
Chapter 3

Development of Remote Sensing Single Image Super-

resolution using GPU-Accelerated Adaptive Dic-

tionary Learning and Sparse Representations

3.1 Introduction

SR is highly useful in multispectral (MS) RS images because it can enhance the

spatial resolution of the image, allowing for better identification and classification

of features on the ground. It is highly significant in applications such as land cover

mapping, crop monitoring, and urban planning, where the ability to distinguish

fine image details is crucial for accurate analysis and decision-making. Addition-

ally, SR can improve the overall quality of the image, making it easier to inter-

pret and extract meaningful information. Learning-based techniques, especially

sparse representation-based dictionary learning techniques, have gained significant

improvements in RS super-resolution because these techniques allow the representa-

tion of MS image data using only a few of basis functions or columns (atoms) of the

dictionary, which can be learned adaptively from the data itself. By decomposing

the data into a sparse linear combination of these basis functions, these techniques

can effectively capture the underlying structure and variability in the data, making

them well-suited for SR of MS images.

As discussed in chapter 2, the dictionary learning techniques can be divided

into two categories depending upon the number of images used in the training set:

global dictionary learning and adaptive dictionary learning. Adaptive dictionary

learning techniques are more beneficial than global dictionary in MS remote sensing

super-resolution because they can capture the texture and structure details of the

image better. Global dictionaries, which are constructed based on a large collection

of training images, may not be able to effectively represent the unique features and
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structures present in a given MS image. Adaptive dictionary learning techniques,

on the other hand, can adapt to the specific content of the image being processed,

resulting in more accurate and efficient SR. By learning a dictionary tailored to the

image, these techniques can capture the underlying structures and patterns at a finer

scale, resulting in more detailed and accurately reconstructed images. Additionally,

adaptive dictionary learning can be more computationally efficient, as they only

need to learn the dictionary from the specific image being processed, rather than a

large collection of training images.

Feature extraction is a critical step in achieving high-quality SR using sparse

representations and dictionary learning, because it helps to identify the relevant

information in LR images that can be used to enhance the resolution. By extracting

meaningful features, the high-frequency information that is lost in the downsampling

process can be recovered more effectively, resulting in a more accurate and visually

pleasing HR image. Feature extraction also helps to improve the efficiency of the

sparse coding process, making it easier to find the best representation of the LR

image in terms of the learned dictionary.

Sparse representations and dictionary learning-based image SR algorithms are

computationally intensive and require a significant amount of processing power to

achieve high-quality results, especially for RS images having large image sizes. The

sparse representation and dictionary training are to be carried out on small overlap-

ping image patches extracted from the LR image; several thousands of patch-based

regularization sub-problems need to be solved sequentially for sparse representation

of the whole image. A trained HR dictionary is used to represent a patch of the

target HR image in terms of a sparse coefficients. The coefficients are obtained

by solving a highly non-linear optimization problem, which can be time-consuming,

especially when the size of the image is large. The dictionary learning process also

involves solving many optimization problems, which are computationally expensive.

Moreover, MS remote sensing images consist of several spectral bands leading to a

big data. Therefore, it is computationally exhaustive to restore HR multispectral

images from the LR multispectral bands. In order to circumvent these problems,
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parallel computing approach can be exploited to design highly parallelized algo-

rithms, which can be implemented using GP-GPU for real-time SR of RS images.

CUDA-based GPU implementation can speed up these computations significantly

by allowing for the parallel processing of matrix operations and other linear alge-

braic operations involved in these algorithms. By taking advantage of the thousands

of parallel cores on a GPU, it is possible to achieve significant speedups over a CPU

implementation. In particular, the CUDA-enabled GPU is the best choice to handle

this computational burden effectively.

In this chapter, we develop a CUDA-GPU accelerated SISR method for MS

remote sensing images using adaptive dictionary learning and sparse representations.

In many sparse coding-based SR methods, gradient-based feature extraction is used

in order to retrieve significant edges, but it fails to produce sharp edges. In the

proposed work, a new feature extraction scheme based on the combination of Sobel

filters in horizontal and vertical directions, difference of Gaussians (DoG) and fast

Fourier transform (FFT) filters are used to restore the sharp edges significantly. For

real-time applications, hybrid CPU-GPU algorithms based on CUDA programming

model for dictionary learning and sparse reconstruction using hardware acceleration

with GPU hardware are proposed.

3.1.1 Main contributions of the chapter

The main contributions of the chapter are summarized as follows:

(i) Developed a novel framework for MS remote sensing image SR using sparse

coding and the adaptive dictionary learning method. Instead of training from

external HR images, coupled dictionaries based on sparse representations are

learnt from the given LR multispectral remote sensing image itself. A new

feature extraction scheme based on DoG, Sobel and FFT filters is introduced

for efficient dictionary learning as well as reconstruction of HR images.

(ii) Proposed fast adaptive dictionary learning based on K-singular value decompo-
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sition (K-SVD) and a sparse reconstruction algorithm; hardware acceleration

with NVIDIA P100 GP-GPU hardware is achieved using the CUDA program-

ming model. The parallel framework for SR of MS remote sensing image can

process real MS remote sensing images up to 2048×2048 within a few seconds

for different upscaling factors.

(iii) Simulations are carried out using real MS remote sensing images captured by

the Indian Satellite with Linear Imaging Self Scanner (LISS-IV) sensor and

procured from NRSC, ISRO. Results are evaluated in terms of visual quality

and objective criteria, besides the computation time.

The rest of the chapter is organized as follows: Section 3.2 explains some prior

art on the SISR model based on dictionary learning and sparse representations. The

proposed sparse representation-based SR method for RS images and its implemen-

tation on CUDA are detailed in Section 3.3. Experimental results and different

evaluation parameters for comparisons are demonstrated in section 3.3. Finally,

Section 3.5 concludes the paper.

3.2 Prior Art

3.2.1 Sparse representation model for super-resolution

In SISR model, the observed LR image Y is obtained from the HR image X based

on following reconstruction constraint, as follows:

Y = SHX (3.1)

Here H and S represent the blurring and down-sampling operators, respectively.

Recovering the HR image X from the LR image is an ill-posed problem as many

HR images X may obey the above equation, which can be accurately solved as

an optimization problem by introducing the knowledge of sparsity of the image
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over any transform or dictionary as a priori constraint. In practice, due to the

limitation of the size of the dictionary required for the sparse representation (coding)

of the whole image, the main optimization problem is split into several patch-based

subproblems. An image patch can be represented by sparse linear combination of

elements (atoms) from an appropriately chosen over-complete dictionary. In order

to reconstruct the HR image patches x, the sparse co-efficients can be obtained by

using an LR dictionary (Dℓ) learned from the LR image patches y taken from the

LR input imageY. In particular, the following minimization problem can be defined

to compute the sparse-co-efficients vector α:

min
α
∥α∥1 subject to ∥Dℓα− y∥22 ≤ ϵ, (3.2)

An unconstrained version of the above equation may be written as follows:

min
α
∥Dℓα− y∥22 + λ∥α∥1, (3.3)

where the regularization parameter λ is used to trade-off between sparsity and ac-

curacy of the output. This optimization problem can be efficiently solved by using

the fast ℓ1-minimization algorithms such as LASSO [27], ℓ1-feature-sign [118], etc.

Since individual LR and HR patch pairs share the same sparse coefficients vector,

finally, the desired HR image patch x can be obtained by:

x = Dhα (3.4)

Once all the HR patches are reconstructed by the above process, they are tiled

(stitched) together to get an approximate HR image X̂, which may be further refined

by solving another optimization problem with the global penalty term in Eq. 3.1, as

discussed in Chapter 1 (Eq. 1.13).
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3.2.2 Dictionary learning

Dictionary learning is another key consideration in sparse representation. In order

to learn the coupled dictionary Dc = [Dh;Dℓ], assume that there are N spatially

correlated HR samples denoted by Xh = [xh1,xh2, . . . ,xhN ] and N LR samples de-

noted by Yl = [yl1,yl2, . . . ,ylN ]. Since Xh and Yl would share a common sparse

coefficients matrix, a joint dictionary training approach can be adopted by enforc-

ing the sparsity ∥Z∥1 on the concatenated data Yc = [Xh;Yl] using the following

optimization problem:

{Dc,Z
∗} = arg min

{Dc,Z}
∥Yc −DcZ∥2F , subject to

∥αj∥0 ≤ T

(3.5)

where αj is the jth column vector in Z and T indicates the sparsity level. Detailed

discussion on dictionary training is already done in Chapter 1 (Subsection 1.3.3).

3.3 Materials and Methods

Figure 3.1: Block diagram of the proposed RS SISR.

The proposed adaptive dictionary learning-based MS image super-resolution

framework is shown in Figure 3.1. It is assumed that many similar image patches

may exist in the same LR image, both for the same and across different scales.

Therefore, to make the dictionary learning method more effective and accurate for

RS applications, adaptive dictionary learning is used, where the LR/HR dictionar-

ies have been learned and updated directly from overlapping patches of the given
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LR multispectral image. Once the dictionaries are trained, the SR multispectral

image is reconstructed from its LR multispectral image by solving the sparse coding

problem. The proposed framework processes each MS remote sensing image band

separately.

Figure 3.2: Feature extraction step.

3.3.1 CPU implementation of MS remote sensing image SR

based on adaptive dictionary learning

The adaptive dictionary learning-based MS remote sensing image SR consists of the

following:

3.3.1.1 Feature extraction

In order to mimic the process that any LR image would be going through during its

acquisition, and subsequently undoing it to achieve the corresponding HR image, we

carry out the following two steps. First, the original LR multispectral band image is

blurred and downsampled. Next, Lanczos interpolation is done on the blurred and

downsampled image to obtain the re-sized LR or intermediate HR image equal in
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size with the actual LR image. We apply feature extraction step on the intermediate

HR image to extract the high-frequency information from it in order to improve the

sparse representation accuracy. The limitation of the feature extraction based on

first- and second-order gradient filters [118] is that significant edges are not restored,

resulting in smooth edges. To address this limitation, a new feature extraction

method is used, which can easily restore sharp edges and high-frequency features

from the LR image. In order to reconstruct an image with sharp edges, difference of

Gaussians (DoG) and Sobel filters in horizontal and vertical directions are applied on

the re-sized LR. Generally, 2D Gaussian function i.e. the distribution of uncorrelated

random variables i, j (representing the horizontal and vertical directions) having a

bivariate normal distribution and equal standard deviation, can be expressed as:

G(i, j, σ) =
1

2πσ2
e

i2+j2

2σ2 , (3.6)

Similarly, the DoG filter can be described by:

DoG(i, j) = G(i, j, σ1)−G(i, j, σ2). (3.7)

Now, this DoG filter is applied on resized LR with σ1 = 1.0 and σ2 = 1.6. Next, the

sobel operator is applied on re-sized LR to detect gradient maps, given by:

Sx =


−1 0 1

−2 0 2

−1 0 1

 , Sy =


1 2 1

0 0 0

−1 −2 −1

 , (3.8)

where Sx and Sy represent the horizontal and vertical gradients, respectively. Sobel

and DoG filters are first- and second-order derivative filters, respectively that are

applied to each LR image separately to obtain feature maps containing various

features, like edges in horizontal and vertical directions, corners, and blobs.

To retrieve high-frequency information, FFT is also performed on re-sized LR,

which can be expressed as {(x, y)|x ∈ (0,M); y ∈ (0, N)}; to generate an image
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spectrum. The image spectrum F (u, v) of re-sized LR can be described as:

F (u, v) =
1√
MN

M−1∑
x=0

N−1∑
y=0

f(x, y) e−j2π[
ux
M

+ vy
N ],

u = [0, 1, ......,M − 1]; v = [0, 1, ......, N − 1]

(3.9)

A Butterworth low-pass filter is used to extract the low frequency component from

an image spectrum with the center at (uc, vc) = (M/2, N/2), size M×N . This filter

has the following transfer function:

H(u, v) =
1

1 +
[

w0

wc(u,v)

]2n , (3.10)

Here wc(u, v) is measured by the distance between a point on the spectrum (u, v)

and the center (uc, vc); w0 represents the cut-off frequency and n=2. Now, this

Butterworth filter is subsequently convolved with F (u, v) in order to extract the low

frequency component Fh(u, v) from F (u, v), as follows:

Fh(u, v) = F (u, v) ∗H(u, v), (3.11)

In order to obtain the filtered image fh(x, y), inverse FFT (IFFT) is applied on

Fh(u, v):

f(u, v) =
1√
MN

M−1∑
u=0

N−1∑
v=0

Fh(x, y) e
j2π[uxM + vy

N ] (3.12)

Finally, high-frequency information from the re-sized LR image are extracted by

subtracting the FFT-filter output (f(u, v) from the re-sized LR image. The feature

extraction procedure is explained graphically in Fig. 3.2.

3.3.1.2 K-SVD dictionary training

In order to learn a coupled overcomplete dictionary Dc, LR training feature patch

matrix Yℓ ∈ Rnl×P = {yℓ1,yℓ2, ....,yℓP}, are obtained from the feature extraction

step, and HR training patch matrix Xh ∈ Rnh×P = {xh1,xh2, ....,xhP}, are ex-
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tracted from the original input image X; nh and nl representing the lengths of each

HR and LR feature patch vectors, respectively. Each LR feature patch vector is

formed by concatenating results of four filters in the feature extraction performed

on the interpolated LR image. For learning LR dictionary Dℓ, we extract feature

patches from the interpolated image and obtain the feature patch matrix Yℓ as

mentioned above. Therefore, the size of each LR feature vector, nl is 4nh× 1. Next,

a combined HR-LR patch dataset Yc is created by concatenating Xh and Yℓ, i.e.

Yc = [Xh;Yℓ] ∈ R(nh+nl)×P . The above sample patches are also used for initializing

Dℓ and Dh in our experiments. We have not used the random Gaussian or DCT

matrices to initialize the dictionary for simplicity.

Algorithm 1: K-SVD algorithm for dictionary learning.

Data:
Yc: Patch matrix
D0: initial dictionary
T : target sparsity
N : number of iterations

Result: Dictionary Dc and sparse matrix α such that Yc ≈ Dcα
1 Initialization: Set Dc := D0 ;
2 Set J=1 ;
3 while not converge do
4 Sparse coding stage:
5 for i← 1 to P do
6 Solve αi := OMP (Yc,Dc, K)

αi : argmin
αi

∥yi −Dcαi∥22 subject to ∥αi∥1 ≤ T ;

7 end
8 Dictionary update stage:
9 for k ← 1 to K do

10 I ← {j|αj,k ̸= 0} ;
11 Error matrix calculation: Ek = Yc −

∑
j ̸=k

djα
j
I ;

12 Using SVD decomposition: Ek = UΛVT ;
13 Updating dictionary column: dk ← U(:, 1);
14 Updating sparse vector: αk = V(:, 1) ∗Λ(1, 1)

15 end
16 Set J = J + 1

17 end

The HR-LR dictionary pairs Dh ∈ Rnh×K and Dℓ ∈ Rnl×K are jointly learned

in the form of Dc ∈ R(nh+nl)×K using Yc. In principle, Xh and Yℓ have similar
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sparse representation vectors, therefore, by enforcing a common sparsity term ∥Z∥1
both for LR and HR patches, a joint dictionary Dc can be trained by solving the

following composite optimization problem:

min
{Dh,Dℓ,Z}

∥Yc −DcZ∥2F + λ∥Z∥1, (3.13)

where

Dc=

 1√
nh
Dh

1√
nl
Dℓ

 , Yc=

 1√
nh
Xh

1√
nl
Yℓ

 ,

and λ is the Lagrange multiplier used for balancing the sparsity and fidelity of

the approximation. The K-SVD dictionary learning technique [80], as shown in

Algorithm 1 is used to solve Eq. 3.13 approximately. The K-SVD performs two

steps iteratively: firstly, a sparse coding of Yc is computed using the OMP by

fixing the dictionary. Secondly, atom-wise dictionary updating is done iteratively to

simplify the updating step.

3.3.1.3 Sparse Reconstruction

In the reconstruction phase, the input LR multispectral Y image having L bands is

super-revolved band-wise. Each band image is upsampled by Lanczos interpolation

to the required size and then the upsampled image is passed through the feature

extraction step in order to extract four high-frequency feature maps of equal size

and then obtained feature patches of size
√
nℓ ×

√
nℓ (nℓ: the number of pixels

in a patch) with single pixel overlap from each feature map. Finally, four feature

patches from a particular pixel location are vectorized and concatenated to form a

single feature vector yℓi of dimension 4nℓ × 1. In a band, every LR multispectral

patch yℓi is sparsely represented by αi using the LR multispectral dictionary Dc.

The process is repeated for the remaining bands as well. Mathematically, given Dc

and the feature patch yℓi , the following minimization problem is solved using the
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feature sign method to obtain αi [118]:

αi = min
α
∥D̃cαi − ỹℓi∥22 + λ∥αi∥1, (3.14)

where D̃c =

 Dℓ

EDh

, E extracts the region of overlaps between the target patch

and already reconstructed HR patches, and ỹℓi =

 yℓi

g

, g represents pixels in the

previously reconstructed HR patch in the overlapped region. Since, individual HR

and LR patches share the same sparse representation coefficients for Dc, the target

HR MS image patch xhi
is obtained by multiplying the sparse coefficients αi with

the HR dictionary Dh as follows:

xhi
= Dhαi, (3.15)

Finally, an approximate HR image X0 is then reconstructed by tiling of all the

HR image patches. By applying a back projection step in order to match the im-

age degradation model, we can achieve the target HR MS image X̂ by solving the

following quadratic optimization problem having a close-form solution, i.e.:

X̂ = argmin
X
∥SHX−Y∥22 + C∥X−X0∥22, (3.16)

where C is the regularization parameter. The closed-form solution of Eq. 3.16 is:

X = (STHTSH + C)−1(STHTY + CX0) (3.17)

However, gradient descent method is used to solve the optimization problem of

Eq. 3.16 efficiently. The iterative update formula for this method is as follows:

Xk+1 = Xk + ν[STHT (Y − SHXk) + C(X−X0)] (3.18)

where Xk represents the HR image estimate at the k-th iteration, while ν denotes

the gradient descent step size. The complete algorithm for the proposed method is

67



3.3. Materials and Methods

presented in Algorithm 2.

Algorithm 2: Adaptive dictionary learning and sparse representation-based
SISR algorithm

Input: LR input image Y
1 Apply Lanczos interpolation on Y to obtain re-sized Y
2 Feature extraction step: Extract four high-frequency feature maps from
re-sized Y: Sobel in x–, and y–directions, DoG, Butterworth.

3 LR training feature patch matrix Yℓ ∈ Rnl×P = {yℓ1,yℓ2, ....,yℓP}, are
obtained from the feature extraction step

4 HR training patch matrix Xh ∈ Rnh×P = {xh1,xh2, ....,xhP}, are extracted
from re-sized Y.

5 Dictionary construction: The HR-LR dictionary pairs Dh ∈ Rnh×K and

Dℓ ∈ Rnl×K are jointly learned using K-SVD by solving Eq. using Yc

6 for each LR patch yℓi of Y do

7 Solve the optimization problem with D̃c and ỹℓi defined in:

αi = min
α
∥D̃cαi − ỹℓi∥22 + λ∥αi∥1

8 Generate HR image patch xhi
= Dhαi. Tile all the HR image patches xhi

into X0

9 end

10 Apply global imaging constraint: X̂ = argminX ∥SHX−Y∥22 + C∥X−X0∥22
Output: X̂

3.3.2 CUDA-GPU implementation

The proposed method is implemented on CUDA-enabled GPU hardware by exploit-

ing the dedicated cuBLAS library and thread-level parallism. The NVIDIA cuBLAS

is a dedicated GPU library for the basic linear algebra subroutines (BLAS). This

library gives the user the access to the computational resources of a GPU.

3.3.2.1 CUDA GPGPU-based implementation of dictionary learning

The time-expensive iterative process in the K-SVD method is the sparse coding by

the OMP [76]. As OMP consists of many matrix/vector operations, such as the ma-

trix inverse, matrix-vector multiplication, and least-square approximation, it is very

much suitable for parallel implementation using GPU. Before the standard OMP

steps could be executed on GPU, the trained dictionary Dc and patch vectors yi are
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Figure 3.3: Flow chart of the proposed GPU implementation of OMP.

copied from the CPU memory to the GPU global memory. The “cublasDgemv”

function from the cuBLAS API is used to perform the correlation operation with

the residual (rj): Dc
†rj. Next, “cublasIdamax” is used to find the index with the

largest projection, i.e. kj = argmax
j

∣∣Dc
†rj
∣∣. Finally, computing the least-square

solution: αj = arg max
αj

∥∥∥yi −D†cjαj

∥∥∥2
2
using the API “cublasDnrm2” and then

updating the provisional solution, D†cαj using the “cublasDaxpy’ are done. Once

the OMP execution in GPU is over, the sparse coefficients are copied from the GPU

global memory back to the CPU memory. A flowchart of the GPU implementation

of the OMP algorithm is shown in Fig. 3.3.

69



3.3. Materials and Methods

Figure 3.4: Schematic of proposed GPGPU SR image reconstruction method.

3.3.2.2 GPGPU-based super-resolution reconstruction of the MS image

Since image patches can be processed independently, this may be a key feature of

the image data to explore using the GPU in the CUDA programming model. The

proposed SR image reconstruction method is described in the second stage of Fig. 3.1

(blocks in green indicated). The parallel SR reconstruction flow is graphically shown

in Fig. 3.4. A kernel function is defined by using global specifier on the global

memory to perform the SR operation on each and every patches independently.

This offers fine-grained thread-level parallelism of GPU; each thread is qualified for

processing a patch. Three-level thread hierarchy is used: threads, thread block, and

grids of blocks for the implementation. A grid of 65536 blocks, each having 1024

threads, is used for parallel patch processing. The input patches and the HR/LR

dictionaries (Dh and Dℓ) are transferred from the host (CPU) memory to the global

memory (GPU). Next, sparse coefficients for each LR patch are obtained using the

ℓ1 feature-sign approach that runs on an individual thread. Once all the HR patches
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are reconstructed, they are transferred from the GPU back to the host CPU.

3.4 Results and Discussion

3.4.1 Dataset

RS multispectral images of Indian satellite LISS-IV have been procured from the

NRSC data center (https://uops.nrsc.gov.in/). The images are in three bands

(band1: green (0.52-0.59 µm); band 2: red (0.62-0.68 µm); band 3: NIR (0.77-

0.86 µm)) with a spatial resolution of 5.8 meters. They were captured by the satellite

during January 6, 2013 to April 10, 2018 over many places in India.

3.4.2 Experimental set-up

Experiments are performed on a Linux server having Intel R⃝ xeon R⃝ CPU running

with Ubuntu 16.04 OS and equipped with 128 GB RAM and NVIDIA Tesla P100

GP-GPU card. Open source computer vision library (OpenCV) packages version of

3.3.1 and CUDA toolkit 9.0 are used for developing the software. Simulations are

carried out using C++ and CUDA programming. The experimental settings used

for the proposed method is shown in Table 3.1.

Table 3.1: Parameters setting

Dictionary Size 512
Patch size 7× 7
No. of pixels in overlap for 6
patch extraction patches
Regularization parameter (λ) 0.15

3.4.3 Performance evaluation

Reconstructed images using various methods for the same test image taken from

LISS-IV are shown in Figs. 3.5 and 3.6 for different zooming factors. A small area
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Figure 3.5: Visual outputs of different SR methods on the LISS-IV test image for
upscaling factors 2 and 4. (Zoom in for better view)

marked in the original image by a green box is zoomed in and shown for different

methods for visual analysis. Results indicate that the proposed method not only

achieves lower reconstruction error, but also retains more structural features than

others except JRSR for 4× zooming, where it shows comparable results. It is because

most of the state-of-the-art methods are based on global dictionary learning; their

visual results seem appropriate, but the details restored from the training may be

poor. Furthermore, they have high computational cost and memory consumption. In

MS remote sensing, global dictionary learning-based SR methods are not convenient

for real time processing, because it is time consuming and expensive to produce the

HR training data. On the contrary, the proposed method is based on adaptive
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Figure 3.6: Visual outputs of different SR methods on the LISS-IV test image for
upscaling factors 2 and 4. (Zoom in for better view)

dictionary learning, where only the test LR image is used for the dictionary training

and SR reconstruction.

3.4.3.1 CPU implementation

To evaluate the efficacy of the proposed SR methods, a series of test images of sizes

128×128 to 3000×1500 are cropped from a real MS image of size 18133×16000;

applied them band-wise as inputs to the proposed algorithm. The real RS multi-

spectral image is only a representative image randomly selected from the LISS-IV

dataset for simulation. For patch-based processing, we have extracted patches of
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size 7×7 from the cropped images. A coupled dictionary consisting of Dh of size

49×512, and Dℓ of size 196×512 is learned from the 10,0000 selected patch-pairs

from the test LR multispectral image bands. Fig. 3.7 shows the learned LR and HR

dictionaries obtained by the proposed feature extraction-based adaptive dictionary

learning technique using KSVD.

(a) LR dictionary (b) HR dictionary

Figure 3.7: Learned LR and HR dictionaries using the proposed feature extraction-
based KSVD algorithm.

Evaluations in terms of PSNR and SSIM measures, ERGAS [105], SAM [121],

Q-index [113] and sCC [137] are done to validate the proposed method. Results are

compared with four state-of-the-art learning-based methods: sparse coding super-

resolution (ScSR) [118], anchored neighborhood regression (ANR) [98], cluster-

ing and collaborative representation (CCR) [131] and joint regularization-based

SR (JRSR) [14] and two deep learning-based SR methods i.e. SRCNN [22] and

VDSR [45]. Performance of the proposed method for 2x and 4x zooming are shown

in Table 4.2 for a test image of size 512×512. It can be found that the proposed

method clearly shows better results than others for 2× zooming. On an average,

PSNR increases approximately by around 4.23 dB and 1.37 dB over bicubic for 2×

and 4× zooming, respectively. The PSNR gain of the proposed method over the

second best method i.e. JRSR is 0.67 dB for 2× zooming. But for 4x zooming, the

proposed method is similar to the JRSR. It is found that the proposed method gives
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better performances over the two deep learning-based SR methods considered here

as the training LISS-IV MS image database is relatively small (∼ 200 images) for

learning their models.

3.4.3.2 Parameter sensitivity analysis

While doing a parameter sensitivity study, the PSNR values obtained by the pro-

posed methods are observed by changing only one parameter, while keeping the

other parameters fixed. The efficiency of the proposed method is significantly af-

fected by the patch size selection and the number of overlapping pixels (stride).

Results on PSNR versus patch size as well as PSNR versus λ on the LISS-IV Test

image for zooming factor 2 are shown in Fig. 3.8a. The results indicate that the

PSNR of the proposed method is maximum when the patch size and overlapping

pixel numbers are considered to be 7×7 and 6, respectively. Therefore, the proposed

method experimentally fixes these parameters.

Changing the λ value from 1 to 1.8 gives different PSNR values, as shown in

Fig. 3.8b for the LISS-IV Test image at zooming factor 2. It shows that the maximum

PSNR value occurs at 1.5.

(a) PSNR versus the patch size and
the number of overlapping pixels

(b) PSNR versus λ

Figure 3.8: PSNR plot vs. parameters.
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3.4.3.3 Convergence test and Complexity analysis

An empirical study is conducted to evaluate a proposed method using KSVD,

where convergence is assessed by determining the PSNR of the reconstructed image.

Fig. 3.9 shows the convergence plot for band 1 at 2× zooming, with 30 iterations

considered. The highest PSNR is observed at the 20th iteration, marking it as the

optimal stopping point for the algorithm. This peak suggests that PSNR increases

gradually up to the 20th iteration, after which it remains nearly constant, indicating

a stabilization in PSNR gains.

The complexity of the proposed method is influenced by various computational

processes. The most significant computational loads come from the K-SVD dic-

tionary learning and optimization steps. Specifically, the K-SVD step (step 5 of

Algorithm 2) iteratively updates dictionary atoms and performs sparse coding of all

patches, has a complexity of O(T×(n×t×k×r2+k×(m×r2+r3))). Here, T is the

number of iterations, n is the number of patches, t is the sparsity level, k is the num-

ber of dictionary atoms, r is the patch size, m is the number of feature maps. Next,

major computation comes from the patch optimization (step 7 of Algorithm 2) with

O(n× k× r2). When considering CPU execution, the overall complexity of the pro-

posed method can be expressed asO((T×(n×t×k×r2+k×(m×r2+r3)))+n×k×r2).

Assuming effective utilization of GPU capabilities for parallel processing of patches,

the total time complexity reduces to O((T ×(t×k×r2+k×(m×r2+r3)))+k×r2).

Table 3.3: CPU vs GPU speed-up for different dictionary size.

Dictionary Size CPU(secs) GPU (secs) Speed-up
256 105 10 10.5
512 193 17 11.3
1024 363 27 13.44
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Figure 3.9: Convergence analysis of the proposed method for 2× zooming: PSNR
vs number of iterations.

Figure 3.10: Execution time for CPU and GPU implementations with varying dic-
tionary size.

3.4.3.4 CUDA-based GPGPU implementation

Experiments are carried out to analyze the scalability of our implementation in

terms of dictionary and input image sizes. Table 3.3 shows the execution time taken

for CPU- and GPU-based implementations for different dictionary sizes. Different

dictionaries are trained using the test LR image of size 512× 512. The Dh and Dℓ

are trained using a fixed number of sample patches of around 100000. As the sample

patches are kept fixed, it takes the same execution time for different upscaling factors

on the CPU. As the dictionary size increases, the speed of GPU implementation

increases from 4 to 5 times as shown in Fig. 3.10. In the reconstruction, the image

size (number of pixels) is varied from 128×128 to 1024×1024. Table 3.4 compares

the execution time for CPU and GPU-based reconstructions for 2x and 4x zooming.
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Figure 3.11: Reconstruction time of CPU and GPU implementation for different
image sizes with zooming factor 2.

Figure 3.12: Reconstruction runtime comparison of different methods for zooming
factor 2.

As the image sizes increases, the GPU speed-up improves steadily from 11 to 36 as

compared to the CPU for 2x zooming. On the other hand, the proposed method

takes about 4-83 secs. and reduces the reconstruction time by 60 to 111 times as

compared to their CPU counterparts. Fig. 3.11 shows the graphical representations

of reconstruction times of CPU and GPU-based implementations for the proposed

method for 2x and 4x zooming.

The proposed method with GPU-CUDA implementation and the existing meth-

ods are compared in terms of reconstruction time in Fig. 3.12 for a test band image

of size 512×512. When compared to the existing methods for 2× zooming factor,

the GPU-CUDA based proposed method yields faster results. Since the spatial size

of real RS images is significantly large, it is very important to process these images

within a real-time. Our efficient CUDA-GPU based SR algorithm can easily process

larger RS images (up to 3000× 1500 image size) within a few minutes for different

upscaling factors. Execution times taken for dictionary training and reconstruction
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Table 3.4: CPU vs GPU Reconstruction time for zooming factors 2 and 4.

Image size
×2 ×4

Proposed
method

Average
CPU

time (secs)
(ts)

Average
GPU

time (secs)
(tp)

Speed
up
(tp)

Proposed
method

Average
CPU

time (secs)
(ts)

Average
GPU

time (secs)
(tp)

Speed
up
(tp)

CPU
time
(secs)

GPU
time
(secs)

CPU
time
(secs)

GPU
time
(secs)

128× 128
Band 1 43.99 3.80

42.75 3.78 11.28
249.01 4.11

250.60 4.11 60.97Band 2 43.99 3.80 252.35 4.12
Band 3 43.68 3.79 250.44 4.11

256× 256
Band 1 188.10 4.25

188.10 4.28 29.93
1028.22 9.54

1028.59 9.49 108.38Band 2 188.10 4.27 1029.03 9.42
Band 3 187.11 4.32 1028.54 9.53

512× 512
Band 1 318.20 10.02

317.04 9.36 33.87
4295.23 23.01

4295.04 23.18 186.73Band 2 315.59 10.02 4294.02 23.42
Band 3 317.34 8.05 4295.44 23.13

1024× 1024
Band 1 856.20 24.01

865.53 23.67 36.56
9322.17 83.02

9322.78 83.93 111.07Band 2 907.20 24.01 9324.17 82.55
Band 3 834.20 23.00 9322.01 83.22

Table 3.5: GPU dictionary training/reconstruction time with upscale factor 2 and
4.

Image size
x2 x4

Dictionary
training time (secs)

Reconstruction
time (secs)

Dictionary
training time (secs)

Reconstruction
time (secs)

2048× 2048
Band 1 49.61 83 53.21 403
Band 2 49.41 83 53.25 402
Band 3 50.42 82 49.68 403

3000× 1500
Band 1 49.01 147 54.00 415
Band 2 53.12 146 56.20 415
Band 3 54.02 147 56.02 415

for different larger MS remote sensing images using the proposed CUDA-GPU-based

parallel SR algorithm are shown in Table 3.5 for upscale factors 2 and 4. The se-

quential counterpart in CPU cannot process real RS images due to their memory

limitation.

3.4.4 Application: Land cover classification

The classification studies have been performed on SR images obtained by using

different techniques to interpret various regions present in the MS remote sensing

image. Envi classic 5.1 is used for classification and analysing the classified results.

The unsupervised classification has been performed using k-means clustering on the

test image for different methods. Five classes are defined on the test image using the

Envi classification tool: vegetation (green), barren soil (navy blue), water (yellow),

road and building (red), and dense Building (sky blue). The results indicate that the

proposed method efficiently separates the classes that are quite similar to that of the

ground truth. But, in case of the LR image and results of other SR methods, some
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Figure 3.13: Reconstruction time for CPU and GPU implementations for different
image sizes with zooming factors 2 and 4.

of the classes are not clearly identified and some regions are misclassified. Results

of unsupervised classification on test images for different methods are shown in

Fig. 5.14. The percentage of classification accuracy on each class of the test image

for different methods is given in Table 3.6. The classification accuracies on each

class of the proposed method are closed to that of the ground truth. While the

class-wise accuracy rates of the ScSR, ANR and CCR deviate from the ground

truth. Since the image quality of the proposed method is comparatively higher than

other methods, the classification error between the proposed method and the ground

truth image is low, when compared to other methods. Therefore, it can be concluded

that the reconstruction accuracy of the proposed method is clearly superior to its

counterparts.

Table 3.6: Classification accuracy on each class of Test Image using unsupervised
classification for different methods.

Class
Ground truth

(%)
LR Input

(%)
Bicubic
(%)

ScSR
(%)

ANR
(%)

CCR
(%)

JRSR
(%)

Proposed
(%)

Dense Building (Sky blue) 3.60 3.16 2.98 3.16 3.02 3.04 3.45 3.40
water (yellow) 17.63 16.67 17.94 17.92 17.81 17.75 17.23 17.33

Barren soil (Navy blue) 51.75 53.01 50.13 50.51 50.45 50.54 51.68 51.69
Road and Building (Red) 20.09 19.69 21.25 20.94 21.17 21.14 20.65 20.58

Vegetation (Green) 6.90 7.45 7.45 7.45 7.53 7.52 6.98 6.90

81



3.5. Conclusion

3.5 Conclusion

A GPU-CUDA accelerated SISR framework for MS remote sensing images using

adaptive dictionary learning and sparse representations is developed in this chapter.

We have found that adaptive dictionary learning is highly preferred for real-time

RS applications. A new feature extraction step is also introduced for restoring the

reconstructed image with sharp edges and high-frequency details. Experimental

results show that the proposed method offers advantages in terms of better visual

outputs and objective criteria compared to the state-of-the-art. Highly parallelized

algorithms based on CUDA-GPU are designed for the proposed method, which can

provide improvements in computational time by manifolds than their CPU-based

sequential counterparts. It can be concluded that the proposed framework would be

highly useful for near real-time applications. However, the proposed method may

not adequately preserve the sharpness and clarity of edges and other high frequencies

details as accurately as needed for RS applications, since it is very difficult to learn

the statistical properties of edges from a single image.

Since, edge preservation is necessary in RS super-resolution for applications,

like object detection and surveillance because these tasks often require precise and

accurate identification of objects and their boundaries. In the future, we will pro-

pose a more effective SISR framework that uses a global dictionary training to

learn more edge-based image properties. In order to reconstruct edge-enhanced SR

images, a joint regularization problem can be used by incorporating edge-oriented

priori information. It is also essential to develop highly parallelized CUDA-based

algorithms for KSVD-based dictionary learning and edge-enhanced reconstruction

phases, which can further speed-up the complete MS super-resolution process.
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