
Chapter 1

Introduction

1.1 Image super-resolution

An image sensor resolution is fixed by the pixel size or pixel count; it is defined as

the ability of the sensor to detect the smallest object with sharp edge/line details

and provide accurate scene reconstruction. Depending upon their spatial resolution,

images can be either high-resolution (HR) or low-resolution (LR) images. HR im-

ages have the higher pixel density than LR images within an image, and capable of

offering more details and information. Image sensors such as charge-coupled device

(CCD) and CMOS are generally used for capturing the digital images. Although a

number of imaging applications are being done with these sensors, their demand will

outgrow due to the continuous advancement of modern digital display technology

and related hardware equipment, and development of new applications of HR sen-

sors [75]. Therefore, improving the spatial resolution of digital images has become

an active research problem in image processing that will fit well and perform better

with the state-of-the-art imaging systems.

Reducing pixel size, or increasing the number of pixels per unit area, is the most

straightforward way to improve spatial resolution in sensors. However, when pixel

size decreases, the amount of incoming light lowers, causing shot noise and increased

diffraction effects in the sensor, resulting in significant image quality degradation.

Another way to improve the spatial resolution is to enlarge the chip size that in-

creases capacitance [47], which in turn hinders the speed of the charge transfer rate.

Additionally, the cost and complexity of digital display systems are dependent on

the sensor resolution, therefore the hardware cost becomes a restriction for many

applications. To overcome these limitations, algorithmic-based post-processing tech-

niques are quite preferable since they allow image resolution to be improved beyond
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the sensor’s physical limits. One promising algorithmic-based and cost-effective ap-

proach is image super-resolution (SR) which can recover HR images from LR input,

making it a more affordable solution for many commercial applications. Recently,

SR becomes a demanding research area in image processing and computer vision

due to the abundance of high-resolution display systems in many vision-based ap-

plications, such as object detection, surveillance and monitoring, medical imaging,

and remote sensing imaging, etc.

The remaining of the chapter is structured as follows: Section 1.2 provides an

overview of single image Super-Resolution (SISR). In Section 1.3, the focus shifts to

remote sensing SISR, covering topics such as the image degradation model, remote

sensing (RS) data processing for SISR approaches, various SISR approaches in RS,

and the challenges associated with SISR in RS. Section 1.4 explains the motivation

behind the current work, while Section 1.5 describes on the scope of this study.

Section 1.6 outlines the contributions of the thesis. Finally, Section 1.7 concludes

the chapter by presenting an outline of the thesis.

1.2 Single Image Super-Resolution (SISR)

Generally, image SR is broadly grouped into two categories based on the number

of LR input images: single-image SR (SISR) and multi-image SR (MISR). MISR

obtains a sequence HR images or a single HR image from several LR input images

acquired with different positions of the imaging sensor (camera) for the same scene.

In MISR approach, it is possible to reconstruct a HR image or sequence of HR

images if it is capable of taking multiple images of the same scene with sub-pixel

misalignment. Since it is difficult to acquire such LR input images for the recon-

struction, we can instead recover the HR image using only a single input LR image,

which is know as SISR. Another limitation of MISR approaches is that they are time

intensive since they need a complex registration procedure involving sub-pixel align-

ment of multiple LR input images. Therefore, the SISR technique is more practical

for many applications, such as remote sensing [54, 125], video streaming [112] and
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medical imaging [75].

1.3 Remote Sensing (RS) SISR

The need for remote sensing (RS) applications such as object identification, tar-

get recognition, military surveillance and land cover classification has been grow-

ing rapidly; HR images with fine features have become crucial in the recent years.

However, RS images are often LR owing to limitations in optical sensors (due to

limited aperture and diffraction, high speed imaging) and communication band-

width, which are unsuitable for real-world image analysis. However, even though

the most advanced satellite sensors are capable of acquiring high spatial resolution

images, these sensors are very expensive. It is also difficult to upgrade embedded

LR imaging sensors once the RS satellite have been deployed in the orbit. Since SR

is a software-based solution for retaining HR images, it can be easily deployed in

the ground station to post-process LR images obtained from the satellite. In RS,

acquiring multiple images of the same scene for MISR is also a challenge due to

cloud coverage, moving objects and other atmospheric disturbances, etc. Since the

SISR technique offers a generic scheme to super-resolve any image sensor without

the requirement for a satellite constellation, it is widely used in RS [20].

1.3.1 Image Degradation Model

In the real-life scenarios, an observed image is considered as an LR image (Y)

obtained from the natural HR counterpart (X) after it encounters the following

three degradations while being acquired: (i) the blurring (H), which is produced

by atmospheric turbulence and optical sensor; (ii) the down-sampling (S) that sub

samples the blurred image as per the resolution of the sensor and (iii) the additive

noise (N). The basic image degradation model/process of the SISR framework is
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shown in Fig. 1.1. Mathematically, it can be represented as follows:

Y = SHX+N (1.1)

In most of the SISR models, the additive noise, N is considered ideally zero or has

negligible effect (less severe) compared to the other two degradations. Therefore,

the final image degradation process of Y can be expressed as: Y = SHX.

In RS domain, the blurring operator is referred to as the point spread function

(PSF). Due to certain factors, such as the finite aperture of the lens, diffraction

occurs, and the PSF deviates from a perfect impulse function and may be represented

by a Bessel function. However, due to lens aberration or atmospheric turbulence,

this function is well approximated by the Gaussian distribution, as follows:

G(x) =
1

σ
√

(2π)
e−

1
2(

x−µ
σ )

2

, (1.2)

where σ and µ denote the standard deviation and mean, respectively. In order to

generate an LR image with greater blurring effect, a larger kernel with higher σ

and down-sampling factor is applied on the HR image. To provide an example, in

Fig. 1.1, the LR image is obtained by applying a Gaussian kernel of size 7×7 with

standard deviation 1.6 and then down scaled by the scaling factor of 3 on HR image.

Ideally, the Gaussian mean is taken as zero.

The goal of SISR, as shown in Fig. 1.1, is to reverse the degradation process

caused by the image degradation model in order to produce a super-resolved HR

output image (X) from its LR image counterpart (Y). However, this process of

solving Eq. 1.1 is ill-posed inverse problem because many HR solution are possible

to obtain the same LR image. To tackle this ill-posed problem, most SISR algorithms

should exploit additional information such as exemplar images or relevant a priori

information to estimate the target super-resolved image.
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Figure 1.1: Image degradation and reconstruction framework of RS SISR.

1.3.2 RS Data Process for SISR Approach

The conventional SISR algorithms are designed to enhance LR grayscale images. In

case of RGB RS images, first RGB image is transformed into the Y CbCr space and

then SISR algorithm is applied on the luminance channel Y only, which contains the

high-frequency information. While, the two color channels Cb and Cr are upscaled

to the target resolution by using the bicubic interpolation technique. Once the SR

of the Y channel is done, they are again converted back to the RGB space as shown

in Fig. 1.2. While real-world multispectral (MS) RS images comprise of several

Figure 1.2: RGB RS data process for SISR approach.

bands (3–10). Two approaches can be adopted for super-resolving the MS images.

One common approach is to apply SISR algorithm to the luminance channel by

converting the MS image to false color RGB image [31], as shown in Fig. 1.3a.

However, this approach is not effective if spectral information of MS images need to

be maintained. Therefore, the simplest and most straightforward way is to apply

the SISR algorithm on each band separately, in order to preserve their spectral

properties, as shown in Fig. 1.3b.
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(a)

(b)

Figure 1.3: Real-world MS remote sensing data process for SISR approach.

1.3.3 SISR approaches in RS

SISR problem can be addressed by using different approaches, which are broadly

classified into three categories: interpolation-, reconstruction- and learning-based

methods. Although interpolation-based SISR approaches are the fastest and the

most simplest ones, they fail miserably to reconstruct non-smooth regions such as

edges and textures, resulting in blurring and other ringing artifacts. In reconstruction-

based approaches, prior information or constraints, such as gradient sparsity [92],

total-variation (TV) sparsity [5, 70], and nonlocal sparsity [127], are explicitly incor-

porated to regularize the ill-posed inverse problem of SISR. However, these methods

are often computationally intensive, and their efficacy gradually decreases as the

upscaling factor increases.

In recent years, learning-based approaches have shown excellent performance

over the aforementioned methods in terms of reconstruction quality as well as per-
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ceptual accuracy. These approaches can effectively recover missing high-frequency

information by learning the map between LR image patches and their corresponding

HR counterparts. Example-based learning methods, such as the neighbor embed-

ding [12], the random forest [85], the anchored neighborhood regression [98, 99], the

sparse coding [25, 118, 122], and the deep learning (DL) [22, 45, 46, 52, 61, 132] are

the most popular as they can predict the target HR patch by learning the correspon-

dence between HR and LR patches using an external ideal dataset. More recently,

sparse coding and DL-based approaches have obtained remarkable progress, which

achieves state-of-the-art performance in the field of SISR. They have become emerg-

ing research topics in RS applications. Because of their extraction of high-level and

complex features, these methods become very convenient for RS imagery. The basic

mathematical formulation for SISR is detailed below:

1.3.3.1 Sparse Representation model

A signal is to be sparse if there are only a few non-zero elements present in the

signal. In the conventional sparse representation model, as shown in Fig. 1.4, a

signal x ∈ RN×1 can be represented as a sparse linear combination of K “atoms”

from the overcomplete dictionary D = [d1,d2, .......,dK ] ∈ RN×K with N ≪ K, as

follows:

x = Dα, (1.3)

where α ∈ RK×1 is the sparse vector with a few non-zero weighting coefficients. The

signal can be called as “s-sparse” if only s (s ≪ N) non-zero entities are present

in the column vector α ∈ RK×1. The recovery of α from x is an ill-posed problem

that cannot provide an unique solution. By imposing a priori information or an

appropriate regularizer, this problem can be accurately solved by obtaining sparse

representation with the following ℓ0-norm minimization problem:

min
α
∥α∥0 such that x = Dα, (1.4)
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where ∥.∥0 refers to the number of non-zero elements present in the vector. The

optimization problem of Eq. 1.4 is a non-deterministic polynomial-time hard (NP-

hard) problem and approximation of its solution is very difficult [6]. In the above

optimization problem, replacing ℓ0 norm by ℓ1-norm provides a sufficiently sparse

solution which is equivalent to solution obtained by ℓ0-norm minimization provided

atoms of the dictionary D are sufficiently incoherent [10]. Moreover, there are

highly accurate off-the-shelf solvers for the ℓ1-norm minimization. Therefore, ℓ1-

norm is used instead of ℓ0-norm that converts the non-convex problem into a convex

optimization problem, as follows:

min
α
∥α∥1 such that ∥Dα− x∥22 ≤ ϵ. (1.5)

This basis pursuit denoising (BPDN) problem can be efficiently solved by using

the recently developed fast ℓ1-minimization algorithms such as the Fast Iterative

Shrinkage Algorithm (FISTA) [7], LASSO [27], etc. The major challenge in a sparse

Figure 1.4: Sparse representation model.

representation-based model is how to choose the dictionary. Many pre-defined dic-

tionaries, defined by transforms such as, the Gabor, the Fourier, the wavelet, and the

discrete cosine transform (DCT) are present in the literature. These non-adaptive

dictionaries, despite their simplicity and ease of computation, are incapable of spar-

sifying a given class of signals sufficiently. To overcome this issue, dictionary learning

has received a lot of attention in the recent years [79, 102]. This approach, called

the sparsity-based dictionary, involves using a few training signals from the signal

class of interest to learn a dictionary. A dictionary learning algorithm utilizes the
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training data matrix, Xh = [x1,x2, ....,xN ] having N signals from the given signal

class of interest to estimate the dictionary, D, which can sufficiently sparsify all

the training signals. Typically, a dictionary learning algorithm solves the following

optimization problem:

min
A,D
∥Xh −DA∥2F , (1.6)

where A indicates the sparse matrix obtained by concatenating the sparse repre-

sentation vectors α corresponding to each patch xi, i.e. A = [α1,α2, . . . ,αN ] and

∥.∥F indicates the Frobenius norm where it enforces unit ℓ2-norm constraints to the

columns of D. Generally, the above optimization problem can be solved iteratively

by performing a two-steps in each iteration. The dictionary can be randomly initial-

ized at first, and then the following two processes are repeated many times [2, 79]:

(i) Step 1: Sparse representation:

A(k+1) = argmin
A
∥Xh −D(k)A(k)∥2F (1.7)

(ii) Step 2: Dictionary update:

D(k+1) = argmin
D
∥Xh −D(k)A(k)∥2F , (1.8)

where k is the iteration number. Step 1 is the simple sparse representations prob-

lem, which can be carried out using a variety of sparse coding algorithms [103]. The

dictionary is updated in step 2 to mitigate the representation error of step 1. Many

dictionary learning algorithms, such as the method of optimal directions (MOD) [28],

the K-singular value decomposition (K-SVD) [2] and simultaneous codeword opti-

mization (SimCO) [19] can be used to perform step 2.

1.3.3.2 Sparse representation formulation for SISR:

In the sparse coding approach for SISR, image patches can be represented by sparse

linear combination of elements from an appropriately chosen over-complete dictio-
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nary. By considering this observation, patch-wise sparsity prior regularization is

used to solve the ill-posed problem of Eq. 1.1. This process can be divided into two

following steps: (i) Dictionary learning phase and (ii) Reconstruction phase.

(i) Dictionary learning phase: In order to learn the coupled dictionary Dc =

[Dh;Dℓ], assume that there are N spatially correlated HR patches denoted

by Xh = [x1,x2, . . . ,xN ] and N LR observed patches denoted by Yℓ =

[y1,y2, . . . ,yN ]. We can extract high-frequency features vector corresponding

to each patch vector yi in Yℓ by applying, for example, first-order gradient

operators in x- and y-directions to the LR image Y before patch extraction.

Since Yℓ and Xh would share a common sparse coefficients matrix A, a joint

dictionary training approach can be adopted by enforcing the sparsityA on the

concatenated data Yc = [Xh;Yℓ] using the following optimization problem:

{Dc,A
∗} = arg min

{Dc,A}
∥Yc −DcA∥2F subject to ∥aj∥1 ≤ T , (1.9)

where aj is the jth column of A and T indicates the sparsity level. Different

dictionary learning strategies such as [2, 118] and its variations are used for

solving Eq. 3.5. One of the most frequently used technique is the K-SVD [2]

approach that has the advantages of both simplicity and efficiency over other

approaches [118].

(ii) Reconstruction phase: In order to reconstruct the HR image X̂, the sparse

co-efficients can be obtained by using a LR dictionary (Dℓ), which is trained

using high-frequency feature patches extracted from the LR training images

as mentioned in the sparse representation stage. To compute the sparse co-

efficient of each LR image patch yi = Dℓαi, the following minimization prob-

lem can be used:

min
αi

∥αi∥1 subject to ∥Dℓαi − yi∥22 ≤ ϵ, (1.10)

By using Lagrange multipliers, the above optimization problem can be refor-
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mulated to:

min
αi

∥Dℓαi − yi∥22 + λ∥αi∥1, (1.11)

where the regularization parameter λ is used to trade-off between sparsity of

the solution and accuracy of the estimated output. The above optimization

problem can be solved using the basic pursuit denoising problem [7, 27]. Since

LR and HR patches share the same sparse coefficient, the desired HR image

patch xi can be obtained by:

xi = Dhαi , (1.12)

Eventually, the HR image X0 is then reconstructed by tiling of all the recon-

structed HR image patches. The basic sparse representation and dictionary

learned-based SISR model for RS image is shown in Fig. 1.5. However, X0 may

not exactly project onto the assumed image acquisition model i.e. Y = SHX.

In order fit into the assumed imaging model, a global reconstruction constraint

is applied on X0 by solving the following quadratic optimization problem using

gradient descent method:

X̂ = argmin
X
∥SHX−Y∥22 + C∥X−X0∥22, (1.13)

where C is the regularization parameter. C is typically fixed experimentally

and it indicates the trade-off between the fidelity of the reconstructed image

X̂ and the proximity to the initial approximation X0. While still adhering to

the reconstruction constraints, this image is as similar as possible to the initial

SR X0 provided by sparsity.

1.3.3.3 Basic deep learning architecture

The recent years have witnessed significant advancements in the field of deep learning

(DL). They are representation-learning methods with several layers of representa-

tions obtained by combining basic but non-linear modules that transform the net-
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Figure 1.5: Sparse representation-based SISR model for RS image.

work’s representation power from a simple to a higher and more abstract level [51].

In contrast to traditional learning-based methods, DL network does not employ any

hand-crafted features. These models are capable of learning an optimal and infor-

mative set of features automatically through the training process for each task and

dataset. In general, the basic feature extraction, hierarchical high-level feature ex-

traction and decision making are all performed concurrently in a single DL-model

training procedure. The fundamental process of deep learning was explained by

LeCun et al. as follows: “Deep learning allows computational models that are com-

posed of multiple processing layers to learn representations of data with multiple

levels of abstraction...Deep learning discovers intricate structure in large data sets

by using the backpropagation algorithm to indicate how a machine should change

its internal parameters that are used to compute the representation in each layer

from the representation in the previous layer” [51]. The process of backpropagation

involves determining the gradient of the error between the output and expected pat-

tern of scores with regard to a multilayer stack of module weights. [51]. The chain

rule is being used for backpropagation, as shown in Fig. 1.6.

The basic unit of DL network is the neural network (NN), that has the ability

to estimate any continuous function [1]. In general, the N -layer NN consists of an

input layer and N − 1 hidden layers. In fully connected layers, neurons of a specific

layer are fully connected to its adjacent layer, but not to each other. A fully-

connected layer’s forward pass involves a matrix multiplication, a bias offset, and

an activation function. The most common activation functions are: tanh, sigmoid,

and the rectified linear unit (ReLU) [33]. The initialization of parameters for the
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Figure 1.6: Backpropagation procedure.

first forward pass of a NN can be done in many ways, such as zero weights, random

weights, etc. Let us consider a NN with one layer, the corresponding output yj

being obtained by differentiating with respect to the weights and bias parameters

during backpropagation. Assume that we have a weight matrix Wij of size m×n

and an input vector xi of size n, where m denotes the number of neurons in the layer.

The bias vector bij has a length of m. The first layer’s output can be described as

follows:

zj = Wijxi + bij; yj = f(zj), (1.14)

The activation function is denoted by f(·), and it is applied to the vector zj in a

element-wise. Now, differentiating with respect to (w.r.t) the weights (Wij):

∂yj

∂Wij

=
∂yj

∂zj

∂zj
∂Wij

, (1.15)

∂yj

∂zj
is the activation function’s derivative with respect to zj, which is given by:

∂yj

∂zj
= f ′(yj).

∂zj
∂Wij

can be computed as follows:
∂zj

∂Wij
= xi (since Wijxi is a linear

operation). Therefore, the differentiation with respect to Wij is:

∂yj

∂Wij

=
∂yj

∂zj

∂zj
∂Wij

= f ′(yj)xi, (1.16)

Next, yj is differentiated w.r.t the bias (bij):

∂yj

∂bij

=
∂yj

∂zj

∂zj
∂bij

, (1.17)
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∂zj
∂bij

can be computed as follows:
∂zj
∂bij

= 1 (since bij is added element-wise to the

linear operation).

Next, the error signal or loss function is estimated by comparing the results of

each forward pass to the ground truth. The network is learned by backpropagat-

ing this error signal and computing gradient to recalculate parameter weights for

the following forward pass. The backpropagation algorithm is used to estimate the

parameters (weights and biases) using local gradients with gradient descent. Back-

propagation allows us to compute the gradients of the loss function with regard to

the network parameters and then update the parameters in the reverse direction of

these gradients to minimize the loss. Assuming that loss function of the network

as E. This loss function needs to be minimized w.r.t the network parameters. For

each training set, the network’s output (yj) is first calculated for a given input (xi).

The local gradients, which represent the partial derivatives of the loss w.r.t each

parameter, are then computed, as follows:

1. Compute the output of the network: For a given input xi, perform a for-

ward pass through the network to determine the predicted output yj against an

expected output tj. The loss function is calculated by: E = tj − yj.

2. Calculate the local gradients using backpropagation:

(a) The partial derivative of the loss is calculated w.r.t the net input zj of the

output layer: ∂E
∂zj

= ∂E
∂yj

∂yj

∂zj
.

(b) The partial derivatives of the loss is computed w.r.t the weights Wij and

biases bj:
∂E

∂Wij
= ∂E

∂zj

∂zj
∂Wij

and ∂E
∂bij

= ∂E
∂zj

∂zj
∂bij

.

3. Update the parameters using gradient descent: Each parameter’s value is

updated in the reverse direction of the gradient by subtracting the learning rate

(ϵ) from the gradient: Wij = Wij − ϵ ∂E
∂Wij

and bij = bij − ϵ ∂E
∂bij

.

These three steps are repeated until the loss function converges, where the optimized

parameters should correctly classify all the remaining test cases [51]. Both gradient
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descent and backpropagation have their drawbacks: (i) NN suffers by vanishing and

exploding gradients; (ii) computational complexity increases with the size of the

network; (iii) convergence is slowed by local minima and plateaus; (iv) sensitivity of

hyperparameters and overfitting. Here, vanishing gradients may occur in deep NNs

when the gradients become small during backward propagation. This may hinder

learning and affecting the updates of early layers. Contrary to that, exploding gra-

dients occur when gradients become excessively large, leading to unstable training.

Both can affect NN optimization, which can be handled by using techniques, like

proper initialization, regularization techniques, or gradient clipping.

The convolutional neural network (CNN), a subset of deep NN is the simple

deep feedforward network and can be trained and generalized with great ease. How-

ever, current CNNs suffer challenges such as as vulnerability to adversarial attacks

and a lack of labelled training data, highlighting the need of ongoing research and

improvement in these areas. They have showed excellent results in a broad range of

machine learning problems [51]. The architecture of a CNN is hierarchical, where

the output ui of the subsequent layer is calculated for a given input signal u, as

follows:

ui = ρWiui−1, (1.18)

Here Wi and ρ indicate the weights and the non-linearity or the activation, respec-

tively. Wi and the convolution layers are considered as a set of convolutional filters

and filter maps, respectively. Therefore, each layer can be expressed as a sum of

previous layer’s convolutions:

ui(m,ni) =
(
ρ
∑
n=1

(ui−1(., n) ∗Wi,ni
(., n)(m))

)
, (1.19)

Here ∗ is the discrete convolution operator. The mathematical formulation of con-

volution operation is given as follows:

(f ∗ g)(x) =
∞∑

k=−∞

(f(k)g(x− k)), (1.20)
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A CNN defines an extremely non-convex optimization problem. Therefore, the

weights Wi are commonly learned by stochastic gradient descent and the backprop-

agation algorithm. The basic architecture of CNN is shown in Fig. 1.7.

Figure 1.7: The basic architecture of CNN [50].

1.3.3.4 Deep learning architecture for SISR:

Due to the rapid increase in computational power, and availability of big data, DL-

based networks are getting unprecedented attention and success in various image

processing and computer vision applications, such as image classification [34, 48],

image denoising [55], face recognition [93] and object detection [73]. In order to

solve SISR problems that are ill-posed and non-convex, traditional techniques, such

as the neighbor embedding [12], the random forest [85], the anchored neighborhood

regression [98, 99] the sparse coding [25, 118, 122] are typically used. However, these

methods use handcrafted features, have the problem of utilizing approximations,

like convexity, which prevents them from having an optimal solution. With the

emergence of deep learning, features are automatically learned from the raw image

data, and effectively learn an end-to-end non-linear mapping between the original

HR and degraded LR images, which are considered the prior information. CNN have

been shown promising results in image processing and computer vision domain. In

SISR problem, deep CNN aims to extract the most informative features in order to

minimize the loss between the estimated SR image and the original (natural) HR,
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and therefore, obtain remarkable results. An HR approximation X̂ of the original

HR image X can be recovered from the observed LR image Y by using the following

equation:

X̂ = F(Y; θ), (1.21)

where θ stands for the parameters of F , which is the SR model. The objective of

SR model is as follows:

θ = argmin
θ
L(X̂,X) + λΦ(θ). (1.22)

where L(X̂,X) is the loss function between X̂ and X. Φ(θ) and θ are the regulariza-

tion term and tradeoff parameter, respectively. Several loss functions are commonly

used in SISR networks. Here are some types of loss functions used in SISR networks:

(i) Mean-squared error (MSE): MSE is a commonly used loss function in

CNN-based SISR network. It calculates the average squared difference between

the predicted HR image and the ground truth. MSE loss encourages the

network to reduce pixel-wise differences and can result in smooth outputs.

However, it may fail to capture perceptual details and textures.

(ii) Charbonnier loss (ℓ1 loss with perceptual blur): It is an ℓ1-based loss

function that provides perceptual blur to the image. It helps to reduce artifacts

and preserves high-frequency features in the reconstructed images.

(iii) Adversarial loss (GAN loss): Adversarial loss is a commonly used loss

function in a generative adversarial network (GAN) network. A discriminator

network differentiates generated and actual HR images in adversarial loss. The

generator network generates images that the discriminator cannot distinguish

from real ones. The network is encouraged to produce realistic and visually

appealing outputs through adversarial loss.

The selection of the loss function is determined by the desired SR output char-

acteristics and the task-specific requirements. Due to its simplicity and ease of opti-

mization, MSE loss is frequently utilised, however it may result in over-smoothing.
17
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The preservation of details and textures is improved using perceptual loss func-

tions, like Charbonnier loss and adversarial loss, which encourage visually pleasing

results. Adversarial loss can improve the visual quality even further by aligning the

generated images to the distribution of real HR images.

The impact of the loss function on convergence varies depending on the prob-

lem and network architecture. The network is guided by different loss functions to

optimize different aspects of the SR problem. The impact of the loss function on

convergence is multi-fold, affecting the optimization direction, gradient calculation,

and model behavior. The loss function needs to be chosen carefully to enhance con-

vergence, model performance, and alignment with SR image reconstruction quality.

1.3.4 Challenges of SISR in RS

The SISR technique has the ability to overcome the physical limitation of the sensor

during image acquisition as well as challenges in the reconstruction of the super-

resolved image at the subpixel level. However, there are certain challenges that

need to be overcome when working with remotely sensed images. These challenges

are outlined below:

(i) Modeling of SISR problem: During the acquisition process, RS images are

frequently vulnerable to several degradations. So, the SISR model needs to be

flexible and well defined.

(ii) Selection of dataset: The selection of dataset is very much essential as

distinct image features need to be exploited from the dataset at the time of

dictionary and DL network training. Small databases are often inadequate for

exploiting the relevant image features, while large databases increase compu-

tational time.

(iii) Selection of regularization parameters: SISR approaches such as sparse

representation-based approach heavily rely on the selection of regularization
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parameters. It has significant impact on the algorithm performance and is

dependent on image types. The proper regularization parameters need to be

selected for RS images.

(iv) Computational complexity: Sparse representation-based SR methods of-

ten involve addressing optimization problems such as sparse coding or dic-

tionary learning, which may be computationally costly. As the size of the

input image increases, so does its computational complexity, making real-time

processing of large-scale RS images highly complex.

(v) Handling complex edge structures: RS images may contain complex tex-

tural and structural features, such as edges, or non-linear boundaries. Sparse

representation-based SR algorithms often encounter difficulties in effectively

preserving and reconstructing these complex edge structures, as they may

require more sophisticated regularization terms or edge preserving priors. In-

corporating additional priors specifically used for preserving complex edge in-

formation is necessary to achieve accurate HR reconstructions.

(vi) Efficient architecture design: Architectures of DL models for SISR needs to

be computationally efficient to process RS images in a reasonable time frame.

It is critical to design architectures that effectively trade off computational

complexity and performance.

(vii) Trade-off between computational complexity and performance: DL-

based SISR models with more parameters and complex architectures tend to

achieve better performance. However, this comes at the cost of increased com-

putational complexity and resource requirements. It might be difficult to find

an optimal trade-off between model complexity and performance, especially

when deploying in resource-constrained environments.

(viii) Interpretable representations: DL models often lack interpretability, mak-

ing it challenging to understand the learned representations. Interpretable

feature extraction methods that provide insights into the underlying spatial

characteristics of RS images are desirable. Attention mechanisms can play a
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crucial role in guiding the feature extraction process in DL-based SISR meth-

ods for RS images. They can help focus on relevant regions or spatial struc-

tures in the images, enhancing the model’s ability to capture discriminative

information.

(ix) Need of different quantitative metric: Traditional quantitative perfor-

mance criteria, such as peak signal-to-noise ratio (PSNR) and structural sim-

ilarity (SSIM), are insufficient to evaluate SISR results for RS images. To

evaluate the effectiveness of RS super-resolved images, metrics that correlate

RS image properties should be explored.

1.4 Motivation of the present work

RS satellites, particularly MS sensors often have low spatial resolution, which fail

to deliver high-quality images for many practical RS applications. The development

of efficient SISR methods is crucial for producing HR images that are useful for

RS image analysis and applications. Learning-based SISR approaches have gained

in popularity in RS due to their high performance and the fact that they synthe-

size the required information directly from the test image itself [77]. The aim of

learning-based SISR approaches is to establish an end-to-end mapping between LR

and their corresponding HR image patches. High-frequency feature extraction from

LR remote sensing images are essential to enhance learning-based SISR methods.

Sparse representation is one of the most successful learning-based methods for SISR

that shows effective result for RS images. However, the reconstruction quality of

LR image is largely dependent on how good the trained dictionary, as well as the

effective handcrafted feature extraction strategy required for the efficient dictio-

nary training. The dictionary learning and regularization operations involved in the

sparse representation-based SR methods are also time consuming. Moreover, MS

images consist of several spectral bands leading to big data volume. Therefore, it

is computationally exhaustive to restore HR images from volumetric data. In or-

der to solve these problems, parallel computing using the general purpose graphics
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processing unit (GPGPU) can be exploited for real-time SISR of RS images. These

aspects motivate to develop a fast sparse representation-based SISR technique us-

ing an efficient dictionary learning method with improved feature extraction for RS

images.

DL is the most popular trend in image processing that achieves state-of-the-art

performance in the SISR of natural images. Because DL-based SISR has the ability

to automatically extract high-level and complex features, it is especially useful of

RS images, which has a highly complex and detailed structure. CNN-based DL

networks, in particular, would automatically learn and represent high-level features,

outperforming traditional learning-based approaches that depend only on low-level

feature representations. It is crucial in SISR approaches to enhance network depth

for improved performance. However, the depth of the network affects the representa-

tional power of deep networks. As a result, attention-based modules are widely used

in deep CNN architecture to yield adaptively learnable, highly informative feature

maps. This will help the network in boosting its discriminative learning capacity

as well as its representation power for better outcomes. However, remote sensing

SR for real-time may be difficult in DL-based approach because of its limitations,

such as higher computation overhead, memory and requirement of a large amount

of data for training and validation. GPU can be used for accelerating the training

time of DL to handle this computational overhead effectively. These motivate us to

develop a fast deep CNN-based SISR network with an attention module to enhance

the network’s representational power and accuracy for RS images.

1.5 Scope of the work

The application value of data products is determined directly by the resolution of

RS images. Learning-based SISR algorithms have superior image reconstruction

ability and are suitable for a wider range of RS applications. Although this method

obtains better reconstruction quality, it is computationally exhaustive. The devel-

oped sparse representation-based algorithm not only obtains the high-quality RS
21



1.6. Contributions from the Thesis

images, but also computationally less heavy, which has a wide scope for real-time

applications. Advancements in DL technology are more significant due to the state-

of-the-art architectural design and super-resolving abilities when compared to sparse

representation-based approaches. The proposed CNN-based SR method is expected

to further enhance the resolution and quality of RS imagery, providing more accu-

rate and detailed images for a wide range of applications. Furthermore, it has a low

inference time, making it fast and beneficial for real-world RS applications. Overall,

it can be said that the proposed works in this thesis have a broad scope of potential

applications in real-world sensing scenarios.

It is important to note that the thesis also outlines certain limitations outside

its scope. Firstly, it does not assess other types of SISR algorithms, such as multi-

level/scale networks, GANs, transformers or unsupervised learning methods. The

thesis focus remains to be sparse representation-based and supervised DL-based

methods. Additionally, the thesis does not deal with practical aspects of deploying

and integrating the proposed SISR algorithms into existing RS systems or work-

flows. The primary focus remains on algorithmic developments and performance

evaluations, rather than implementation specifics and system-level issues.

1.6 Contributions from the Thesis

The research works carried out in the thesis resulted in the following contributions:

i) Development of a new method for enhancing the resolution of MS remote sensing

images using sparse coding and adaptive dictionary learning. Unlike traditional

methods that rely on external HR images, this approach uses the LR multispec-

tral remote sensing image itself to learn dictionaries based on sparse represen-

tations. The method also incorporates a new feature extraction technique using

difference of Gaussians (DoG), Sobel, and fast Fourier transform (FFT) filter,

which helps in efficient dictionary learning and image reconstruction. Proposed

a new parallel implementation of the orthogonal matching pursuit (OMP) algo-
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rithm in adaptive dictionary learning using compute unified device architecture

(CUDA) programming on GPU. The reconstruction algorithm has also been

accelerated with the help of CUDA programming model using the GPU. The

method is capable of processing real MS remote sensing images band wise with

sizes up to 2048×2048 within a few seconds for different upscaling factors using

a parallel framework.

ii) A novel technique for overcomplete dictionary learning in remote sensing SR

that utilize both keypoints and non-keypoints features. To effectively preserve

structural and textural features, multiple coupled dictionaries are learned from

an external RS database. These dictionaries include SIFT-based keypoints and

non-keypoints patch-based pairs, which are more effective at preserving high

frequency information than traditional patch-based dictionaries alone. A joint

sparse reconstruction model is proposed that combines SIFT-driven keypoints

and NLTV regularization priors, and solves different sub-problems iteratively

using the alternating direction method of multipliers (ADMM). To accelerate

dictionary learning and reconstruction tasks using GPU, hybrid CPU-GPU al-

gorithms are developed based on the CUDA programming model with GPU

and OpenCV. The proposed parallel framework is able to process real-time RS

images up to 2048×2048 in a matter of seconds for various upscaling factors.

iii) A novel joint dual-branch CNN network to recover the sharp and clear HR im-

ages from LR remote sensing images with Gaussian blur. The feature extraction

stage is decomposed into two task-independent branches, namely, deblurring

and SR feature extraction stages, and then train an attention-based gate module

for fusing the features from these branches adaptively, making this dual-branch

CNN network to handle SR and deblur tasks jointly. In order to extract SR

features, a residual spatial and channel squeeze-and-excitation (RSCSE) mod-

ule is developed, where a concurrent spatial and channel squeeze-and-excitation

(SCSE) module is employed in residual blocks. The SCSE module is capable of

making the feature maps more informative by recalibrating feature maps sepa-

rately, spatially and channel wise, and then combining them both. Each RSCSE

module employs the local feature fusion (LFF) concept to adaptively preserve
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local features. Further, a deblurring module is developed that uses a simple

SCSE-based encoder-decoder CNN architecture to extract sharp features from

blurry LR images.
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1.7 Thesis outline

The thesis is organized into six chapters. In the following, a brief introduction to

each chapter is given:

Chapter 1:

This chapter introduces the fundamentals of image SISR, formulation of SISR, RS

SISR, concept of sparse representation- and deep-learning-based image SR.

Chapter 2:

This chapter gives an overview of traditional and current SR methods, along with

relevant literature around them. An in-depth review of sparse-based and DL-based

SISR techniques, along with various approaches related to these methods for obtain-

ing the HR image in RS images, is provided. It also discusses the brief background

of CUDA-enabled GPU hardware for parallel processing, its implementation in SR

and the related literature of CUDA-GPU-based SR works. Additionally, evaluation

parameters and details of dataset used in the thesis are explained. Lastly, the chap-

ter concludes with a summary and highlights few research issues on this topic.

Chapter 3:

In this chapter, we developed a novel framework for the SISR of RS images using

sparse coding and self-example-based dictionary learning. Instead of training from

external HR images, coupled dictionaries based on sparse representations are learnt

from the given RS LR image itself. A feature extraction step based on DoG, Sobel
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and FFT filters is introduced for efficient HR dictionary learning as well as sparse

reconstruction of HR images. Further, we designed highly parallelized algorithms

for the orthogonal matching pursuit (OMP) in adaptive dictionary learning and re-

construction module; hardware acceleration with NVIDIA P100 GP-GPU hardware

is achieved using the CUDA programming model. The parallel framework for SR

can process real MSRS images up to 2048×2048 within a few seconds for different

upscaling factors. Simulations are carried out using real MS remote sensing images

acquired by the Indian Satellite- Linear Imaging Self Scanner (LISS-IV). Results are

evaluated in terms of visual quality and objective fidelity criteria, besides computa-

tional time and compared with the state-of-the-art.

Chapter 4:

In this chapter, we have proposed a parallel SISR framework based on edge preserv-

ing dictionary learning and sparse representations on CUDA-enabled GPU platform.

To recover edges, multiple coupled dictionaries, namely, the scale-invariant feature

transform (SIFT) keypoints and non-keypoints patch-based dictionaries are learned.

In particular, a sparse reconstruction model with SIFT-driven and non-local total

variation regularization priors is presented. These sub-problems are solved itera-

tively using the alternating direction method of multipliers (ADMM). We proposed

hybrid CPU-GPU algorithms based on CUDA programming model for dictionary

learning and sparse reconstruction using hardware acceleration with NVIDIA P100

GP-GPU hardware. CUDA-based implementation of the ADMM technique is also

done to solve the above joint problem. Extensive simulations are demonstrated on

two publicly available RS and two real MS remote sensing datasets for various scaling

factors to show that the proposed method outperforms state-of-the-art techniques

both visually and quantitatively. Also, proposed parallel SR framework obtained

remarkable speedup in comparison to CPU counterparts, implying a great potential

for real-time applications.

Chapter 5:

In this chapter, we designed a joint dual-branch CNN network for image deblur-

ring and SR. The feature extraction network is divided into two task-independent

branches, i.e. deblurring and SR; features from these two branches are adaptively
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fused by learning a gate module with attention to generate a clear HR from LR

remote sensing images with Gaussian blur. We developed a residual spatial and

channel squeeze-and-excitation (RSCSE) module to extract SR features of RS im-

ages; the SCSE module is adopted in residual blocks. Further, local feature fusion

(LFF) concept is used in each RSCSE block for preserving the local features adap-

tively. Further, a deblurring module is developed that uses a simple SCSE-based

encoder-decoder CNN architecture to extract sharp features from blurry LR images.

The proposed network is evaluated on two publicly available RS datasets and two

real MS image datasets. Results obtained by the proposed network achieves better

reconstruction of RS images in terms of visual analysis and objective criteria.

Chapter 6:

This chapter concludes this thesis by providing a brief summary of the work done in

the previous chapters and outlines potential future research directions in the field.
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