
Chapter 2

Review of Literature

2.1 Introduction

The bottleneck for many remote sensing (RS) applications is due to the fact that

satellite sensors cannot provide information at the actual spatial resolution of a

scene. Therefore, increasing the spatial resolution of RS images using SR is one of the

most cost-effective software-based solutions that can be implemented at reasonable

ease. There are many fundamental assumptions to be taken into consideration,

while formulating the SR problem. This results into different SR algorithms, and,

therefore, different approaches have been reported in the literature. This chapter

provides a detailed analysis of paradigm shifts across different SR algorithms in order

to demonstrate their significance for producing visually pleasing and meaningful HR

images. A detailed discussion on RS image SR using learning-based approaches is

also provided, with an analysis of their merits and demerits.

The rest of the chapter is organized as follows: Section 2.2 discusses the cate-

gorization of SR methods. Section 2.3 explains learning-based SISR techniques and

their related works on remote sensing images. Section 2.4 presents benchmarking

criteria of remote sensing SISR algorithms. Section 2.5 explains the role of parallel

computing in SR. Section 2.6 gives an overview of commonly used remote sens-

ing datasets for SR. Section 2.7 discusses various metrics employed to evaluate the

quality of SR remote sensing images. Section 2.8 concludes with a summary of key

findings and research gaps, emphasizing the significance of ongoing exploration in

remote sensing SISR.
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2.2 Classification of SR methods

SR algorithms can be categorized according to various criteria, such as their oper-

ating domains, the number of LR images used, and the reconstruction approaches

used. The detailed taxonomy of image SR is depicted in Fig. 2.1. Image SR ap-

proaches are broadly divided into two categories: frequency or transform and spatial

domain. Although the initial developments of SR algorithms originated from signal

processing techniques in the frequency domain, later on, most of the SR algorithms

were formulated in the spatial domain. With regard to the number of LR images

utilized, SR algorithms can be divided into two categories: SISR or MISR. We begin

off by discussing domain-specific approaches as follows:

Figure 2.1: Categorization of SR techniques.
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2.2.1 Frequency domain

In the frequency domain-based SR, input LR images are first transformed from the

spatial domain to the frequency domain and then the HR image is estimated. After

obtaining the HR reconstructed image, it is converted back to the spatial domain.

The core of frequency-domain analysis is a non-linear mapping that smoothes the

image by altering the frequency components (coefficients). Clearly, the method

neglects the time-related information (in terms of information retrieval) during the

inversion process [8]. These techniques are divided into two categories based on

the transformation used: Fourier transform- and wavelet transform-based methods.

SR algorithms were introduced by Gerchberg [32] and then improved by Santis and

Gori [83]. These were iterative frequency-domain techniques based on the Fourier

transform (FT) that could enhance resolution by expanding a signal’s spectrum over

the diffraction limit. Tsai and Huang [104] developed the first frequency-domain

MISR algorithm. This technique compares the continuous FT of the original scene to

the discrete FT of the observed LR images by measuring the sampling periods in the

horizontal- and vertical directions of the digital image. Tom and Katsaggelos [100]

presented a two-stage SR method; first, it processes the LR images by registering,

deblurring, and de-noising them, and then project the processed images onto a target

grid of HR image(s).

Wavelet transform-based approaches are alternatives to FT that are often used in

frequency domain-based SR algorithms. In this approach, multi-scale representation

of images is used for effective HR restoration. Nguyen and Milanfar [71] proposed an

efficient method that used wavelet coefficients to represent the input LR images and

then map the coefficients to that of the target SR image. Bose et al. [9] presented

a second-generation wavelet-based approach that performs well in the presence of

noise. However, the resultant SR image(s) have high-frequency artifacts that re-

semble a wavelet. It has been observed that many works are [15, 82, 136] based

on the discrete wavelet transform (DWT). Frequency domain has some disadvan-

tages for real-world applications, such as improper modeling of motion, sensitivity
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to errors, inadequate prior models, and difficult mathematical formulation, etc. In

order to overcome these constraints, researchers have shifted their attention towards

spatial-domain SR methods.

2.2.2 Spatial domain

Spatial domain approaches address complex problems using simple pixel shift oper-

ations, overcoming the limitations of frequency domain SR methods. These tech-

niques try to estimate how each LR pixel corresponds to its corresponding HR pixel

by analysing the relationship between LR and HR images. This modelling enables

direct estimate of HR pixel values from LR inputs. The spatial domain methods al-

lows unconstrained motion between frames and makes it easier to incorporate prior

knowledge. The spatial domain methods can be again classified into two parts:

multiple image SR and single image SR.

2.2.2.1 Multiple image super-resolution

In multiple image SR (MISR), multiple LR images are considered to generate the

HR image. Images are acquired using the same camera at various time intervals,

or from various angles, or using different cameras at various locations [75]. Such

images are helpful for estimating the motion in the imaging system, both controlled

and uncontrolled. The objective of MISR is for predicting motion information that

are subsequently employed for incorporating the sub-pixel shift of LR images onto

an HR grid in order to perform SR reconstruction. Fig. 2.2 depicts the process

of image registration and sub-pixel shifting in the MISR process. The artifacts

resulting from aliasing, which exist in the observed LR images caused by the under-

sampling process can be eliminated with the help of MISR algorithms. Iterative back

projection (IBP) [42] was one of the first techniques in MISR. Here, HR estimation

is obtained iteratively, where the initial estimate for the HR image is started with

f (0). The aim of this IBP technique is to improve the initial estimate f (0) by back-
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projecting the difference between the simulated LR images {g(0)k }, k = 1.....K and

the observed LR images {gk} onto its receptive field in f (0). This projection is

repeated iteratively for minimizing the following error function (en):

en =

√
1

K

∑K

k=1

∥∥∥gk − g
(t)
k

∥∥∥2
2

(2.1)

where n is the total number of iterations, and t is the current iteration. The

Figure 2.2: The process of registration and sub-pixel shifting in MISR.

limitation of IBP is that it is difficult to include a priori knowledge in their solution.

Other methods of MISR are the direct methods [41], where HR image is generated

through registration and warping of upscaled versions of LR images. These methods

are faster than IBP techniques. Stochastic methods, such as maximum a posteriori

(MAP) [36] and maximum likelihood (ML) [11] are some other MISR methods. They

offer a powerful theoretical framework for a prior knowledge required for solving the

ill-posed SR inverse problem. The ML problem may be transformed into a MAP

problem by involving a priori information. In the case when the number of LR

images over-determines the SR images (a large number of LR images would lead to

a uniform contribution of each of them on the target HR image), the outputs of ML

and MAP are similar, and ML is chosen over MAP due to its simple computation. If

insufficient number of LR images are available to determine the SR image, a priori

information becomes crucial, then MAP performs better than ML.
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MISR approaches, however, are time consuming as they need a registration

procedure involving sub-pixel alignment of multiple LR input images. The effec-

tiveness of MISR is mostly affected by the registration error i.e. the estimation of

motions between various observed LR images. Motion estimate is a very unstable

and complicated procedure in MISR because in real-world applications, objects that

are present in the same frame can have different motions and directions. In RS,

acquiring multiple images of the same scene for MISR is also a difficult challenge

due to cloud coverage, moving objects and other atmospheric disturbance, etc.

2.2.2.2 Single image super-resolution

In recent years, single image super-resolution, also known as SISR, has emerged as

an important research topic for many computer vision applications. In particular,

high-definition image processing requires the reconstruction of an image from a

single observation. The SISR method utilizes mainly spatial information to recover

the HR image from a single LR image, making it very suitable for RS applications.

SISR algorithms are divided into three categories: interpolation-, reconstruction-,

and learning-based methods, which are discussed as follows:

(i) Interpolation-based: Interpolation method is one of the simplest forms of

super-resolution methods, which are typically used for the ease of zooming

images. This method can produce an HR image from its LR images by es-

timating the pixel intensities on an up-sampled grid. The most widely used

interpolation methods are the nearest neighbor, the bilinear, and the bicubic

interpolation. These methods are based on the direct manipulation of the pix-

els only. The operation time of the interpolation is reduced because it relies on

neighboring pixel values; however, the resulting pixel’s accuracy is decreased.

The smoothing effect of bicubic interpolation has made it a powerful tool in

the field of SR.

(ii) Reconstruction-based: To minimize the artifacts produced by interpolation-

based methods, different reconstruction-(also known as regularization) based
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techniques are applied on the LR image to reconstruct HR image. Statistical

restoration approaches, such as deterministic and stochastic approaches are

used in SISR that is based on reconstruction. In order to reduce the num-

ber of potential solutions, these strategies utilize different prior information

as constraints. The deterministic method accurately predicts the relationship

between the LR and HR images. Unfortunately, this method of reconstruc-

tion is inadequate for solving the SR problem, which is notoriously ill-posed.

The Bayesian techniques, such as ML and MAP are used in stochastic ap-

proach. ML recovers HR images by maximizing the likelihood of LR images

generated from them. While an augmented optimization function and prior

term estimate the HR image in MAP. Mathematically, it can be expressed as

follows:

x = argmin
x

N∑
k=1

∥SHxk − yk∥22 + λℜ (x) . (2.2)

where k = 1, 2, ...., N number of patches of LR and HR images. The expres-

sion has two parts: the first: a data fidelity term, and the second: a constraint

or regularization term. The regularization term consists of a constant λ and

ℜ (−), the prior. There may be a requirement for more than one prior. Fig. 2.3

depicts various types of priors, which may be classified as local or non-local

depending on the intrinsic features of the image. Local priors, such as gradi-

ent profile [92] and total-variation (TV) [5, 70], are utilized as constraints for

solving inverse problems of SR by considering the statistical and local features

of the image. On the other hand, non-local similarities in the image are used

for regularization of the inverse in non-local priors [127]. They help in sparse

representation required for the SR process. Further, a hybrid model that com-

bines non-local means with TV regularization, called the non-local total varia-

tion (NLTV), is developed in the sparse representation-based SR process [128].

These types of hybrid models that utilize both local and non-local priors are

often used to maximize their efficacies. However, reconstruction-based SISR

methods generally generate HR outputs with better sharpness, but at the cost

of undesired edges, as well as ringing artifacts, especially at the salient edges.

Also, these methods are often computationally intensive, and their efficacy
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Figure 2.3: Types of priors.

gradually decreases as the upscaling factor increases.

(iii) Learning-based In recent years, learning-based approaches have shown excel-

lent performance over the aforementioned methods in terms of reconstruction

quality as well as perceptual accuracy. These approaches can effectively re-

cover missing high frequency information by learning the relationship between

HR examples and their corresponding LR counterparts through training. This

learned information is used as a prior knowledge, which is then incorporated

in the reconstruction phase. This approach is discussed in more depth in the

following section.

2.3 Learning-based SISR methods

This approach is divided into two subcategories based on the available datasets- ex-

ternal (exemplar-based) and adaptive. In the adaptive learning, the LR input image

is used instead of an external database-a collection of high-quality images related

to the input LR image. The external example-based learning maps the relation-

ship between HR and LR image patch pairs using an external dataset. Methods,

such as the neighbor embedding [12], the random forest [85], the anchored neigh-

borhood regression [98, 99], the sparse coding [25, 118, 122], and the deep learning

(DL) [18, 22, 45, 87, 97, 125] are the most popular as they can predict the HR
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patch by learning the correspondance between LR and HR patches using an exter-

nal dataset.

2.3.1 Sparse-representation-based SISR

Sparse coding has the ability to give improved reconstruction results and outper-

forms traditional SR methods. Sparse coding-based SR method can be divided into

two stages: first, training of the sparse overcomplete dictionaries, and second is the

reconstruction of the SR image by using the sparse representations. According to

the database for dictionary training, it can be either global (external database) or

adaptive (internal database). SR methods using global dictionary very much depend

upon the quality of example HR images in the training database. Yang et al. [118]

proposed sparse prior-based SR method (ScSR), which is based on a global dictio-

nary, learned from both LR and HR image patches. Zeyde et al. [122] simplified

ScSR that makes it computationally less heavy and used the K-singular value de-

composition (K-SVD). Timofte et al. [99] proposed adjusted anchored (A+) method;

an improved variant of anchored neighborhood regression (ANR) [98]. A+ relies on

the regressors and features of ANR, it uses the whole training data for learning

regressors rather than the dictionary. Zhang et al. [131] proposed a simple and fast

SR method that combines clustering and collaborative representation (CCR). It first

extracts numerous clustered features from LR and corresponding HR images based

on their local geometry. Using collaborative representation, several projection ma-

trices are calculated in order to map between LR and HR feature subspaces. Song

et al. [90] proposed guided SR approach based on coupled dictionary learning-based

multimodal image SR method (CDLSR) that uses another HR image modality as a

prior to restore the HR image from its LR version. This method also shows remark-

able adaptability to noisy LR input. In particular, it incorporates both the low-rank

constraint and nonlocal self-similarity within the sparse representation model con-

currently, aiming to retain the global similarity information effectively.

In some cases, like images having more local features such as texture, edges in
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RS applications, global dictionary might not be able to represent the image patches

accurately. More training samples may be employed to learn the database, but the

correctness of information yield by the database for any LR test image can not

be guaranteed. The reconstructed HR may seem reasonable, but the information

acquired from the training database may be irrelevant. In order to overcome the

aforementioned limitations of global dictionary, adaptive dictionary has been broadly

used to solve the SR problem. In the adaptive dictionary, only the test LR image is

used instead of an external database. It is assumed that many similar image patches

may exist within the same and across different scales of the test LR image. Zhu et

al. [141] proposed a fast novel SISR algorithm based on sparse representation and

adaptive dictionary learning. This technique used a faster approximation of SVD

and an orthogonal matching pursuit (OMP) algorithm for efficient implementation.

Chang et al. [14] proposed joint-regularization-based SR (JRSR) that includes a

group-residual-based regularization (GRR) and a ridge regression-based regulariza-

tion (3R). GRR utilizes the non-local similarity, while 3R adds HR information from

an external training dataset. Zhang et al. [123] proposed a joint sparse represen-

tation framework that utilizes the nonlocal similarity and the low-rank property of

intensity and gradient images, respectively. Li et al. [56] proposed a hybrid frame-

work that addresses both the low-rank requirement and nonlocal self-similarity in

the sparse representation model to retain global similarity information.

2.3.1.1 Sparse-representation-based remote sensing SISR

Huihui [89] presented RS super-resolution method, which can reconstruct LR Land-

sat image based on a global dictionary and sparse coding algorithm. Satellite

pour l’Observation de la erre-5 (SPOT-5) and simulated Landsat thematic map-

per (TM)/enhanced thematic mapper plus (ETM+) are used to acquire HR and LR

feature patches to learn the dictionary pair using the K-SVD. Hou et. al [37] pro-

posed a novel sparse representation-based SISR for RS imagery by using the global

joint dictionary model (GJDM) in order to exploit the local and global features of

images. Pan et al. [74] presented an SR technique for RS images, where structural
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self-similarity (SSSIM) and K-SVD based dictionary is trained by using the test LR

image and its interpolated version as an intermediate HR image.

2.3.2 Deep learning-based SISR

DL-based SR techniques can be divided into two main categories: generative adver-

sarial networks (GAN)-based [52, 59, 110] and convolutional neural network (CNN)-

based SR [18, 22, 45, 61, 97]. Although GAN-based SR networks approximate the

original HR images to produce more realistic and perceptually enhanced HR images,

their main limitation is that the reconstructed HR images obtained by these net-

works have a large structural difference from the original HR images. Furthermore,

GAN network training is a challenging task, posing significant practical constraints.

CNN-based SR methods have the ability to minimize the structural error between

reconstructed HR and original images by improving the objective criteria, result-

ing in better PSNR and SSIM values. In general, the CNN network consists of

convolutional and activation layers that are stacked together to learn feature maps

automatically. Dong et al. [22] introduced a DL network very first time in SISR

by designing a simple three convolutional layered CNN network (SRCNN), which

gives better performance as compared to the traditional SISR methods. However,

the SRCNN architecture is insufficient for learning high-level deeper features of the

image, therefore, Kim et al. [45] proposed another CNN-based SR method termed

very deep super-resolution (VDSR), which contains 20 convolutional layers. This

method has the ability to reconstruct HR efficiently as well as increase the train-

ing stability by integrating gradient clipping and residual learning. However, since

targeted upscaled versions of LR images are fed to the networks, the computational

cost and complexity of SRCNN and VDSR are significant. To overcome this issue,

LR images are directly applied to the DL-model and post-processing methods after

feature extraction are proposed to upscale the images [3, 23, 87, 134]. Shi et al. [87]

presented an efficient sub-pixel convolutional neural network (ESPCN), which used

a sub-pixel convolutional layer to upscale the LR feature maps to the desired output

and significantly increased the speed of the reconstruction process. Dong et al. [23]
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later introduced fast super-resolution convolutional neural network (FSRCNN) in

order to upscale the feature maps directly from the LR images using deconvolu-

tional layers as a post upsampling method. These post-upsampling [3, 23, 87, 134]

methods have made them the preferred choice for many DL-based SISR algorithms.

Utilizing a higher depth of the model is an effective approach to analyze the

hierarchical feature information from LR images and enhance the quality of the

images [108]. However, the complexity of model training and the number of pa-

rameters increase as well. Kim et al. [46] proposed a deeply-recursive convolutional

network (DRCN) that apply same convolutional layers recursively up to 16 times.

The recursive application of this network involves repeatedly applying the same set

of convolutional layers multiple times. The training complexity of this network is

reduced by incorporating skip-connection and recursive supervision. Lim et al. [61]

proposed an enhanced deep super-resolution (EDSR) by removing redundant mod-

ules from conventional residual network. Ahn et al. [4] proposed an efficient and

precise deep network named Cascading Residual Network (CARN) for SISR by im-

plementing a cascading mechanism into a residual network. The aforementioned

approaches use deeper networks, which provide good performance, but they are

ignoring factors such as the model size and the inference time. Both EDSR and

CARN emphasize the importance of residual learning; however, their ability to cap-

ture spatial features and contextual information may be limited due to the absence

of attention mechanisms. This presents a potential limitation in their representation

capabilities.

2.3.2.1 Attention-based DL for SISR

The objective of the attention mechanism in DL is an effort to mimic the cogni-

tive process a human brain would take up while in a decision making process. To

put it another way, it can be considered as a tool to emphasize the most relevant

information of an input, while designing the relevant networks and algorithms for

their implantations [38]. Typically, a gating function is included in attention mech-

anisms to produce a feature mask. It has been used for a variety of computer vision
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applications, including, image classification [38], image restoration [133] and image

captioning [17]. To increase the representational ability and efficiency of DL net-

work during learning, the network inculcates the ability to pay more attention to

some particular areas of interests. A novel non-local attention-based DL network

for video classification was developed by Wang et al. [106] by capturing long-range

dependencies using non-local operations. Hu et al. [38] proposed a novel architecture

named as “Squeeze-and-Excitation (SE)” module for image classification in order

to increase the representational ability of the network by recalibrating the feature

maps channel-wise. This network may leverage global information to enhance use-

ful features and suppress irrelevant ones. Further, Woo et al. [115] introduced an

attention mechanism which can recalibrate the feature maps in both spatial and

channel-wise.

Attention mechanisms integrated into CNN-based SISR networks have been very

effective for extracting informative features. The basic goal of SISR is to restore as

much relevant high-frequency information as possible. But, generally CNN-based

approaches treat the features from different channels and spatial locations with equal

importance; limiting flexibility, when dealing with diverse information. To tackle

this problem, numerous methods [58, 62, 64, 132] incorporate the attention mecha-

nism into the DL-based SISR networks to effectively learn the high frequency infor-

mation. Zhang et al. [132] proposed very deep residual channel attention network

(RCAN), where the channel-based attention mechanism was first introduced into a

residual in residual (RIR) structure for SISR to adaptively enhance the channel-wise

feature. Dai et al. [18] proposed a second-order channel attention (SAN) module

to learn feature interdependencies channel-wise using global covariance pooling in

order to capture more discriminative features. Recently, Niu et al. [72] presented a

holistic attention network (HAN) for SISR to establish the correlations among lay-

ers, positions and channels. Further, Lu et al. [58] proposed a channel and spatial

attention-based SISR model to increase the representational ability of the network.
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2.3.2.2 DL-based remote sensing SISR

The recent development in CNN-based networks have offered various new research

avenues for remote sensing SR. Lei et al. [54] presented a deep CNN-based remote

sensing SISR approach that uses local-global combination networks (LGCNet) to

learn multi-level representations integrating both local features and global environ-

mental priors. A multiscale residual neural network (MRNN) was developed by Lu

et al. [65] to learn multiscale features for reconstructing high-frequency information

in remote sensing SR images. Zhang et al. [125] presented a mixed high-order at-

tention network (MHAN) for learning the hierarchical features to restore missing

information in the reconstructed HR remote sensing images. This network com-

bines a feature extraction block with a high-order attention-based feature refinement

block. Dong et al. [26] introduced a second-order technique that effectively reuses

both small- and large-difference features at both the local and global levels in order

to maximize the utilization of learned multi-level information. Wang et al. [109]

developed a lightweight SR network that incorporates context enhancement and

contextual feature aggregation modules to boost the representational power of the

extracted feature. Dong et al. [24] proposed a kernel aware SR network (KANet)

for real-world RS images in order to address the degradation and the high-frequency

recovery issues. Lei et al. [49] presented a hybrid-scale self-similarity exploitation

network (HSENet), which enhances feature representations by exploiting single-

and cross-scale similarity information in RS images. Similarly, Wang et al. [111]

proposed a lightweight network termed as feature enhancement network (FeNet) for

RS images, consisting of a lightweight latice block (LLB) based channel-wise and an

attention module. Finally, a feature enhancement block (FEB) is designed with the

LLB in a nested manner in two steps- first, obtains the most relevant features in

different layers with varying texture richness. Next, features from different layers,

deep to shallow, are sequentially fused to obtain the final feature vector.
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2.3.2.3 Joint image SISR and deblurring

There are only a few strategies where CNN networks have been used to solve the

image SR and deblurring jointly [29, 116, 124, 130]. Zhang et al. [130] proposed an

encoder-decoder network to enhance resolution of LR images with uniform gaussian

blur. Zhang et al. [129] proposed a gated fusion network (GFN) to super-resolve the

blurry LR images by exploiting different branches to extract deblurring and spatial

feature. Zhang et al. [124] proposed attention dual supervised network (ADSR) that

performs both SR and deblur tasks jointly by incorporating dual supervised learn-

ing. Xi et al. [116] presented a pixel-guided dual-branch attention network (PDAN)

to jointly solve SR and deblur problem by using hard pixel example mining loss

(HPEM). Esmaeilzehi et al. [29] proposed a deep light-weight residual CNN for ef-

ficiently addressing the problem of image SR and deblurring through a nonlinear

end-to-end mapping. The network incorporates a residual block with the ability to

generate features in multiple receptive fields, which improves the network’s represen-

tational abilities. As mentioned earlier, there is a lack of approaches available in the

field of joint image SR and deblurring. Furthermore, to the best of our knowledge, no

existing literature has specifically addressed the issue of joint image super-resolution

(SR) and deblurring in the field of RS. Our thesis aims to fill this gap by proposing

a novel approach; introducing a unique network architecture to address SR and de-

blurring jointly for RS images. Another limitation of the existing methods is that

they have used the heavyweight deblurring network, while our proposed network

uses a lightweight deblurring network by incorporating the attention mechanism to

increase the representational abilities. The existing joint networks have not con-

sidered the spatial features effectively in order to preserve high-frequency details

during the SR and deblurring process. The proposed network introduces attention

mechanisms or other architectural modules that explicitly consider spatial informa-

tion, leading to improved reconstruction of high-frequency details in the resulting

HR and deblurred images.
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2.4 Benchmarking criteria of remote sensing SISR

algorithms

The process of benchmarking algorithms for remote sensing SISR involves evaluating

the performance of the algorithms based on a set of criteria. A list of techniques and

criteria that are often used for benchmarking RS SISR algorithms are as follows:

(i) Evaluation metrics: Different evaluation metrics are used for evaluating

the performance of SISR algorithms on RS images, including the most com-

monly employed peak signal-to-noise ratio (PSNR), structural similarity index

(SSIM), and other RS image-specific metrics for assessment. The detailed ex-

planation will be provided in Section 2.7. In the context of RS imagery, where

the preservation of fine details and texture is paramount, PSNR and SSIM

serve as invaluable metrics for assessing the performance of SISR algorithms.

Numerous studies in the RS field have relied on these metrics to evaluate

the effectiveness of various SR techniques. Previous research works such as

GJDM [37], [74], MHAN [125], and HSENet [49] have leveraged PSNR and

SSIM to quantify the improvement in image quality achieved by their respec-

tive SISR methods. In addition to PSNR and SSIM, other RS image-specific

metrics play a crucial role in providing a comprehensive evaluation of SISR

algorithms. These metrics are tailored to address the unique characteristics

by RS imagery. Previous research works such as [89], [44], and [81] have ex-

plored the use of these specialized metrics to assess the performance of SISR

algorithms in RS applications.

(ii) Datasets: Standardised datasets are necessary for benchmarking in order

to accurately evaluate the algorithms. Publicly available RS datasets, such

as PatternNet, AID, and many more freely available datasets, should be in-

cluded to evaluate SISR algorithms. Previous studies have extensively utilized

datasets like PatternNet and AID for evaluating SISR algorithms. For in-

stance, research works such as [16], [94], MHAN [125], [26], and [86] have
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leveraged these datasets to assess algorithm performance and compare results

against state-of-the-art techniques. By using these standardized datasets,

researchers can ensure the reproducibility and reliability of their findings,

thereby advancing the state-of-the-art in SISR for RS applications. In the

case of RS, real ground truth data is unavailable for benchmarking SISR al-

gorithms; therefore, simulated datasets are often used. These datasets are

generated to mimic realistic RS scenarios, including sensor characteristics, at-

mospheric effects, etc. Simulated datasets provide an appropriate setting for

assessing the performance of algorithms. Simulated data may be used for

reliable assessments and insights on algorithmic strengths and shortcomings,

despite the fact that it lacks genuine ground truth.

(iii) Visual quality assessment: In addition to quantitative measures, visual

quality evaluation is crucial. Human observers compare SR images to ground

truth images to assess their visual quality. Previous studies, including [74],

[89], [37], and [125], have utilized visual quality as a metric for quantitative

evaluation. Quantitative metrics may sometimes neglect perceptual differ-

ences; they might be captured by subjective evaluations.

(iv) Computational efficiency: When benchmarking, the computational effi-

ciency of algorithms is also taken into consideration by measuring the time

required to generate a HR image from a LR input. The processing times of

different SISR algorithms should be compared to assess their efficiency.

(v) Comparison with state-of-the-art: Benchmarking also considers com-

parative analysis of SISR algorithms by comparing them to state-of-the-art

methods. These algorithms are carefully selected to cover a diverse range

of approaches, including sparse coding techniques, DL-based methods, and

traditional interpolation methods. Comparative analysis highlights improve-

ments in terms of visual quality, quantitative metrics, and computational ef-

ficiency. Moreover, it provides valuable insights into the relative performance

gains achieved by new methodologies compared to established benchmarks,

facilitating the continuous evolution and refinement of SISR techniques. Pre-
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vious studies, such as those conducted by GJDM [37], [74], MHAN [125],

HSENet [49], and FeNet [111], have employed similar comparative approaches

for benchmarking SISR algorithms. These studies have systematically evalu-

ated the performance of various techniques across a range of evaluation cri-

teria, providing a comprehensive assessment of algorithmic capabilities and

limitations.

2.5 Parallel computing for SR

One of the most popular parallel computing devices in computational machines is

the graphics processing unit (GPU), which is used for engineering and scientific

computing since several parallel processes are concurrently executed on hundreds

of processor cores and thousands of threads. Since computing power of GPUs is

highly intensive, they are much faster than the CPU. GPUs accelerate image/video

and computer vision algorithms by exploiting their parallel architecture to handle

data simultaneously over thousands of cores, enabling real-time image/video pro-

cessing. They excel at performing operations such as filtering, transformation, and

deep learning computations, making them indispensable for applications, like object

detection, image classification, and video analysis. The typical CPU-GPU archi-

tecture comparison is shown in Fig. 2.4. The computational power of GPU can be

harnessed with the help of many application programming interfaces (APIs) without

knowledge of graphics programming, which allow users to boost the performance of

any time consuming and computationally heavy algorithms. General-purpose pro-

gramming on GPU has become very popular since the introduction of advanced

programming environments, like compute unified device architecture (CUDA) [91]

and open computing language (OpenCL) [69], etc. It can also increase the comput-

ing efficiency of many applications by using existing hardware on end-user devices.

CUDA is a parallel programming platform introduced by NVIDIA in 2007. It is

used to create software for graphics processors and to create a wide range of general

purpose applications for GPUs that are extremely parallel in design and run-on hun-
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Figure 2.4: Comparison between CPU and GPU architecture.

dreds of GPU processor cores. The CUDA API enables users to build a huge number

of threads to run a code on the GPU. A block is composed of several threads, which

are indexed in the block using “threadIdx”. A grid is arranged in the same way,

and each block in a grid is indexed using “blockIdx”. “ThreadIdx” and “blockIdx”

are both CUDA pre-defined variables. In addition, there are also two pre-defined

variables “blockDim” and “gridDim”, which are used to specify the size of a block

or grid determined by the total number of threads per block or the total number of

blocks per grid. As shown in Fig. 2.5, all threads in CUDA are arranged [91] into

a hierarchical way: grid and block. Kernels are specific functions used in CUDA

that is called by the CPU. It runs N times in parallel on the GPU using N threads.

CUDA also supports shared memory and thread synchronization. The CUDA pro-

gramming model combines serial and concurrent processing. An ordinary CUDA

programme consists of three steps: copying data from the CPU/host memory to

the device’s global memory, execution of CUDA codes in kernels, and restoring data

from the device memory to the host memory. CUDA uses the bottom-up approach

of parallelism, with a thread serving as an atomic unit of parallelism

MS remote sensing images have a large data volume since they consist of sev-

eral spectral bands; processing these data in near real time has been a significant

computational problem. Also, sparse representation-based SR methods are compu-

tationally very intensive due to their inverse ill-posed nature. Additionally, another
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Figure 2.5: Heterogeneous architecture of CUDA and its three-level thread hierarchy.

reason of having slow performance in sparse representation-based SR method is that

many image patches are being processed sequentially. So, computationally, it be-

comes highly exhausted because of the sizes of real RS images. In order to solve the

above problems, the parallel computing approach can be exploited to design highly

parallelized sparse-representation algorithms and implement on CUDA-enabled GP-

GPU for real time SR reconstruction of RS images. Similarly, DL network encounters

an intensive computational overhead, especially at the time of network training and

re-training. Training SR models demand computationally heavy matrix multipli-

cations and other arithmetic operations. It may take several days for a CPU to

complete intensive training of a DL-based SR model on an extremely large dataset.

For optimizing the training time of DL, GPU is the most straight-forward, yet highly

efficient choice to the researcher.

In recent years, SR techniques employing parallel hardware have been proposed

for real-time applications [43, 96, 120]. Yuan et al. [120] have proposed a CUDA-

based SISR method that employ an internal training dataset to exploit image self-

similarity. This method achieves better visual quality and speed-up than the existing

methods. Hanlin et al. [96] have proposed CUDA-accelerated SISR based on a fast

least absolute shrinkage and selection operator (LASSO) that outperforms state-of-

the-art methods and exhibits 6.2× speed up. Moustafa et al. [68] have reported a
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fast CUDA-enabled GPU accelerated MS image SR using morphological component

analysis (MCA) and adaptive dictionary. It achieves speed-up of around 20× to

40× for different image sizes.

2.6 Remote sensing datasets

There are many publicly available RS datasets, including the aerial image dataset

(AID) [117], PatternNet [138], university of california, Merced (UCmerced) [119],

remote sensing Scene classification (RSSCN7) [142] and WHU-RS20 [39], etc. How-

ever, PatternNet and AID are chosen to validate the work done in the thesis. These

datasets offer a larger number of images, thus enhancing their suitability for training

DL-based SISR methods. Furthermore, real MS remote sensing images, like Linear

Imaging Self Scanner-3 and -4 (LISS-III and LISS-IV) are collected from National

Remote Sensing Centre (NRSC), Hyderabad to carry out the experiments. Table 2.1

elucidates detailed specifications of publicly available RS datasets.

2.6.1 Publicly available datasets

In this thesis, the following publicly available datasets were selected to carry out the

experiment:

(i) PatternNet: It consists of 30,400 images, making it a large-scale HR remote

sensing dataset. These images were acquired from US cities using the Google

Map API and Google Earth imagery. It has 38 classes, each with 800 images

of size 256×256, with spatial (pixel) resolutions ranging from 0.062 meter to

4.693 meters (m).

(ii) AID: A RS high-resolution dataset, collected from Google Earth imagery over

different countries: China, the US, England, France, Italy, Japan, Germany,

etc. It has 30 classes, each containing 200–420 images of size 600×600. This
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dataset has pixel resolutions ranging from 0.5 to 8 m.

Table 2.1: Specifications of publicly available RS datasets.

Dataset
Images
per class

Classes Images
Pixel

Resolution (m)
Image
Size

Types
of classes

PatternNet 800 38 30,400 0.062–4.693 256×256

Airplane, baseball field, basketball court, beach
bridge, cemetery, chaparral, Christmas tree,
closed road, coastal mansion, crosswalk, dense
residential, ferry terminal, football field, forest,
freeway, golf course, harbor, intersection, mobile
home park, nursing home, oil gas field, oil well,
overpass, parking lot, parking space, railway,
river, runway, runway marking, shipping yard,
solar panel, sparse residential, storage tank,
swimming pool, tennis court, transformer station,
Wastewater treatment plant

AID 220–420 30 10,000 0.5 -8 600×600

Airport, bare land, baseball field, beach, bridge,
center, church, commercial, dense residential,
desert, farmland, forest, industrial, meadow,
medium residential, mountain, park, parking,
playground, pond, port, railway station, resort,
river, school, sparse residential, square, stadium,
storage tanks, and viaduct.

2.6.2 Self-procured real MS remote sensing images

Real MS remote sensing images collected by Indian satellites: Resourcesat 2A

equipped with sensors LISS-III and LISS-IV are procured through the National

Remote Sensing Centre (NRSC) data center of Indian Space Research Organization

(ISRO), Govt. of India. LISS-III provides four MS bands- two in visible, one in

near infrared (NIR) and one in Short Wave Infrared (SWIR). This sensor covers a

140-km orbital swath at a spatial resolution of 23.9 m with a 24-day repeat cycle.

in three spectral bands in the Visible and Near Infrared Regions (VNIR) with 5.8

m spatial resolution. On the other hand, LISS-IV provides images in three spectral

bands: two in visible and one in NIR (NIR) with a spatial resolution of 5.8 m. These

images are downloaded via FTP (ftp1.nrsc.gov.in). These land cover images are

captured during January 6, 2013 to April 10, 2018, over many places in India. The

detailed specifications of these datasets are given in Table 2.2.

2.7 Image quality evaluation metrics

The quality of SR reconstruction can be evaluated using qualitative approaches

based on human perception, such as how realistic the reconstructed image is in vi-
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Table 2.2: Specifications of LISS-IV and LISSS-III satellite sensor.
Satellite Sensor LISS-IV LISS-III

Spatial resolution 5.8 m 23.5 m

Spectral bands
Green (Band 2: 0.52-0.59 µm)
Red (Band 3: 0.62-0.68 µm)
Near infrared (Band 4: 0.77-0.86 µm)

Green (Band 2: 0.52-0.59 µm)
Red (Band 3: 0.62-0.68 µm)
NIR (Band 4: 0.77-0.86 µm)
SWIR (Band 5: 1.55-1.70 µm)

Swath 23.9 km 141 km
Image size 18000× 16000 7700× 7000

sual terms besides quantitative metrics. Qualitative methods are simpler and more

practical, but these methods suffer the following limitations: (i) personal preferences

have a significant impact on the evaluation; (ii) the assessment process is often costly

and time taking process. Quantitative methods or objective assessment, on the other

hand, is more straightforward to use. There are two types of quantitative methods

to validate the SR results: reference-based that carry out evaluation using reference

images and no-reference-based metrics, which do not use any reference images. In

case of SR, the original HR images (acquired images without applying blurring and

downsampling operations) are considered as the reference images or ground truth.

The most commonly used reference metrics for quantifying SR images are: PSNR

and SSIM. While, reconstruction quality of remote sensing SR is measured in terms

of erreur relative globale adimensionnelle de synthese (ERGAS) [105], spectral an-

gle mapper (SAM) [121], universal image quality index (Q-index) [113] and spatial

correlation coefficient (sCC) [137]. For no-reference-based quantitative metrics, nat-

ural image quality evaluator (NIQE) [67] and entropy (EN) are used to validate the

results. Notably, PSNR and SSIM have been extensively used to evaluate SR per-

formance in RS, as seen in studies by GJDM [37], [74], MHAN [125], and HSENet

[49]. Similarly, ERGAS, SAM, Q-index, and sCC are employed for assessment, as

demonstrated in works such as [89], [44], and [81]. NIQE is utilized for evaluation

in studies such as [60], [140]. These metrics are discussed in details in the following

sections:
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2.7.1 Reference-based quantitative metrics

(i) Peak signal-to-noise ratio (PSNR): PSNR is the most commonly used

full-reference quantitative metric for measuring the quality of image recon-

struction. It can be calculated by using the following formula:

PSNR(dB) = 10 log
2552 ×M ×N

M−1∑
i=1

N−1∑
j=1

[
X(i, j)− X̂(i, j)

]2 , (2.3)

where M and N are row and column dimensions of the image. X and X̂ are

the ground truth and the reconstructed images, respectively. It is considered

as a good reconstruction, if the PSNR of the reconstructed image is high since

it may lead to improved visual perception, feature clarity, and edge retention.

This means that higher the PSNR better is the reconstruction quality.

(ii) Mean structural similarity index (SSIM): SSIM [114] is used to measure

structural similarity between the original (X) and the reconstructed image

(X̂) in terms of luminance, structure and contrast. It is described as follows:

SSIM =
(2µXµX̂ + C1)(2σXX̂ + C2)

(µ2
X + µ2

X̂
+ C1)(σ2

X + σ2
X̂
+ C2)

, (2.4)

where µX , µX̂ and σX , σX̂ represent the means and standard deviations of X

and X̂, respectively; C1 and C2 are the constants. σXX̂ denotes the covariance

between X and X̂. Ideally, SSIM value is unity for a perfect similarity between

X and X̂. Therefore , it indicates that the reconstruction quality is better if

the SSIM value is higher.

(iii) Erreur relative globale adimensionnelle de Synthese (ERGAS): ER-

GAS [105] is used to measure quality of the reconstructed image X̂ by taking

into account scaling factor and root-mean-square error (RMSE) values and is
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expressed as follows:

ERGAS =
100

S

√√√√√ 1

C


√
MSE(X, X̂)

µ0

 , (2.5)

where S is the SR scaling factor, C represents the number of bands of the MS

remote sensing image, and µ0 is the mean value of the ground truth HR image

(X). The value of ERGAS is zero for ideal case. The lower the ERGAS values,

the higher the quality of the reconstructed image.

(iv) Spectral angle mapper (SAM): SAM [121] is used to compare similarity

of spectra between the reconstructed (X̂) with respect to the ground truth

(X). It calculates the average angle between the pixels of X and X̂ using each

band as a coordinate axis.

SAM =
1

N

N∑
i

arccos
XiX̂i

∥Xi∥
∥∥∥X̂i

∥∥∥ , (2.6)

where N is total number of pixels. Zero SAM value indicates no spectral

distortion. Therefore, the lower the SAM value, the higher the reconstruction

quality.

(v) Universal image quality index (Q-index): Q-index [113] utilizes three

properties such as correlation, luminance and contrast for evaluating the re-

constructed image (X̂) quality with respect to the original HR image (X).

Q =
1

C

C∑
j

(
σXX̂

σXσX̂

2µXµX̂

µ2
Xµ

2
X̂

2σXσX̂

σ2
XσX̂

2

)
, (2.7)

where µX and µX̂ are the mean values of X and X̂, respectively. Similarly,

σX and σX̂ are the standard deviations of X and X̂, respectively, C is the

total number of MS remote sensing bands, and σXX̂ represents the covariance

between X and X̂. Ideally, Q-index should be equal to one.

(vi) Spatial correlation coefficient (sCC): sCC [137] measures the normalized
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cross-correlation between the reference image (X) and the reconstructed image

(X̂). It is expressed as

sCC =
σXX̂

σXσX̂

, (2.8)

where σX and σX̂ denote the standard deviations of X and X̂, respectively.

2.7.2 No-reference-based quantitative metrics

No-reference metrics are used to estimate the image quality independently without

employing a ground truth image. The following parameters are used for no-reference

metrics:

(i) Natural image quality evaluator (NIQE): The NIQE technique involves

generating a set of quality-aware features and then fitting them into a multi-

variate Gaussian (MVG) model. These quality-aware features are generated

using a highly regular natural scene statistics (NSS) model [67]. Finally, the

quality is determined by computing the distance between the MVGs of high

quality images and target distorted images.

(ii) Entropy: Entropy is used to evaluate the quality of the reconstructed image

based on the probability distribution of pixel intensities in the image. The

higher the value of entropy, higher the reconstruction quality. It is calculated

by

Entropy = −
∑
i

P (X̂i) logP (X̂i) (2.9)

where P (X̂i) is the probability associated with the gray-level of reconstructed

image (X̂i).
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2.8 Summary and research gaps

From the above literature study, we may summarize the following research issues on

RS image SR:

a) The impact of dictionary learning based on sparse representations is very ef-

fective on SISR. The reconstruction of LR image highly depends on how good

the dictionary is. Since global dictionary-based SR has high computational

cost and memory consumption, adaptive dictionary is widely used in sparse

representation-based SISR. In the RS domain, it is quite time consuming and

expensive to produce the HR training data. On that account, self-example or

adaptive dictionary learning based SISR is a promising technique for obtaining

better results in MS remote sensing imagery

b) Preservation of textural or structural features, particularly the edges, is crucial

in the SISR of MS remote sensing images. In order to obtain edge-enhanced SR,

these features may be deployed as a prior information in both dictionary learning

and sparse reconstruction. Similarly, feature extraction from LR images plays a

crucial role in the sparse representations-based SISR methods. In many sparse

coding-based SISR methods, gradient-based feature extraction is used, but it

fails to produce sharp edges. Most of the sparse representations-based methods

have not enhanced the edge-based high-frequency details in the reconstructed

images. An edge-enriched feature extraction scheme along with a joint sparse

reconstruction framework may help to preserve high-frequency information as

well as smooth structures of the reconstructed image.

c) In the sparse representations-based SISR approach, dictionary learning and

sparse regularizations involved in solving the sparse approximation problem are

quite time consuming. Moreover, in the above problems, large number of HR and

LR patch pairs on which the patch-based sparse coding sub-problems are to be

solved individually, making the entire process highly computationally intensive.

As a result, near real time SR reconstruction for RS image is quite challeng-
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ing. Therefore, in order to solve patch-based sparse representation problems

efficiently, parallel computing is done on highly parallelized algorithms by using

GP-GPU for near real time SR reconstruction of RS images.

d) Although attention-based DL SISR networks have been gaining popularity on

natural images, it is not significantly explored in the RS domain. Therefore,

there is a great scope for implementation and improvement of such networks

specially designed for RS. It is found from the literature that deep CNN-based

SISR methods treat spatial and channel features in the same manner, which

results in the lack of discriminative learning ability when dealing with these

features. Therefore, it is vital to understand how CNN-based SISR approaches

can be applied effectively both channel- and spatial-wise in order to reconstruct

HR images, and requires detailed investigation.

e) RS images frequently suffer from a reduction in spatial resolution as well as

the effect of blurring due to imperfect luminance, atmospheric propagation, and

sensor characterization. Dealing with the blurring problem in LR remote sening

images using the CNN-based SISR networks is very challenging because they

focus only on improving the resolution of LR images but do not explicitly address

problem of blurring separately. Although certain minimum level of blurring can

be managed, but they struggle to restore high-frequency information (edges and

textures), when LR remote sensing images suffer from uniform blur. There are

only a few CNN-based networks available for RS images in the present literature

that solve both the problems concurrently. Therefore, it is crucial to design an

effective joint deblurring and SR network to super-resolve the blurred LR remote

sensing images.
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