI	Glacial Lake Inventory
GLIMS	Global Land Ice Measurements from Space
GLOF	Glacial Lake Outburst Flood
JAXA	Japan Aerospace Exploration Agency
LISS	Linear Imaging Self-scanning Sensor
LULC	Land Use and Land Cover
MBT	Main Boundary Thrust
MIR	Mid Infra-Red
MSI	Multi-Spectral Instrument
NASA	National Aeronautics and Space Agency
NDSI	Normalized Difference Snow Index
NDVI	Normalized Difference Vegetation Index
NESAC	North Eastern Space Applications Centre
NIR	Near Infra-Red
NRSC	National Remote Sensing Centre
NSIDC	National Snow & Ice Data Center
OLI	Operational Land Imager
RS	Remote Sensing
SD	Standard Deviation
SOI	Survey of India
SWIR	Short Wave Infra-Red
TM	Thematic Mapper
USGS	United States Geological Survey