CHAPTER 4

Development of Edge Preserving Remote Sensing
Single Image Super-resolution based on Global Dic-
tionary Learning and Sparse Representations

4.1 Introduction

Preservation of textural or structural features, particularly the edges, is crucial in
the SR of RS images. These features may be used as a prior information in dictio-
nary learning to obtain edge-enhanced SR, as learning a representative dictionary
in terms of edges is a key challenge in sparse representation models. Central to this
process is the use of an overcomplete dictionary, which can be constructed from two
orthobasis taken from well-known transforms, like wavelets, Fourier transforms, etc.
Alternatively, it can be constructed through optimization to enhance sparsity in
signal representation. Learned dictionaries show superior performance compared to
the pre-defined transforms in terms of sparsity solutions because they incorporate
prototype signal-atoms, taken from the given image itself, allowing signals to be

represented by sparse linear combinations of these atoms.

The challenge of constructing a representative dictionary that effectively cap-
tures edge details is significant in sparse representation models. Although In the pre-
vious chapter, the previous chapter explores adaptive dictionary learning to recon-
struct SR remote sensing images, but it is quite challenging to learn the edge-based
properties from a single image. In order to obtain edge-enhanced SR, the global
overcomplete dictionary learning method is very much convenient as it can afford a
large suitable training set and fully utilizes image priors to efficiently improve edges
and textural features. An overcomplete dictionary is used for representing signals

sparsely, can be
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Regularization plays an important role in sparse representation-based SR be-
cause it is used to impose constraints on the solution of the sparse representation
problem to prevent overfitting. One common form of regularization used in SR is
known as “edge-preserving regularization.” This form of regularization is used to
preserve the edges and other important features in the reconstructed HR image.
While the standard regularization methods can result in overly smooth images that
lack fine details and sharp edges. These methods typically penalize the total varia-
tion of the reconstructed image, which can result in a solution that is too smooth.
Edge-preserving regularization, on the other hand, penalizes changes in intensity
across edges, while allowing for more variation in smoother regions of the image.
This results in an important tool in achieving high-quality SR. To restore both
sharp edges and smooth structures simultaneously, a joint regularization technique
may also be used by combining two regularization terms such as the non-local to-
tal variation (NLTV) regularization term that encourages smoothness in the output
image and an edge-enhancing-based regularization term that penalizes deviations

from the edges in the original LR image.

The computational complexity of such algorithms is generally very high. There-
fore, CUDA-enabled GPU paradigm is the best choice for handling the computa-
tional costs of such SISR algorithms, depending on the algorithmic complexity and

dimensions of the real RS images.

In this chapter, a coupled dictionary based on scale-invariant feature transform
(SIFT) keypoints as well as non-keypoints image patches are learned that effectively
preserve edges of an image. In particular, we propose a joint sparse reconstruction
model based on SIFT-guided and NLTV regularization priors to preserve high fre-
quency information as well as smooth structures of the reconstructed image. CUDA-
based implementation of the alternating direction method of multipliers (ADMM)
technique is also carried out to solve the above joint problem and reconstruct a real
RS image within a reasonable time. The proposed method not only retains edges,

but also restores visually enhanced images for various zooming factors.
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4.1.1 Main contributions of the chapter

The major contributions of the works done in this chapter may be summarized as

follows:

(i) Proposed keypoints and non-keypoints features-based novel overcomplete dic-

tionary learning techniques for RS image SR. An external MS remote sensing

database is used to learn multiple coupled dictionaries- SIFT-based keypoints

and non-keypoints patch-based dictionary pairs to preserve structural and tex-

tural features effectively. Compared to the traditional patch-based dictionary

alone, the proposed dictionaries can preserve the high frequency information

precisely.

(ii) Proposed a joint sparse reconstruction model by combining SIFT-driven key-

points and NLTV regularization priors. Different sub-problems are solved

iteratively using the CUDA-based ADMM.

(iii) Extensive simulations are demonstrated on two publicly available RGB RS and

two real MS remote sensing datasets for various scaling factors to show that

the proposed model outperforms state-of-the-art techniques both visually and

quantitatively. The proposed parallel framework for SR shows good potential

to process MS remote sensing images up to 2048 x 2048 in a few minutes for

4x upscaling.

The rest of the chapter is organized as follows: Section 4.2 presents some prior

art on SIFT and NLTV regularization. Section 4.3 discusses about the proposed

methodology and joint sparse reconstruction model, including its implementation on

CUDA-GPU platform. Experimental results using different datasets are discussed

in Section 4.4. Finally, Section 4.5 concludes the chapter.
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4.2 Prior Art

4.2.1 Scale-invariant feature transform (SIFT)

SIFT is an algorithm in computer vision utilized to detect and describe local features
present within an image. SIFT can detect features that are invariant to changes in
scale, rotation, and illumination. This makes it a powerful tool for object recogni-
tion, image stitching, and 3D reconstruction. The SIFT algorithm involves several
steps. The first step is to construct a scale-space representation of the image. This
involves creating a series of blurred images at different scales, using a Gaussian ker-
nel with increasing standard deviation. The purpose of this is to detect features at

different scales or multiresolution levels.

The next step is to identify local extrema in the scale-space representation.
These extrema correspond to features that are invariant to scale changes. The al-
gorithm searches for extrema across different scales and space, using a difference-of-
Gaussians (DoG) function. Once the extrema are detected, the algorithm performs
keypoints localization to improve their accuracy. This involves fitting a quadratic
function to the scale-space representation at each keypoint and discarding keypoints
with low contrast or those that are located on edges. The orientation of each key-
point is then assigned by computing the dominant orientation of gradient orien-
tations within a circular region around the keypoint. This step ensures that the

descriptors are invariant to rotation.

The keypoint descriptor is generated for each keypoint by computing a histogram
of orientations within a spatial region by considering a 16x16 window around the
keypoint. This window is further divided into 16 sub-blocks, each of size 4x4. Gra-
dients are calculated for each pixel within each sub-block. An orientation histogram,
usually comprised of 8 bins spanning 360 degrees, is constructed using these gradi-
ents. The distribution of gradient orientations within the sub-block is represented

by the orientation histogram. As a result, the final size of keypoint descriptor is
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determined by multiplying the number of sub-blocks (16) by the number of bins per
histogram (8), obtaining a descriptor size of 128 elements. The resulting descriptor
is a vector of features that describes the local image content around the keypoint.
Overall, SIF'T is a powerful algorithm for detecting and describing local features in
images. It has been extensively used in a variety of applications and has paved the

way for many subsequent feature detection and matching techniques.

4.2.2 Non-local total variation (NLTV) regularization

NLTV regularization is a technique used in image processing and computer vision to
smooth out noisy images, while preserving the sharp edges and details of the image.
Unlike traditional total variation regularization, NLTV takes into account the local
statistics not only in the pixel neighborhood but also searches for similar patches
within the image and perform the required filtering operation. The NLTV-based
image denoising model is composed of up of two terms: NLTV and data-fidelity,

which can be expressed as [63]:
. : A 2
x = arg min Jyery (y) + 5 lly — x|, (4.1)

Jnrry is the NLTV regularization term, which can be expressed as follows:

Inprv = Z Z (vi —%;)*w(i, ), (4.2)

icQ \| jeM;
where the denoised, original, and noisy image patches are represented by x, x, and
y, respectively. M; refers to a square neighborhood of size N x N centered at pixel 7.
A is the regularization parameter that controls the amount of smoothing applied to
the image, and w(7, 7) is the non-local weight function that measures the similarity
between the image patches centered at ¢+ and 7 in image x. The non-local weight

function w(i, j) is defined as follows:
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|P.(Y) - %(Y)Hi) (4.3)

w(/l?]) = eXp <_ 2h2

where P;(Y) and P;(Y) denote the image patches of n x n size centered at i and 7,
I.]I2, utilizes a Gaussian kernel to assign weights to the Euclidean norm, and h is
a parameter of filtering, depends on the noise level. The non-local weight function
captures the degree of similarity between the image patches across the entire image,
which allows NLTV regularization to preserve edges and details that could be lost

with traditional local regularization techniques.

4.3 Proposed method

The proposed method consists of two phases: A) development of a novel SR approach
using sparse coding and dictionary learning, and B) design of massively parallel al-
gorithms on GP-GPU using off-the-shelf and user defined CUDA kernels. First, it is
implemented sequentially; the coupled dictionaries are learnt from an external MS
image dataset and the target SR image is reconstructed using a joint sparse recon-
struction model. Next, in order to exploit the data level parallelism and increase
the computational efficiency, massively parallel algorithms are designed, especially
for the computationally exhaustive components. In the following, we elaborate on

each stage:

4.3.1 Feature extraction

It extracts high-frequency information from input LR images to improve sparse rep-
resentation accuracy. In this chapter, to carry out the proposed feature extraction
and dictionary training both on natural RGB images and MS images in a uniform
framework, first, we have converted the real MS data into false RGB images. Next

the false RGB images are converted into the YC,C, format on which the proposed
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(b) Reconstruction Phase
Figure 4.1: Schematic representation of the proposed edge enhanced framework for
remote sensing SR.

dictionary learning and sparse reconstruction algorithms are carried out. The lu-
minance channel Y is blurred and then downsampled in order to produce the LR
training images. The reason for selecting only the luminance channel (Y) is due
to the fact that human eyes are more sensitive towards the luminance information
compared to the chrominance or colour information. Besides, the chrominance in-
formation of RS images are not considered as one of the key components in the
dictionary learning method. The LR training images are then resized to generate
upscaled LR images of the same size as the original HR images. Next, we apply the
edge-enriched feature extraction method on them, which was already discussed in

Chapter 3.

89



4.3. Proposed method

Table 4.1: Parameters used in SIF'T keypoint detection and matching.

Number of | Keypoint | . Number Kernel

. - Sigma Tk . Tm
keypoints scale of octaves size
300~400K | 3 1.6 4 0.007 | 15 x 15 | 1.5

4.3.2 Feature-enhanced patch-based multiple dictionary learn-

ing

4.3.2.1 Keypoints-based coupled dictionary learning

A schematic of the proposed MS image dictionary learning is shown Fig. 4.1a. In
the dictionary learning stage, two sparse representations-based coupled dictionaries
are learned using keypoint- and patch-based features, respectively. In particular,
scale invariant feature transform (SIFT)-based keypoints-driven and non-keypoints
patch-based multiple coupled dictionaries are learned. In the first case, the poten-
tial keypoints are detected from the HR and LR training images using the SIFT
detector and then, matched keypoints between HR and re-sized LR training im-
ages are identified based on SIFT descriptors. The number of optimal keypoints
are detected using the Taylor series expansion by rejecting those keypoints whose
contrasts are less than a certain threshold (7). Lowering the value of 7 has no
effect on the performance of the proposed technique, but it increases the num-
ber of unstable low constrast keypoints, which increases the computation time of
the proposed method. On the other hand, it has a significant impact on the per-
formance of the proposed method for higher value of 7, since less possible key-
points are detected. The value of 7, is selected such that the performance and
computational time of the proposed method are not compromised. Keypoints are
considered to be matched if Euclidean distance between the corresponding SIF'T
descriptors are lower than a given threshold (7,,). The number of potential key-
points and parameters used for keypoints detection and matching using the SIFT
are shown in Table 4.1. Next, local patch vectors surrounded by matched key-
points from both HR and re-sized LR training images, i.e, Xjeypoint € R™*Kp and
Y keypoint € R™>*E» respectively are extracted for dictionary training. Here, K, is

the total numbers of matched patches. Using the combined HR-LR keypoint-driven
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patch dataset Y keypoint = [Xkeypoint; Y keypoint], the keypoint-driven HR-LR dictio-
nary pairs Dy _reypoint € R™ ¥ and Dy _keypoine € R™*K are jointly learned in the
form of a coupled dictionary D keypoint = [Dh_keypoint; De_keypoint), Where my and my,
denote the sizes of feature patches encircled by matched keypoints of LR and HR
images, respectively (shown in the upper half of Fig. 4.1a). K is the dictionary size.

4.3.2.2 Non-keypoints-based coupled dictionary learning

In the traditional patch-based dictionary learning, the coupled dictionary D. pascn,
consisting of patch-based HR-LR dictionary pairs Dy, pesen, € R™*K and Dy paten €
R™*E are jointly learned using the combined HR-LR patch dataset Y pateh =
[Xatcn; Ypaten)- As explained in Section 3.3.1.2, Chapter 3, the HR patch matrix
Xpaten € R™*F is formed by directly extracting HR patch vectors containing most
relevant information from the HR training images, while LR feature patch matrix
Y uien € R"*F is formed by stacking the LR feature patch vectors corresponding to
each patch location; the LR feature vector is the concatenation of four filtered-image
patch vectors for the selected patch location. The lengths of the HR patch vectors
and the corresponding LR feature patch vectors are represented by the vectors ny,
and ny, respectively and P is the total number of patch vectors extracted for the
dictionary training. The above strategy of selection of feature patch vectors ensures
that each LR patch incorporates its adjoining information, which is helpful for im-
proving compatibility within neighboring patches in the super-resolved image. Both
SIFT-based keypoints-driven and non-keypoints patch-based approaches consider

the same patch size. Patch size selection is described in detail in Section 4.4.6.

Assuming that the two coupled dictionary pairs D _keypoint = [Dh_keypoint; Di_keypoint),
as well as Depatern = [Dh_paten; Dipaten], share the common sparse representation

matrices Zj, and Z,, respectively, therefore, the coupled dictionaries D yeypoint and
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D. patcr, can be trained by solving the following minimization problems, respectively:

min ||Yc,keypoint - Dc,keypointzk”??‘ + A ||Zk||1
{Dc,keypointvzk (44)
st. | Dekegpoint (5813 < 1, 0= {1, e, K}
Similarly,
. 2
min 1Y ¢ pateh — DepatenZpl|w + M| Zp||,
{Dc,patch’zp} (45)
st | Depaten( D)2 <1, 0= {1, e, K},

where K is the number of dictionary atoms or size of the dictionary, which is common
for both the learned dictionaries, and A used in Eqgs. 4.4 and 4.5 represent the
sparsity regularization parameter. Section 4.4.6 describes in detail how the value of
A is chosen. In order to solve Egs. 4.4 and 4.5 approximately, the coupled K-SVD

dictionary learning algorithm detailed in [80] is used.

4.3.3 SR Reconstruction

In the reconstruction phase, the super-resolved image ‘X’ is obtained through two
reconstruction stages in cascade; one based on the patch-based reconstruction and
the other based on the keypoint-driven patch-based reconstruction. The proposed
framework for reconstruction phase is shown in Fig. 4.1b. First, the input LR image
‘Y’ is upsampled to the required scale i.e. “Y g’ using Lanczos interpolation, and
then passed through the feature extraction step as mentioned in section 4.3.1 to
extract four high-frequency feature maps (the filtered images obtained by four high-
pass filters: Sobel in x-, and y-directions, DoG, and Butterworth) of equal size. From
each feature map, feature patches of size v/n x y/n (n: total number of pixels in a
patch) with one pixel overlap are obtained. Eventually, the four feature patches from
a given pixel location are vectorized and concatenated into a single feature vector
yZ_ with a dimension of 4n x 1. Now, each LR patch yZ is sparsely represented

as af using the feature-sign method [118] from the corresponding feature vectors
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using the already trained patch-based LR and HR dictionaries, i.e. by minimizing

the following optimization problem:

of = min||De parence — ¥i®ll3 + Al (4.6)
~ Dé,patch . .
where D paren, = , S represents the overlapped region of pixels be-
SDh,patch
Y,

tween the target and the previously reconstructed HR image, and y} = ,
g
g represents pixels of the previously reconstructed HR image in the overlapped re-

gion. Finally, the target HR image patch x? is obtained by multiplying the sparse

coefficients af with the HR dictionary Dy, paren as follows:
P __ p
X, = Dh_patchaia (4.7)

Next, by tiling all the reconstructed HR image patches, a patch-based HR image
is first approximated and subsequently refined to obtain X%, . by using the global

constraint-based image reconstruction model of Eq. 3.16 in Chapter 3.

Further, the keypoints are detected from the resized upscaled LR image Yy
and X% obtained above using the SIFT, and their matching keypoints are iden-
tified. Next, patches encircling the matched keypoints y¥ of Yz are extracted in
order to calculate the sparse coding af using Dy keypoint and reconstruct the HR
patch x¥ using x¥ = Dj_geypoint@’. The original patches of X?,, are then replaced
by the keypoint driven patches in their respective co-ordinates in order to obtain
the HR image X% 5. Following the above, a keypoint-driven patch sparsity-based

regularization problem may be defined as follows:

RKPSR(XIICJR) = H;I,Cn HygC - fokeypointai'ﬂ”% + AHO‘;CHM (4.8)

k3

where y* = IC;(SHXY% ) is a key-driven patch extracted using the operator K from
the " position. X operator is the SIFT detector to identify matching keypoints

from Yy. It is efficiently solved using the feature-sign method [118]. Egs. 4.6
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and 4.8 use the same A value as Eqgs. 4.4 and 4.5. Since MS images contain many
smooth regions and edges besides rich textural regions, the result obtained above is
unable to restore both the sharp edges and smooth structures equally well as may
be also observed in Fig. 4.4. In order to preserve both the textural and structural
information of the reconstructed image simultaneously, a joint sparse reconstruction
model involving two regularization priors, namely, the keypoints-driven patch-based
sparse representation (KPSR) and the NLTV is proposed for the reconstruction
phase. The second regularization prior term using the NLTV prior on X%, is

defined as:

RNLTV(X’ER) = HX]?—IR - WX,;{RHir = > HXI;IRi - w;-fsiﬂz, (4.9)
i€y,

where for a particular pixel x5 R, I X% r, a weighted average of neighboring pixels
within a search window is obtained using s; and w;, where s; is the column vector
that contains all of the central pixels in the search window around x};, and w;
is the column vector that contains the corresponding weights co-efficients w;;. The
calculation of w;; is described in [126], and it is determined by the similarity between
the pixel within the search window using the /5-distance. An augmented Lagrangian
method [126] is finally used to solve the above regularization subproblem efficiently.
Now, by combining the two regularization priors, i.e. Eqgs. 4.8 and 4.9, the proposed

edge-preserving joint sparse model is formulated, which is defined as follows:

Sty = s i | S Y+ s (S
X5 g (4.10)
+pe Ry (X g),

where p; and py are positive regularization parameters. Regularization subprob-
lems corresponding to the second and third terms in the above equation are solved

independently within the ADMM framework and then substitute their results into
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Eq. 4.10 to obtain the final sub-problem, defined as follows:

Xk = arg%’in% |SHX Y, — YH;+

HR
9 (4.11)
o

% Z <HICZ'(SHXI;1R) - Df—keypomtaf”;)‘i_% zk: HXI;IRI- o WiTSi

zExHRi

Algorithm 3: The proposed edge-preserving reconstruction algorithm

Inpl:lt: Yu D&patch; Dh,patcha DZ,keypoimh Dh,keypomt
1 Initialization: k < 0, § < 1074, pq, po;
2 Upsample Y to Yy using Lanczos interpolation.
3 Extract four high-frequency feature maps from Y;g: Sobel in x—, and
y—directions, DoG, Butterworth.
a for each LR patchy; of Yz do
Calculate sparse coefficients vector o by:
af = min|[De parenery —¥i° [l + Al

6 Generate HR image patch x/=Dy,_parcn0d
7 end
8 Tile reconstructed HR patches to approximate X% . Refine X%, . by applying
global constraint-based reconstruction model
9 Find the matching keypoints between Y,y and X%,
10 for each patch encircling the matched keypoints y¥ of Yy do

11 Calculate Sparse coding af using Dy geypoint and y%‘
12 Generate HR keypoint driven patch xF =Dy, jeypoint Q!
13 end

14 Replace patches of X%, with keypoint-driven patches to obtain X% 5
15 while not converge do

16 k < k+1

17 Define keypoint-driven patch sparsity-based regularization problem:
Ripsr(Xfp) = min ||lyf — Degegpomeet; |3 + All a1

K3

18 Define NLTV prior-based regularization problem:
2 2
RNLTV(X];-IR) = ||X];1R - WX];{RHF = ) HX];IRi - W?Sng
iExHRZ_
19 Using ADMM to solve the joint sparse model:
Xk = argglgl;% HSHX’}',R — YH?‘F R EZ: (f Ki(SHX% 1) — Do keypointoef

2
)
+5 S b, - wisill;

iEx’}"IRl
20 | Check convergence :HX’}{R — X’;I_IQH / HX%RH <94
21 end

Output: Xur
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It is worth mentioning that the performance of the above joint sparse model
depends significantly on the values of p; and py. In Section 4.4.6, an approach for
selection of optimal values of p; and ps are demonstrated through an experiment.
The above problem is a simple least-square convex minimization problem, which can
be solved in a close form by differentiating it w.r.t. X% .. Conjugate gradient least
square solver (CGLS) is used to solve the above subproblem as detailed in [13, 21].

The proposed edge-preserving reconstruction algorithm is presented in Algorithm 3.

4.3.4 Implementation using CUDA-GPU

In this section, implementation of the proposed method on a CUDA-enabled GPU
platform using the dedicated cuBLAS and cuSPARSE libraries and user defined
kernels exploiting thread-level parallelism is detailed. It gives a fair idea on the

overall GPU-based acceleration that could be achieved on the proposed scheme.

Algorithm 4: CUDA-GPU based BOMP.

Data:
D: Coupled dictionary
Y: The n X m patch matrix. Each column is a separate patch vector we want to sparse-encode
Dy: precomputed DT D
Dy : precomputed DY
K: target sparsity
Procedure:
1 Define kernel function by using _global_ specifier to sparse-encode the patch vectors separately.
int j = blockIdz.x * blockDim.x 4 threadldx.x
if j > m —1 then
‘ return;
end
for i < 1 to m do
| alj +i%m]=BOMP(D¢,Dyl;,i], K);
end
Result: «: Sparse representation

N0 N

4.3.4.1 CUDA GPU-based multiple coupled dictionary learning

Both patch-based- and keypoints-based dictionaries employ the KSVD algorithm for
dictionary learning. However, it is worth noting that K-SVD dictionary learning is
a highly iterative and time consuming process. In each iteration, the atoms of the

dictionary is updated one-by-one, taking K-singular value decompositions (SVD) for
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the entire dictionary. Another time-expensive iterative process is the sparse coding
using the OMP. To mitigate this challenge, the KSVD process is accelerated by
utilizing GPU-CUDA, harnessing the immense computational power of GPUs for

faster execution.

In the proposed algorithm, we use the batch OMP (BOMP) for sparse coding
as it speeds up the convergence considerably [2]. Further, we carry out a paral-
lel implementation of the BOMP on CUDA platform by using interleaved arrays.
It is implemented as a[j + ¢ * m], where m is the number of active threads and
j = blockldx.x % blockDim.x + threadldx.x is the index of the current CUDA
thread. Each thread solves a separate BOMP problem. A pseudo-code represen-
tation of the CUDA GPU-based BOMP implementation is shown in Algorithm 4.

J

In particular, “cublasldamax” and “cublasSgemm” functions from cuBLAS API are
used for finding the index with the largest projection and updating the provisional

solution, respectively.

Besides, KSVD consists of many other linear algebraic operations, particu-
larly matrix operations; several on-device routines are borrowed from the standard
cuBLAS library to speed up the execution of these operations. GPU kernel imple-
mentations based on thread-level parallism are also done in cases where mathemati-
cal operations are to be performed massively on a row-by-row or column-by-column
basis in parallel. For example, a kernel is specified for parallely collecting non-zero
elements from 7 number of rows of a sparse matrix into a dense array. The schematic

diagram of CUDA-GPU KSVD is shown in Fig. 4.2a.

4.3.4.2 CUDA-based SR reconstruction on GPU

In the reconstruction, resized input LR image is divided into multiple overlapping
feature patches, which are then processed independently. The processing time in-
creases as the image size increases. In this scenario, we deploy the GPU environment
using the CUDA programming model for accelerating the reconstruction time. The

proposed scheme is graphically shown in Fig. 4.2b. First, LR feature patches, pre-
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trained patch-based coupled dictionaries, pre-trained keypoint driven LR patches,
and pretrained keypoint driven coupled dictionaries are transferred from the CPU to
the GPU. As shown in stage I, a CUDA kernal function is defined, where the feature
image patches are to be processed by different GPU blocks and then patches are
distributed across the threads within each GPU block. Another kernel is specified
for estimating the sparse co-efficients for each LR patch. Since it also involves a
number of linear algebra operations, such as matrix-matrix multiplication, matrix-
vector multiplication, and matrix-inverse, they are implemented using the cuBLAS
functions to speed up the algorithms. Subsequently, HR patches are obtained paral-
lelly by using kernel that multiply the Dy, peicr, and o corresponding to each patch
by using the “cublasSgems” function. Further, a kernel is specified for accumulating
all the HR patches from all the active threads to reconstruct X% .. In stage-II,
a CUDA kernel is used to assign all keypoint-drievn LR patches into individual
threads. Next, steps for the calculation of a* for keypoint-driven LR patch and re-
construction of the corresponding HR are implemented using similar CUDA kernels,
as mentioned in stage-I. HR patches of X% are then replaced by keypoint-driven
patches parallelly using CUDA kernel. Finally, transfer of the keypoint-driven HR
image X% 5 is done from GPU to CPU .

In ADMM framwork, in order to speed-up the CGLS algorithm, “cusparseDc-
srmv” function from CUSPARSE library is used to implement sparse matrix multi-
plications, while a CUDA kernel is used to implement diagonal addition of matrices.

Some cuBLAS functions are also utilised for acceleration in the CGLS method.

4.4 Results and Discussion

4.4.1 Computing environment

Simulations are carried out on a Ubuntu server running 16.04 LTS and equipped

with Intel® Xeon® processor and having 128 GB RAM. C++ programming with
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OpenCV libraries (version 3.3.1) are used for CPU-based implementations. While
GPU implementations are done on the NVIDIA Tesla P100 GP-GPU hardware plat-
form with CUDA toolkit (version 9.0). DL-based SR methods used for comparisons
are implemented using Python 3.6.4 and CUDA toolkit version 11.2.

4.4.1.1 Datasets preparation and parameter selection

RS images from two publicly available datasets (aerial image dataset (AID) [117]
and PatternNet [138]) and two self-procured MS remote sensing datasets (LISS-IV
!and LISS-TIT ') are used for the experiments. AID comprises of 30 distinct classes
with a total of 10,000 images, each of size 600x600 with a sensor spatial resolution
ranging from 0.5 m to 0.8 m. Similarly, PatternNet has 38 classes; each class having
800 images at a spatial resolution of 0.062 m to 4.693 m and each of size 256 x256.
For training the sparse representations-based SR methods, a total of 300 and 380
images are randomly chosen from the AID and the PatternNet, respectively. Since
each class (both in AID and PatternNet) belongs to images of many similar patches,
we chose only 5 to 10 images for each class of AID and PatternNet datasets. On the
other hand, for the DL-based SR networks training, we randomly select 70-80 % of
the total data from both the datasets in such a way that the selected images contain

both rich textural and structural information, each having a size of 256 x 256.

Table 4.2: Specifications of LISS-IV and LISSS-III satellite sensors.
Satellite Sensor LISS-IV LISS-III
Spatial resolution 5.8 m 23.5 m
Green (Band 2: 0.52-0.59 pm)
Red (Band 3: 0.62-0.68 pm)
Near infrared (Band 4: 0.77-0.86 um)
Mid infrared (Band 5: 1.55-1.70 pm)
Swath 23.9 km 141 km
Image size (in pixels) 18000 x 16000 7700 x 7000

Green (Band 2: 0.52-0.59 pm)
Spectral bands Red (Band 3: 0.62-0.68 pm)
Near infrared (Band 4: 0.77-0.86 pm)

Furthermore, the specifications of LISS-IIT and LISS-IV sensors are given in
Table 4.2. To select test images from these datasets for dictionary training, 200
regions of interests (Rols) ranging from 256 x 256 to 512 x 512 are cropped. In a

similar way, in the DL-based training, an equal number of Rols of the size 256 x 256

INRSC Data Center: https://www.nrsc.gov.in/eos dissemination
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AID PatternNet LISS-IV LISS-IIT

(a) Test-1 (600 X 600) (c) Test-3 (256 X 256)

Figure 4.3: Representative HR images of different datasets considered for testing
the proposed method and other state-of-the art SR methods. Column wise: Test 1
and Test 2 from AID; Test 3 and Test 4 from PatternNet; Test 5 and Test 6 from
LISS-IV; Test 7 and Test 8 from LISS-III.

are to be cropped from the original images of LISS-III and LISS-IV sensors to
bring uniformity in terms of number and size of images with respect to the two
benchmark DL datasets (AID, and PatternNet). Two representative test images
from each dataset are used to check the effectiveness of the proposed method over
all the compared SR methods as shown in Fig. 4.3. For testing, original LR images
are blurred by using 5 x 5 (6 =1.2), 7x 7 (60 =1.4), and 9 x 9 (¢ = 1.6) Gaussian
filters followed by downsampling by 2, 3 and 4, respectively. All the simulations are
performed with the following parameter settings: dictionary size: 512, patch size:
7 x 7, no. of pixels in overlap for patch extraction: 6, regularization parameters:

A = 0.15, constants: p; = 0.00015, j5 = 0.005 and § = 1072,

4.4.2 Ablation Study

An ablation study is also conducted to validate the effectiveness of each component
of the proposed method on AID test dataset for 2x factor as shown in Fig.4.4.
Specifically, the study evaluates the impact of different components, showing that
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ScSR with SIFT Proposed

25.49dB 26.14 dB 26.89 dB 30.67 dB

Figure 4.4: Evaluation of the impact of each component of the proposed method on
the SR performance.

using only patch-based reconstruction (ScSR) i.e. arg mkin% HS HXk o — YHi, yields
X
a PSNR of 26.14 dB. However, incorporating SIFT keyggints-driven reconstruction
alongside patch-based methods (ScSR with SIFT) i.e arg rr}ein HSHX’}JR — YH? +
XHR

||IC¢(SH XK p) — Dg_keypomtafnz enhances PSNR by an additional 0.75 dB. More-
over, the proposed joint reconstruction model results in PSNR improvements of

4.53 dB over patch-based methods.

4.4.3 Performance evaluation

We have compared the proposed method both visually and quantitatively with
state-of-the-art methods: sparse-representations-based SR methods, like ScSR [118],
A+ [99], CCR [131], JRSR [14], CDLSR [90], and DL-based SR methods, like SR~
CNN [22], VDSR [45], MHAN [125], SAN [18] and CFSRCNN [97]. Visual results are
analyzed to assess the perceptual quality of the reconstructed images. Furthermore,
quantitative evaluations are carried out in terms of PSNR, SSIM, ERGAS [105],
SAM [121], Q-index [113] and sCC [137], which are commonly used for the eval-
uation of the quality of RS image reconstruction. Besides, EPI [84] and PSI [30]
metrics are used to measure the quantity of edges preservation, and sharpness in
the reconstructed image. Higher PSNR, SSIM, UIQI, sCC, EPI and PSI and lower
ERGAS and SAM indicate that the reconstructed image quality is better.
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4.4.3.1 Visual results

A visual comparison of various SR methods is performed on ‘Test-2’ and ‘Test-5’
images for different zooming factors. The reconstructed images for different scaling
factors are shown in Fig. 4.5 and 4.6 for ‘Test-2’ and ‘Test-5’, respectively. All
the results are shown in false RGB format as the test images are in false color

composition only. In the figure, ROIs are highlighted and presented in their scaled

Zooming factor 2

Original Image

Zooming factor 3

CFSRCNN

Zooming factor 4

CDLSR SRCNN VDSR SAN MHAN CFSRCNN Proposed
Figure 4.5: Visual results of different methods on Test-2 of AID for different zooming
factors.

versions for better interpretation of the visual results. It is clear from the results
that the perceptual quality of the proposed method is better than those of other

methods. It is capable of retaining textural as well as structural characteristics
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with sharp edges. Other SR approaches, such as ScSR, A4+, CCR, CDLSR, and
DL-methods do not consider blurring in the degradation model to generate the LR

images in their works; they only use downsampling operation. It is clearly visible

Upscaling factor 3 Upscaling factor 2

Upscaling factor 4

- . . . ar
JRSR CDLSR SAN MHAN CFSRCNN Proposed

Figure 4.6: Visual results of different methods on Test-5 of LISS-IV for different
zooming factors.

that these methods are unable to overcome the effects of blurring and downsampling,
simultaneously. Although visual outputs of these methods for 2x show satisfactory

appearance to some extent, their qualities suffer greatly for 3x and 4x upscaling.
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Furthermore, the visual output of JRSR is slightly closer to that of the proposed
method for 2x zooming factor, but it produces smoother results for higher zooming
factors, such as 3x and 4x. While, CDLSR produces block artifacts around the
edges for 4x zooming factor. However, the proposed method provides better visual
output in terms of edges and other structures for different zooming factors (2x, 3x

and 4x).

4.4.3.2 Quantitative analysis

Quantitative analysis of several state-of-the-art SR methods in terms of different
objective evaluation metrics are shown in Tables 4.4-4.6 using different datasets for
different zooming factors. In case of AID, the proposed method has the highest
average PSNR, which results in an improvement of 1.2-3.5 dB, 1.7-4.1 dB, and 2.1-
4 dB over other methods for x2, x3, and x4 zooming, respectively, as shown in
Table 4.3. From Table 4.4, it can be observed that the proposed method achieves
the maximum PSNR for PatternNet, with improvements of 2.1-5.8 dB, 1.4-6.4 dB,
and 0.66-5.3 dB for x2, x3, and x4 zooming, respectively. Although the proposed
method performs well on PatternNet, its improvement is lower than that of the
AID test data for x4 zooming. Therefore, it is observed that the proposed method
underperforms on images with less edges and structures. Similarly, SSIM, ERGAS,
SAM, Q-Index, sCC values of the proposed method outperform others for x2, x3,
and x4 zooming on both the datasets. Tables 4.4 and 4.3 clearly show that EPI
and PSI scores of the proposed method are greater than the other SR methods for
all the test data of Patternnet and AID. Therefore, it is very much evident that
the efficiency of proposed method to restore the edges and sharp structure is highly
promising. Although JRSR provides comparable PSNR results, it performs poorly
in terms of EPI and PSI compared to the proposed method. Further, the proposed
method is also compared with some of the state-of-the-art DL-based SR methods, i.e.
SRCNN, VDSR, SAN, CFSRCNN and MHAN. It is found that the proposed method
performs better than the DL-based SR methods. While, this observation is rather

surprising for the author as such, the reason may be probably due to the blurring
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Table 4.3: Quantitative analysis of different methods on the

test images of AID for 2x, 3x and 4x zooming.

) . AID
Zooming Factor | Test Tmage | Metric Bicubic | ScSR | A+ | CCR | JRSR | CDLSR | SRCNN | VDSR | SAN | MHAN | CSRCNN | Proposed
PSNR (dB) T | 23.30 | 24.10 | 24.60 | 24.62 | 26.12 | 25.68 24.35 2144 | 2554 | 2503 | 25.82 27.03
SSIM 7 0848 | 0.8%4 | 0.001 |0.895 |0.957 |0.014 0.8%66 | 0.800 | 0930 | 0935 | 0.034 0.963
ERGAS | [105] | 9.110 | 8.398 | 7.835 | 7.001 | 6.219 | 7.00 8.165 808 | 7110 | 6.808 | 6.891 5.998
» SAM | [121] | 0.1666 | 0.1274 | 0.1428 | 0.1440 | 0.1135 | 0.1535 | 0.1403 | 0.1478 | 0.1300 | 0.1243 | 0.1250 0.1094
UIQI T [113] | 0.6097 | 0.7247 | 0.6911 | 0.6403 | 0.7653 | 0.7200 | 0.4950 | 0.4997 | 0.5677 | 0.5760 | 0.5682 0.8294
sCC T [137] 0.9590 | 0.0686 | 0.9712 | 0.9674 | 0.9790 | 0.9748 | 0.0472 | 0.9484 | 0.9637 | 0.9684 | 0.9680 0.9824
EPI 1 [84] 04402 | 0.4727 | 0.5242 | 0.5281 | 05579 | 0.5802 | 0.5221 | 0.4588 | 0.4748 | 0.5262 | 0.4748 0.6252
PST T [30] 0.2410 | 0.3062 | 0.3124 | 0.2677 | 0.3458 | 0.3558 | 0.3293 | 0.3007 | 0.3477 | 0.3560 | 0.3477 0.3895
PSNR (dB)T | 2127 | 20147 |23.23 | 23.25 | 24.03 | 23.28 22.33 2240 | 23.22 | 23.46 | 23.37 25.00
SSIM 7 0.697 | 0731 | 0.826 | 0.826 | 0.885 | 0.840 0.768 0772 | 0824 | 0832 | 0.829 0.898
ERGAS | [105] | 11.625 | 11.366 | 9.263 | 9.249 | 8.467 | 9.232 10300 | 10.215 | 9.205 | 9.040 | 9.137 7.490
3 Test1 | SAM [ [121] | 02135 | 0.2088 | 0.1692 | 0.1690 | 0.1493 | 0.1691 | 0.1889 | 0.1873 | 0.1702 | 0.1655 | 0.1673 0.1362
UIQI T [118] | 04798 | 0.5327 | 0.6206 | 0.6206 | 0.7155 | 0.6450 | 0.5494 | 0.5549 | 0.4202 | 0.6354 | 0.6304 0.8013
sCC T [137] 0.8540 | 0.8612 | 0.9142 | 0.9144 | 0.9259 | 0.9100 | 0.8877 | 0.8807 | 0.9185 | 0.9147 | 0.9128 0.9473
EPI 1 [84] 05064 | 0.5085 | 0.5413 | 0.5498 | 0.5213 | 05691 | 05090 | 0.4902 | 0.5033 | 0.5245 | 0.5237 0.7407
PST 1 [30] 0.1006 | 0.1958 | 0.2058 | 0.2447 | 0.3385 | 0.2104 | 0.2498 | 0.2145 | 0.2816 | 0.2805 | 0.2453 0.4090
PSNR (dB) T |20.01 ] 10.86 |22.10 |22.11 |22.02 |21.94 2L11 2017 | 2121 |21.80 | 21.82 23.74
SSIM 7 0562 | 0584 | 0741 | 0.740 | 0.745 | 0.762 0.646 0649 | 0713 | 0718 | 0711 0.894
ERGAS | [105] | 13.438 | 13.684 | 10.543 | 10549 | 10.671 | 10.760 | 11.842 | 11.767 | 11.716 | 10.835 | 10.923 8.755
é SAM | [121] | 0.2476 | 0.2521 | 0.1031 | 0.1932 | 0.1958 | 0.1975 | 0.2176 | 0.2162 | 0.2139 | 0.1988 | 0.2005 0.1493
UIQI T [113] | 03349 | 0.3712 | 0.5176 | 0.5164 | 0.5221 | 05528 | 0.4063 | 0.4072 | 0.5045 | 0.4880 | 0.4787 0.7155
sCC 1[137] 0.7993 | 0.7924 | 0.8858 | 0.8855 | 0.8788 | 0.8767 | 0.8484 | 0.8505 | 0.8579 | 0.8748 | 0.8726 0.9219
EPI 1 [84] 0.4096 | 0.4185 | 0.5085 | 0.5027 | 0.4969 | 05101 | 0.4705 | 0.4514 | 0.4527 | 0.4596 | 0.4332 0.7410
PST 1[30] 0.1768 | 0.1876 | 0.1902 | 0.2137 | 0.1729 | 0.3105 | 0.1957 | 0.1672 | 0.2272 | 0.2240 | 0.1955 0.3849
PSNR | 2798 | 2885 |29.18 | 28.86 | 30.82 | 30.45 28.09 2819 |20.10 | 29.46 | 20.40 31.45
SSIM 7 0.858 | 0.898 | 0.000 | 0.883 |0.940 | 0.919 0.815 0.851 | 0.880 | 0.898 | 0.896 0.953
ERGAS | [105] | 8012 | 8.050 | 7.804 | 8.099 | 6450 | 6.737 8.824 8729 | 7879 | 7552 | 6.009 6.009
» SAM | [121] | 0.1576 | 0.1182 | 0.1369 | 0.1421 | 0.1134 | 0.1423 | 0.1556 | 0.1538 | 0.1384 | 0.1328 | 0.1333 0.1055
UIQI T [118] | 05844 | 0.7446 | 0.6775 | 0.6352 | 0.7674 | 0.6795 | 0.5450 | 0.5544 | 0.6304 | 0.6422 | 0.6387 0.8037
sCC T [137] 0.9371 | 0.0491 | 0.9535 | 0.9497 | 0.9676 | 0.9656 | 0.0384 | 0.9398 | 0.9510 | 0.9553 | 0.9547 0.9720
EPI 1 [84] 05275 | 0.5467 | 0.6059 | 0.6097 | 0.6027 | 0.6406 | 0.5372 | 0.5378 | 0.5541 | 0.5010 | 0.5541 0.6537
PST 1 [30] 0.2460 | 0.2614 | 0.2731 | 0.2565 | 0.3477 | 0.4249 | 0.3078 | 0.2896 | 0.3260 | 0.3579 | 0.3260 0.3772
PSNR 1 26.11 | 26.316 | 27.62 | 27.62 | 28.18 | 27.36 26.43 2652 | 2692 | 27.15 | 27.09 30.49
SSIM 7 0747 | 0775 | 0.831 | 0.830 | 0.860 | 0.817 0.742 0746 | 0.773 | 0.783 | 0.782 0.924
ERGAS | [105] | 11.041 | 10.790 | 9.340 | 9.344 | 8.727 | 9.504 10.678 | 10.562 | 10.090 | 9.834 | 9.897 6.645
3 Test2 | SAM [ [121] | 0.961 | 0.1915 | 0.1642 | 0.1642 | 0.1556 | 0.1695 | 0.1889 | 0.1869 | 0.1782 | 0.1737 | 0.1748 0.1175
UIQI T [118] | 0.4027 | 0.4682 | 0.5371 | 0.5355 | 0.5450 | 05112 | 0.3640 | 0.3705 | 0.4202 | 0.4227 | 0.4224 0.7703
sCC T [137] 0.9007 | 0.0054 | 0.9322 | 0.9321 | 0.9397 | 0.9265 | 0.0081 | 0.9101 | 0.9185 | 0.9226 | 0.9216 0.9664
EPI 1 [84] 0.4286 | 0.4718 | 0.5119 | 0.5012 | 0.5228 | 0.4424 | 0.4654 | 0.4576 | 0.4384 | 0.4613 | 0.4346 0.7552
PSI 1 [30] 02243 | 0.2424 | 0.2503 | 0.2651 | 0.3172 | 0.2050 | 0.9552 | 0.2133 | 0.2536 | 0.2866 | 0.2242 0.4254
PSNR 1 2505 | 2491 | 26.63 | 26.607 | 26.43 | 26.54 25.52 2561 | 2550 ] 2603 | 25.995 29.07
SSIM 7 0.662 | 0.676 | 0.765 | 0.763 | 0.752 | 0.778 0.665 0672 | 0.693 | 0702 | 0.699 0.920
ERGAS | [105] | 12.468 | 12.662 | 10.468 | 10.503 | 10.675 | 10.635 | 11.837 | 11721 | 11750 | 11.162 | 11.219 7.819
“ SAM | [121] | 0.2221 | 0.2254 | 0.1843 | 0.1850 | 0.1889 | 0.1863 | 0.2100 | 0.2079 | 0.2063 | 0.1977 | 0.1983 0.1556
UIQI T [113] | 02803 | 0.3213 | 0.4229 | 0.4205 | 0.3987 | 0.4516 | 0.2568 | 0.2634 | 0.3099 | 0.2097 | 0.2955 0.5459
sCC T [137] 0.8711 | 0.8672 | 0.9135 | 0.9129 | 0.9080 | 0.9107 | 0.8356 | 0.8879 | 0.8800 | 0.8980 | 0.8895 0.9514
EPI 1 [84] 0.3741 | 0.4037 | 0.4132 | 0.4100 | 0.4241 | 0.3894 | 0.3091 | 0.3941 | 0.4082 | 0.4035 | 0.3781 0.7562
PSI 1 [30] 0.1922 | 0.2117 | 0.2255 | 0.2228 | 0.1732 | 0.2785 | 0.1905 | 0.1662 | 0.1997 | 0.2192 | 0.1766 0.4238

¢t means the higher the value, the better and ‘|’ denotes that the smaller

the value is, the better. Bold: indicates the best results.
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1Iscussion

4.4. Results and D

Table 4.5: Performance evaluation of different methods for test images of LISS-IV

using x2, x3 and x4 zooming.

Zooming Factor | TestImage | Metric LISS-IV
Bicubic | ScSR | A+ CCR | JRSR | CDLSR | SAN | MHAN | CSRCNN | Proposed
PSNR (dB) 1 | 25.56 26.01 | 27.34 | 27.34 | 30.30 | 28.61 29.08 | 29.62 28.98 31.46
SSIM 1 0.808 0.840 | 0.881 | 0.882 | 0.958 | 0.922 0.948 | 0.953 0.946 0.973
ERGAS | [105] | 3.794 3.604 | 3.088 |3.091 |2.192 | 2.666 1.919 |2.373 2.553 1.756
%2 SAM | [121] 0.0749 0.0712 | 0.0609 | 0.0610 | 0.0433 | 0.0526 0.0498 | 0.0468 0.0501 0.0378
UIQI 1 [113] 0.4370 0.4556 | 0.6037 | 0.6032 | 0.6636 | 0.6412 0.6633 | 0.6599 0.6694 0.7086
sCC 1 [137] 0.8803 0.8921 | 0.9272 | 0.9270 | 0.9604 | 0.9410 0.9472 | 0.9536 0.9465 0.9708
EPI 1 [84] 0.6780 0.6813 | 0.8705 | 0.8580 | 0.7414 | 0.6634 0.7374 | 0.7703 0.7831 0.8067
PSI 1 [30] 0.2364 0.2413 | 0.2497 | 0.2589 | 0.3410 | 0.3153 0.3048 | 0.3027 0.3129 0.3715
PSNR (dB) 1 | 23.39 23.19 | 2541 | 2540 |25.88 | 25.61 25.85 | 25.90 25.87 27.20
SSIM 1 0.631 0.641 | 0.775 | 0.776 | 0.820 | 0.804 0.822 | 0.819 0.827 0.868
ERGAS | [105] | 4.874 4.988 |3.862 | 3.867 |3.651 | 3.768 3.671 | 3.647 3.659 3.241
<3 Test 5 SAM | [121] 0.0964 0.0986 | 0.0763 | 0.0764 | 0.0721 | 0.0744 0.0725 | 0.0720 0.0718 0.0679
UIQI 1 [113] 0.4370 0.4556 | 0.6037 | 0.6032 | 0.6636 | 0.6412 0.6633 | 0.6599 0.6694 0.7090
sCC 1 [137] 0.7874 0.7758 | 0.8782 | 0.8777 | 0.8865 | 0.8787 0.8851 | 0.8865 0.8861 0.8999
EPI 1 [84] 0.3955 0.4029 | 0.5318 | 0.5204 | 0.5507 | 0.5515 0.5719 | 0.5767 0.5172 0.5812
PSI 1 [30] 0.2041 0.2107 | 0.2193 | 0.2229 | 0.2353 | 0.2260 0.2249 | 0.2336 0.2558 0.3050
PSNR (dB)?t 22.30 21.83 | 23.89 |23.87 |24.52 |24.31 24.10 | 24.29 24.33 25.94
SSIM 1 0.504 0.499 |0.642 | 0.641 |0.726 | 0.717 0.698 | 0.706 0.724 0.790
ERGAS | [105] | 5.526 5.833 | 4.600 | 4.614 | 4277 | 4.383 4491 | 4.396 4.374 3.986
d SAM | [121] 0.1093 0.1154 | 0.0909 | 0.0912 | 0.0845 | 0.0866 0.0888 | 0.0875 0.0863 0.0801
UIQI 1 [113] 0.2972 0.3014 | 0.4311 | 0.4290 | 0.5344 | 0.5323 0.4929 | 0.5038 0.5277 0.6013
sCC 1 [137] 0.7151 0.6830 | 0.8197 | 0.8180 | 0.8409 | 0.8333 0.8221 | 0.8304 0.8328 0.8580
EPI 1 [84] 0.303 0.3368 | 0.3639 | 0.3676 | 0.4884 | 0.3872 0.4174 | 0.4479 0.4449 0.4893
PSI 1 [30] 0.1557 0.1675 | 0.1730 | 0.1789 | 0.1906 | 0.2602 0.2081 | 0.1803 0.1804 0.2619
PSNR (dB) 1 | 32.60 31.61 | 34.05 |34.01 |37.08 | 36.53 36.11 | 36.86 36.20 39.68
SSIM 1 0.976 0.966 | 0.989 | 0.988 | 0.997 | 0.996 0.994 | 0.994 0.995 0.999
ERGAS | [105] | 2.574 2.885 | 2.176 | 2.188 | 1.460 | 1.636 1.723 | 1.583 1.702 1.164
%2 SAM | [121] 0.0505 0.0565 | 0.0426 | 0.0428 | 0.0266 | 0.0320 0.0335 | 0.0310 0.0333 0.0237
UIQI 1 [113] 0.6886 0.6034 | 0.7439 | 0.7305 | 0.8369 | 0.7954 0.7857 | 0.7964 0.7944 0.8360
sCC 1 [137] 0.9493 0.9365 | 0.9652 | 0.9647 | 0.9857 | 0.9795 0.9773 | 0.9810 0.9777 0.9978
EPI 1 [84] 0.5443 0.5629 | 0.6320 | 0.6339 | 0.7328 | 0.6802 0.7005 | 0.7271 0.6348 0.7783
PSI 1 [30] 0.1974 0.2097 | 0.2351 | 0.2337 | 0.3128 | 0.2875 0.2846 | 0.2880 0.2519 0.3298
PSNR (dB) 1 | 30.08 30.14 | 3245 | 3244 |32.80 | 32.70 3249 | 32.79 32.76 34.33
SSIM 1 0.939 0.943 10982 | 0981 |0.990 | 0.988 0.982 | 0.982 0.984 0.994
ERGAS | [105] | 3.4401 3.4218 | 2.627 | 2.625 | 2.466 | 2.562 2.621 | 2.545 2.558 2.275
<3 Test 6 SAM | [121] 0.0675 0.0671 | 0.0515 | 0.0514 | 0.0483 | 0.0502 0.0509 | 0.0499 0.0501 0.0455
UIQI 1 [113] 0.5142 0.5266 | 0.6463 | 0.6384 | 0.6565 | 0.6328 0.6256 | 0.6290 0.6361 0.6729
sCC 1 [137] 0.9059 0.9065 | 0.9479 | 0.9478 | 0.9516 | 0.9492 0.9474 | 0.9503 0.9500 0.9669
EPI 1 [84] 0.4295 0.4333 | 0.4706 | 0.4725 | 0.5156 | 0.5133 0.4855 | 0.5451 0.4886 0.5502
PSI 1 [30] 0.2066 0.2107 | 0.2126 | 0.2153 | 0.2244 | 0.2197 0.2262 | 0.2306 0.2384 0.2836
PSNR (dB) t | 28.72 2838 |30.76 |30.74 |31.01 | 31.31 30.78 | 30.79 30.59 32.67
SSIM 1 0.913 0.923 | 0.960 | 0.959 | 0.987 | 0.974 0.960 | 0.957 0.958 0.993
ERGAS | [105] | 4.019 4185 |3.190 |3.193 |3.094 | 3.005 3.205 | 3.203 3.269 2.787
d SAM | [121] 0.0789 0.0822 | 0.0625 | 0.0626 | 0.0606 | 0.0589 0.0626 | 0.0628 0.0640 0.0556
UIQI 1 [113] 0.3876 0.3817 | 0.5118 | 0.5036 | 0.5176 0.5031 | 0.4874 0.4901 0.6169
sCC 1 [137] 0.8681 0.8570 | 0.9210 | 0.9207 | 0.9253 0.9195 | 0.9198 0.9157 0.9450
EPI 1 [84] 0.3442 0.3690 | 0.3582 | 0.3567 | 0.4048 0.3493 | 0.3844 0.3978 0.4750
PSI 1 [30] 0.1806 0.1842 | 0.1856 | 0.1854 | 0.2401 0.1766 | 0.1798 0.1849 0.2353

¢t means the higher the value, the better and ‘|’ denotes that the smaller the value is, the better. Bold: indicates the best results.

108



Chapter 4. Development of Edge Preserving Remote Sensing Single
Image Super-resolution based on Global Dictionary Learning and

Sparse Representations

.ma~:mw& GM@Q w:m— W@#“Umv=m "Hvﬁom— .hwm—n—ywﬁﬂ w:uy rmM w:~.m> W:G &wﬁ—NEm wﬁmm— G.N:n— MWGO—\-@v mﬂu v:m h@&uwﬂ w-‘mu »w-\-—“\r wﬂmm— Haa\—wmﬂm @ﬁ—m— sueawx

L8720 11810 ] LIST'0 [ 88910 |  T¥be 0| 9441°0 | SPST°0 | GOLT0 [ G210  L0STO [og] | 1Sd

689£°0 962€°0 | 0¥ge0 | GETE'0 | 19860 | 82re0 | 9vee’0 | L8670 | 922€°0 | 680€°0 [vs] | 1da

G676°0 68260 | 11660 | 08260 | OFFG0 | 69¥6°0 | PEFG0 | £676°0 | 6568°0 | 22060 [.e1] | DOs

129570 T8IF0 | 6170 | 6ETF0 | 9LIG0 | 20250 | vlF0 | 87270 | c1¥e0 | egee0 | [e11] 4 10IN o
278070 Y1010 | 000T°0 | £201°0 | €060°0 | 2280°0 | 1160°0 | 11600 | 1cer0 | €8110 |  [161] T INVS v
0677 0egS veeG | 16vS 2607 2667 | 8LLF | 6LL7 | €6€9| w619 | [g0T) T SvHud

2660 6260 | 68610 2260 6860 | 14610] 6960] 6960] ¥060| €680 | 1SS

gz’ 1g 99'82 €8'8C | 29T 6,62 | 200g| 1,62 | 1,62 o le 672z | | (gp) UNSd

6862°0 8L1Z°0 | 16120 | SP61°0 | S012°0 | P10 | 8¥12°0 | 02120 | 00160 | 02120 [og] 1 15d

99770 06,670 | 164670 | €290 | 92860 | €96€°0 | G2¥r 0 65FE0 | L62E0 [¥8]  1dd

1046°0 16760 | 687670 | G8F6°0 7996°0 | 2856°0 | FFS6°0 €660 | LT60 [2e1] L DOS

6199°0 68VG°0 | 179S0 | TP9G0 | €£09°0 | 80290 | 08950 19670 | 0Spp0 | [e11) ) IOIN -
¥520°0 980°0 | 98070 | 9980°0 | 96200 | 6L0°0 | 0280°0 2501°0 | 9801°0 [tet] T s | 8L ’
600'F% ves Y Tey | €99 117 | 1807 | y08¥ Y16°G 666 | [e0T] T SvDud

686°0 €960 €960 | 2960 G860 | 8860 | 460 860 | 12670 | NISS

£TTe trog | 2008 | co0g eg0g | eote| 1908 1908] 6F8e 1,8z | | (@p) UNSd

687270 T81°0 | 8981°0 [ L9810 | 70520 | €481°0 | €261°0 | 9981°0 | L9610 | 88.T°0 [og] | 1Sd

60570 8870 | €870 | 6ELF0 | £64F°0 | 06160 | 21670 | 85570 | 2eeb 0 | 99070 [vs] | 1da

6886°0 86960 | 20460 | 08960 | 02460 | 29460 | 29960 | 29960 | 68560 |  L¥S60 [Le1] | DOs

qzI8°0 7920 | 8824°0 | L9240 | OTPL0 | 22040 | 19290 | 68290 | €259°0 | 2£190]| [er1] | IDIN ox
9950°0 £990°0 | £990°0 | 0690°0 | 0F90°0 | 0650°0 | 8020°0 | 60.0°0 | 82200 | 9180°0 | [1e1] T INVS

¥28T 609°€ esre | <99 L6e¢ | 860°¢ | 1eLe | cere| 180 zsev | [so1] T svoud

866°0 9860 | 98610 | 9860 G660 | 9660 | 8860 | 8860 | 9L670 1260 | NIss

€67 Leee | svee | v6Ie oree | Leee| os1e| ose| Lo1e]  990¢| | (ap) UNsd

6872°0 TSST0 | 896T°0 29910 70520 | €481°0 | €251°0 | 0261°0 [ LO¥I°0 ] 88FT°0 [og] | 1Sd

296€°0 07E€0 | 60960 | L2E€'0 | G2re0 | 00460 | 2€8€°0 | 128€°0 | 11260 |  20€0 [vs] | 1da

YEE6°0 TI68°0 | 89680 | #2680 | 19160 | L616°0 | 9¥16°0 | ¥¥I6°0 | S2F80 | 0180 [.e1] L DOs

0129°0 08LF0 | GISFO | STLF0 | 86550 | 2el0 | 92650 | 220 | #99¢°0 | 10c€0 | [eT1] 4 1OIN o
G€0°0 €.80°0 | 898070 | 228070 | 68200 | 2920°0 | 2620°0 | 26200 | 1501°0 | 12010 |  [1=1] T INVS v
11L°¢ 197°F S6ev | 1egT SI07 | g68°€| LPOF | 1G0T | 99€G €126 | [s0T] T SvOud

888°0 7080 | 080 66L0 680 | 1980| 1980| 80| €1L0]  ¥ILO | 1SS

g8°0¢ 18T 659°8C | 2E'Se 662 | G96Z | ce6e | 1662 | S8°0C erlz | L(gp) UNSd

1762°0 60120 | 69020 | 0661°0 | 98120 | 62620 | 6812°0 | 15220 | 80220 | S602°0 [og] 1 15d

92E7°0 OF8E0 | L¥8E0 | 2ISE0 | 080F0 | 6200 | €£66°0 | 685670 | 056€°0 | GLOE0 [vs] | 1dd

8676°0 ¥ET6'0 | 08860 | L6g60 | 0PE60 | 99860 | 21660 | 11660 | £PS8°0 | 86880 [2e1] | DOs

¥469°0 66090 | 17190 | 2€29°0 | 86790 | 09990 | 91190 | #2190 | G060 | =080 |  [er1] 4 1OIN ex
95900 er00 | €700 | PPL00 | £690°0 | 0890°0 | S120°0 | 91200 | 80600 | 28800 |  [121] T INVS ‘ ’
10€°€ TIse 118°¢ | gese avae | sive| 699 | ©99e| 6e0F |  eesv | [sor] T svoum| <ML

626°0 €80 0,80 880 2060 | 60610 | 888°0| 4880 ] 66L0| 0080 1 INISS

¥8°1E £8°62 7868 | 6L°6C sF0g | go0e| ozog | srog| ¥Ise ve'se | | (gp) UNSd

265€°0 86,270 | 06420 | 16920 | 90620 | 082¢0 | 20520 | 95520 | 01660 | 86620 [og] | 1Sd

1€85°0 0090 | G100 | T16V0 |  7€6F°0 | 07250 | 69950 | 6550 | 2r6F0 | 18270 [vs] | 1da

044670 GVS6'0 | ¥9S6'0 | FES60 | $996°0 | $296°0 | 9860 | L8¥6'0 | 92660 | ¥IE60 [Le1] | DOs

S078°0 869270 | 2122066940 16920 | 20080 | 06040 | 60120 | €989°0 | ¢or90 | [eT1] | IDIN ox
9.70°0 64500 | GLC0°0 | 26500 | 9950°0 | 92500 | 22900 | 22900 | 82900 | 01.00 |  [121] T INVS

LEVT 1L6C 1762 | 0L0°€ 9687 | 2697 | ISI'E| e81€ | Lov€ zeoe | [so1] T svoud

¥86°0 8FG0 | 8F60 | LFGO $560 | G960 | €660 | ¥66°0 | CI60| 0060 | NISS

oF'FE voee | pree | GLIe voee | L8ce | crie| erie| 290g|  Leog | 1 (P) UNSd

[ pesodoagd [ NNOUSO [ NVHIN | NVS [ UsTa0 [Hsur | ¥p0 [ +V [ ¥sog [ oiqnarg | B [ p——

II1-SSIT

‘Burmooz Fx pue ¢x ‘gx Suisn [[[-SSTT JO soSewl 1899 I0J SPOYIOUL JUSISHIP JO UOIJEN[RAd 9OURWLIONSJ :9°F 9[qel,

109



4.4. Results and Discussion

imposed by the image degradation model on the input images before feeding to the
networks for the training. It will be interesting to see if the existing DL models can be
modified to counter the degradation component as well in our subsequent works. The
proposed method is also compared with the recent generative adversarial network
(GAN)-based SR method i.e best-buddy GAN (Beby-GAN) [59], and reveals that
although the GAN-based method achieves excellent perceptual results, the PSNR
is 2-3 dB lower than the proposed method. The proposed method produces the
best visual results supported by higher PSNR and better edge preservation. In
a subsequent experiment, some other sparse representation-based approaches and
the recent DL-based SR methods, i.e. SAN, CFSRCNN and MHAN are compared
with the proposed method on LISS-IV and LISS-IIT datasets. Averaged results for
LISS-IIT and LISS-IV computed over all the band images for each test image are
shown in Tables 4.6 and 4.5. In terms of PSNR, on an average, the proposed
method outperforms others in the ranges of 1.9-6.5 dB, 1.4-3.7 dB, and 1.5-4.2 dB
for x2, x3, and x4 upscaling, respectively on LISS-IV images. In case of LISS-III,
the proposed method achieves the highest PSNR compared to other methods by an
improvement of 1.5-4.1 dB, 1.1-3.5 dB, and 1.2-3.7 dB, respectively, for x2, x3,
and x4 zooming. Furthermore, the quantitative measures on ‘Test-4’ and ‘Test-8’
images are shown graphically in Fig. 4.7. The above detailed analysis shows that
the proposed method is able to maintain the reconstruction quality as well as retain

edges and structural features more effectively.

4.4.4 SR on real MS images

In order to validate the robustness of the proposed method, a comparison experiment
is also carried out on real-world MS remote sensing images. Unlike the previous ex-
periments, real-world LR remote sensing image is not subjected to synthetic blurring
and downsampling. This LR image is fed directly to the proposed method and other
SR methods for 2x and 4x zooming. We use two non-reference-based quantitative
metrics, i.e., NIQE [67] and entropy (EN), to evaluate the outputs, as the ground-

truth HR image is not available in this case. Ideally, a lower score of NIQE and
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Figure 4.7: Performance evaluation of various methods on Test-4 of PatternNet and

Test-8 of AID for different zooming factors.
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4.4. Results and Discussion

higher score of EN indicate a better reconstruction result. Here, we have conducted
an experiment on a LISS-IV real LR image of size 256 x 256 for 2x and 4x zooming,
as shown in Fig. 4.8, where NIQE and EN values are given along with the visual
results. We have compared the proposed method with sparse-representations-based
and one of the best performing DL method i.e MHAN. From visual results and
quantitative metrics shown in Fig. 4.8, it is found that the proposed method obtains

lower NIQE and higher EN with better visual results.

Input ScSR RSR CDLSR MHAN Proposed

5.89/5.701 5.77/5.768  5.71/5.770  5.22/5.783  5.64/5.762 5.72/5.779 5.16/5.801

=<
i

NIQE/EN 7.34/5.698  7.2/5.754  7.09/5.769  7.01/5.772  7.05/5.759  7.08/5.772  6.50/5.791

Figure 4.8: SR results of LISS-IV images without blurring for different methods at
different scales.

4.4.5 Convergence test and Complexity analysis

An experiment on the proposed dictionary learning is performed by observing the
PSNR of the reconstructed image to determine convergence. Fig. 4.9 presents the
convergence plot for ‘Test-5" at 2x zooming, over 30 iterations. The optimal stop-
ping point is identified at the 20" iteration, beyond which PSNR improvements
level off, suggesting that PSNR improvements remain uniform beyond this point,

suggesting that the proposed dictionary learning method converges effectively.

The computational complexity of the proposed dictionary learning method is
significantly influenced by the K-SVD algorithm, which is central to the learning
process. The K-SVD step iteratively updates dictionary atoms and performs sparse
coding of all patches. The complexity of this step: O(T x (n x t x k x r?> +k x (m x
r2+73))), where T' denotes the number of iterations, n the number of patches, ¢ the

sparsity level, k the number of dictionary atoms, r the patch size, m the number
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Figure 4.9: Convergence analysis of the proposed method on ‘Test-5 for 2x zooming:

PSNR vs number of iterations.

of feature maps. In this proposed method, two dual dictionary learning processes

are implemented using KSVD: keypoints-based and non-keypoints-based coupled

dictionary learning. Fach process operates independently within the same overall

algorithmic framework. Given this dual-dictionary approach, the computational

loads of the sparse coding and dictionary update steps from each dictionary are

cumulative. Consequently, the total time complexity for the method is O(2 x T x

(nxtxkxr?+2xkx(mxr?+r?))), reflecting the increased computational demand

due to constructing two distinct dictionary learning processes simultaneously.

4.4.6 Parameters empirical study

(i) The effect of patch size and numbers of overlapping pixels: The

performance of the proposed method depends on the patch size and number

of overlapping pixels. Different patch size with varying number of overlapping

pixels are applied to LISS-IV Test-5 image for zooming factor 2 to check their

impact on the proposed method as shown in Fig. 4.10a. The PSNR values

for overlapping of 2, 3, and 4 obtained by patch size 5x5 are 32.46, 32.48,

and 32.50, respectively. When the patch size is 7x7 and the number of pixel

overlappings ranges from 4 to 6, the PSNR results are 32.59, 32.60, and 32.62,

respectively. Similarly, The PSNR results for patch size 9x9 with number

of overlapping pixels 6 to 8 are 32.58, 32.59 and 32.60, respectively. The

results in Fig. 4.10a indicate that the highest PSNR for the proposed method

is achieved when the patch size and number of overlapping pixel are 7x7 and
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(i)

(iii)

6, respectively. Therefore, these values are selected for the proposed method.

The effect of \: Fig. 4.10b shows the PSNR obtained by the proposed method
on LISS-IV Test-5 image for zooming factor 2 by varying the A value ranges
from 1.2 to 1.8. It is observed from Fig. 4.10b that the PSNR value reaches

its maximum when A valus is 0.15.

Trade-off parameters p; and ps: The selection of optimum values for
and ps in Eq. 4.11 is essential as it indicates the relative importance of NLTV-
and key-point sparsity priors. Here, we consider LISS-IV Test-5 image as
examples to demonstrate how p; and ps impact on the performance of the
proposed method in zooming factor 2. The PSNR surface plot for Test-5 are
shown in Fig. 4.10c, where psy values range from 0.001 to 0.007 and the ratio of
(1 to pg varies from 0 to 0.6. It is observed that the highest PSNR values are
achieved when the value of py is 0.005 and pq to po ratio is between 0.2 — 0.4.
Therefore, the final optimal values of p; and us for the proposed method are

selected as 0.0015 and 0.005, respectively.
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Figure 4.10: PSNR vs. algorithm parameters.

4.4.7 Scalability Study

Experiments are also performed to determine the efficacy and scalability of the

proposed GPU implementation with respect to different factors, such as dictionary
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and input image sizes. In order to train both the Dj, and D, simultaneously, fixed
size sample patches of around 100,000 are used. It is observed that there is no
difference in CPU execution time for different zooming factors. Fig. 4.11a shows
the impact of changing the dictionary size on the execution time of the proposed
CPU and CUDA-GPU-based dictionary learning. The speed-up ranges from 5.4
to 7 as the dictionary size increases from 256 to 1024 on GPU. Because DL-based
SR models need approximately 7-12 hours to train, the training time taken for
comparison are primarily shown for sparse dictionary learning-based approaches
against the proposed method in Fig. 4.11b. The GPU implementation takes only a
few seconds to train the dictionary. It gives on an average 150X acceleration over

other methods for a dictionary size of 512.
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Figure 4.11: (a) CPU VS. GPU dictionary training time for different dictionary sizes
on LISS-IV dataset (b) Dictionary training time comparison of different methods for
512 dictionary size (dictionary training time in secs. are shown above the bars).

The runtime of CPU and GPU reconstructions for 2x, 3x, and 4x zooming
factors are shown in Table 4.7 for LISS-IV images. The speed-up factors of GPU
reconstruction increase gradually from 60 to 122 times and 116 to 179 times for 2x
and 3x zooming factors, respectively when compared to their CPU counterparts as
image size increases from 256 x 256 to 1024 x 1024. Similarly, reconstruction time is
reduced by 122 to 213 times while using the proposed method for zooming factor 4,
which only takes 13-46 seconds. Average reconstruction times taken by test images
of different datasets for different methods are plotted as shown in Fig. 4.12 for 2x
zooming. It can be observed that reconstruction time of the proposed method is

faster than other dictionary learning-based methods. Despite some of the DL-based
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Table 4.7: CPU vs. GPU reconstruction speed-up for different image sizes and
different zooming factors: x2, x3 and x4.
Image CPU GPU Speed-up
size X2 x3 x4 X2 x3 x4 X2 x3 x4
256 x 256 | 312.23 | 703.45 | 1240.56 | 5.2 7.5 10.10 | 60.04 | 93.79 | 122.82
512 x 512 | 1250.64 | 2451.34 | 3939.87 | 10.7 | 16.25 | 22.00 | 116.88 | 150.85 | 179.08
1024 x 1024 | 3450.41 | 6023.52 | 9845.25 | 18.50 | 30.50 | 46.03 | 186.50 | 197.49 | 213.88

SR methods such as VDSR, CFSRCNN are faster than the proposed method in terms
of reconstruction time, the reconstruction quality of these methods is noticeably
poor. Additionally, the time taken by the computationally exhaustive parts of the
proposed algorithm for 256x256 image size with zooming factor 2 on CPU and
GPU are shown in Table 4.8. It is visible that the CUDA-based implementations of
individual sequential counterparts can reduce the computational time to a greater

extent.
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Figure 4.12: Comparison of average reconstruction time of different methods across
different datasets.

Table 4.8: Performance of CUDA-Implementation over CPU for computationally
exhaustive operations in the proposed algorithm.

Operation CPU time (secs.) | GPU time (secs.) | Speed-up
K-SVD 272.21 48.32 5.63
Patch-based |1 o) 2.31 55.51
Reconstruction

Keypoint-driven

patch-based 10.70 0.17 62.90
reconstruction

ADMM 153.12 3.05 50.20

Analysis of reconstruction time for real RS image is very essential since these
images are typically very large in size. It only takes a few minutes (~ 450 secs.) to
process real RS images (up to 3000 x 1500 image) for the zooming factor 4 using

the proposed CUDA-GPU SR method. Due to memory constraints, CPU-based
116



Chapter 4. Development of Edge Preserving Remote Sensing Single
Image Super-resolution based on Global Dictionary Learning and
Sparse Representations

sequential implementations are unable to process real RS images.

4.5 Conclusion

In this chapter, a highly parallelized SISR framework accelerated with CUDA-
GPU implementation of edge preserving coupled dictionaries- SIF'T-based keypoints
driven and non-keypoints patch-based dictionaries, and sparse representations is pre-
sented. On the basis of both SIFT keypoints-guided patch sparsity and NLTV-based
patch sparsity, a joint reconstruction model is developed to preserve high frequency
features (edges). Visual results and objective criteria clearly demonstrate that it
outperforms the state-of-the-art sparse representation- and DL-based SR methods.
CUDA-GPU implementation demonstrates significant speed-up as compared to se-

quential implementations and holds great potential for RS applications.

The main limitation of the proposed work is that sparse representations-based
SISR method relies on the quality of the hand-crafted features extracted from the LR
image and sparsity for effective training of the dictionaries required for reconstruc-
tion of the corresponding HR image. However, these requirements may not always
hold true in practice for the LR remote sensing image. The benefits of automatic
feature extraction in DL-based SISR methods include more data-driven and flexible
solutions, the ability to handle complex mappings between LR and HR images, and
the ability to interpret the complex structure of the image without requiring manual
feature selection. These advantages make DL-based SISR methods a powerful tool
for image SR, especially in applications of RS. However, we have seen that existing
DL-based SISR networks cannot alone deal with the blurriness of LR remote sens-
ing images. In the future, we will propose an end-to-end dual-branch DL network
consisting of independent deblurring and SR modules. This network will be able to
restore LR remote sensing images degraded with Gaussian blur to produce sharp

and clear HR images.
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