
Chapter 4

Development of Edge Preserving Remote Sensing

Single Image Super-resolution based on Global Dic-

tionary Learning and Sparse Representations

4.1 Introduction

Preservation of textural or structural features, particularly the edges, is crucial in

the SR of RS images. These features may be used as a prior information in dictio-

nary learning to obtain edge-enhanced SR, as learning a representative dictionary

in terms of edges is a key challenge in sparse representation models. Central to this

process is the use of an overcomplete dictionary, which can be constructed from two

orthobasis taken from well-known transforms, like wavelets, Fourier transforms, etc.

Alternatively, it can be constructed through optimization to enhance sparsity in

signal representation. Learned dictionaries show superior performance compared to

the pre-defined transforms in terms of sparsity solutions because they incorporate

prototype signal-atoms, taken from the given image itself, allowing signals to be

represented by sparse linear combinations of these atoms.

The challenge of constructing a representative dictionary that effectively cap-

tures edge details is significant in sparse representation models. Although In the pre-

vious chapter, the previous chapter explores adaptive dictionary learning to recon-

struct SR remote sensing images, but it is quite challenging to learn the edge-based

properties from a single image. In order to obtain edge-enhanced SR, the global

overcomplete dictionary learning method is very much convenient as it can afford a

large suitable training set and fully utilizes image priors to efficiently improve edges

and textural features. An overcomplete dictionary is used for representing signals

sparsely, can be
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Regularization plays an important role in sparse representation-based SR be-

cause it is used to impose constraints on the solution of the sparse representation

problem to prevent overfitting. One common form of regularization used in SR is

known as “edge-preserving regularization.” This form of regularization is used to

preserve the edges and other important features in the reconstructed HR image.

While the standard regularization methods can result in overly smooth images that

lack fine details and sharp edges. These methods typically penalize the total varia-

tion of the reconstructed image, which can result in a solution that is too smooth.

Edge-preserving regularization, on the other hand, penalizes changes in intensity

across edges, while allowing for more variation in smoother regions of the image.

This results in an important tool in achieving high-quality SR. To restore both

sharp edges and smooth structures simultaneously, a joint regularization technique

may also be used by combining two regularization terms such as the non-local to-

tal variation (NLTV) regularization term that encourages smoothness in the output

image and an edge-enhancing-based regularization term that penalizes deviations

from the edges in the original LR image.

The computational complexity of such algorithms is generally very high. There-

fore, CUDA-enabled GPU paradigm is the best choice for handling the computa-

tional costs of such SISR algorithms, depending on the algorithmic complexity and

dimensions of the real RS images.

In this chapter, a coupled dictionary based on scale-invariant feature transform

(SIFT) keypoints as well as non-keypoints image patches are learned that effectively

preserve edges of an image. In particular, we propose a joint sparse reconstruction

model based on SIFT-guided and NLTV regularization priors to preserve high fre-

quency information as well as smooth structures of the reconstructed image. CUDA-

based implementation of the alternating direction method of multipliers (ADMM)

technique is also carried out to solve the above joint problem and reconstruct a real

RS image within a reasonable time. The proposed method not only retains edges,

but also restores visually enhanced images for various zooming factors.
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Image Super-resolution based on Global Dictionary Learning and
Sparse Representations

4.1.1 Main contributions of the chapter

The major contributions of the works done in this chapter may be summarized as

follows:

(i) Proposed keypoints and non-keypoints features-based novel overcomplete dic-

tionary learning techniques for RS image SR. An external MS remote sensing

database is used to learn multiple coupled dictionaries- SIFT-based keypoints

and non-keypoints patch-based dictionary pairs to preserve structural and tex-

tural features effectively. Compared to the traditional patch-based dictionary

alone, the proposed dictionaries can preserve the high frequency information

precisely.

(ii) Proposed a joint sparse reconstruction model by combining SIFT-driven key-

points and NLTV regularization priors. Different sub-problems are solved

iteratively using the CUDA-based ADMM.

(iii) Extensive simulations are demonstrated on two publicly available RGB RS and

two real MS remote sensing datasets for various scaling factors to show that

the proposed model outperforms state-of-the-art techniques both visually and

quantitatively. The proposed parallel framework for SR shows good potential

to process MS remote sensing images up to 2048 × 2048 in a few minutes for

4× upscaling.

The rest of the chapter is organized as follows: Section 4.2 presents some prior

art on SIFT and NLTV regularization. Section 4.3 discusses about the proposed

methodology and joint sparse reconstruction model, including its implementation on

CUDA-GPU platform. Experimental results using different datasets are discussed

in Section 4.4. Finally, Section 4.5 concludes the chapter.
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4.2 Prior Art

4.2.1 Scale-invariant feature transform (SIFT)

SIFT is an algorithm in computer vision utilized to detect and describe local features

present within an image. SIFT can detect features that are invariant to changes in

scale, rotation, and illumination. This makes it a powerful tool for object recogni-

tion, image stitching, and 3D reconstruction. The SIFT algorithm involves several

steps. The first step is to construct a scale-space representation of the image. This

involves creating a series of blurred images at different scales, using a Gaussian ker-

nel with increasing standard deviation. The purpose of this is to detect features at

different scales or multiresolution levels.

The next step is to identify local extrema in the scale-space representation.

These extrema correspond to features that are invariant to scale changes. The al-

gorithm searches for extrema across different scales and space, using a difference-of-

Gaussians (DoG) function. Once the extrema are detected, the algorithm performs

keypoints localization to improve their accuracy. This involves fitting a quadratic

function to the scale-space representation at each keypoint and discarding keypoints

with low contrast or those that are located on edges. The orientation of each key-

point is then assigned by computing the dominant orientation of gradient orien-

tations within a circular region around the keypoint. This step ensures that the

descriptors are invariant to rotation.

The keypoint descriptor is generated for each keypoint by computing a histogram

of orientations within a spatial region by considering a 16×16 window around the

keypoint. This window is further divided into 16 sub-blocks, each of size 4×4. Gra-

dients are calculated for each pixel within each sub-block. An orientation histogram,

usually comprised of 8 bins spanning 360 degrees, is constructed using these gradi-

ents. The distribution of gradient orientations within the sub-block is represented

by the orientation histogram. As a result, the final size of keypoint descriptor is
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determined by multiplying the number of sub-blocks (16) by the number of bins per

histogram (8), obtaining a descriptor size of 128 elements. The resulting descriptor

is a vector of features that describes the local image content around the keypoint.

Overall, SIFT is a powerful algorithm for detecting and describing local features in

images. It has been extensively used in a variety of applications and has paved the

way for many subsequent feature detection and matching techniques.

4.2.2 Non-local total variation (NLTV) regularization

NLTV regularization is a technique used in image processing and computer vision to

smooth out noisy images, while preserving the sharp edges and details of the image.

Unlike traditional total variation regularization, NLTV takes into account the local

statistics not only in the pixel neighborhood but also searches for similar patches

within the image and perform the required filtering operation. The NLTV-based

image denoising model is composed of up of two terms: NLTV and data-fidelity,

which can be expressed as [63]:

x̃ = arg min
x

JNLTV (y) +
λ

2
∥y − x∥2 , (4.1)

JNLTV is the NLTV regularization term, which can be expressed as follows:

JNLTV =
∑
i∈Ω

√∑
j∈Mi

(yi − xj)2w(i, j), (4.2)

where the denoised, original, and noisy image patches are represented by x̃, x, and

y, respectively. Mi refers to a square neighborhood of size N×N centered at pixel i.

λ is the regularization parameter that controls the amount of smoothing applied to

the image, and w(i, j) is the non-local weight function that measures the similarity

between the image patches centered at i and j in image x. The non-local weight

function w(i, j) is defined as follows:
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w(i, j) = exp

(
−
∥Pi(Y)− Pj(Y)∥2σ∗

2h2

)
, (4.3)

where Pi(Y) and Pj(Y) denote the image patches of n× n size centered at i and j,

∥.∥2σ∗ utilizes a Gaussian kernel to assign weights to the Euclidean norm, and h is

a parameter of filtering, depends on the noise level. The non-local weight function

captures the degree of similarity between the image patches across the entire image,

which allows NLTV regularization to preserve edges and details that could be lost

with traditional local regularization techniques.

4.3 Proposed method

The proposed method consists of two phases: A) development of a novel SR approach

using sparse coding and dictionary learning, and B) design of massively parallel al-

gorithms on GP-GPU using off-the-shelf and user defined CUDA kernels. First, it is

implemented sequentially; the coupled dictionaries are learnt from an external MS

image dataset and the target SR image is reconstructed using a joint sparse recon-

struction model. Next, in order to exploit the data level parallelism and increase

the computational efficiency, massively parallel algorithms are designed, especially

for the computationally exhaustive components. In the following, we elaborate on

each stage:

4.3.1 Feature extraction

It extracts high-frequency information from input LR images to improve sparse rep-

resentation accuracy. In this chapter, to carry out the proposed feature extraction

and dictionary training both on natural RGB images and MS images in a uniform

framework, first, we have converted the real MS data into false RGB images. Next

the false RGB images are converted into the YCbCr format on which the proposed
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(a) Dictionary Learning Phase

(b) Reconstruction Phase

Figure 4.1: Schematic representation of the proposed edge enhanced framework for
remote sensing SR.

dictionary learning and sparse reconstruction algorithms are carried out. The lu-

minance channel Y is blurred and then downsampled in order to produce the LR

training images. The reason for selecting only the luminance channel (Y) is due

to the fact that human eyes are more sensitive towards the luminance information

compared to the chrominance or colour information. Besides, the chrominance in-

formation of RS images are not considered as one of the key components in the

dictionary learning method. The LR training images are then resized to generate

upscaled LR images of the same size as the original HR images. Next, we apply the

edge-enriched feature extraction method on them, which was already discussed in

Chapter 3.
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Table 4.1: Parameters used in SIFT keypoint detection and matching.
Number of
keypoints

Keypoint
scale

Sigma
Number
of octaves

τk
Kernel
size

τm

300∼400K 3 1.6 4 0.007 15× 15 1.5

4.3.2 Feature-enhanced patch-based multiple dictionary learn-

ing

4.3.2.1 Keypoints-based coupled dictionary learning

A schematic of the proposed MS image dictionary learning is shown Fig. 4.1a. In

the dictionary learning stage, two sparse representations-based coupled dictionaries

are learned using keypoint- and patch-based features, respectively. In particular,

scale invariant feature transform (SIFT)-based keypoints-driven and non-keypoints

patch-based multiple coupled dictionaries are learned. In the first case, the poten-

tial keypoints are detected from the HR and LR training images using the SIFT

detector and then, matched keypoints between HR and re-sized LR training im-

ages are identified based on SIFT descriptors. The number of optimal keypoints

are detected using the Taylor series expansion by rejecting those keypoints whose

contrasts are less than a certain threshold (τk). Lowering the value of τk has no

effect on the performance of the proposed technique, but it increases the num-

ber of unstable low constrast keypoints, which increases the computation time of

the proposed method. On the other hand, it has a significant impact on the per-

formance of the proposed method for higher value of τk since less possible key-

points are detected. The value of τk is selected such that the performance and

computational time of the proposed method are not compromised. Keypoints are

considered to be matched if Euclidean distance between the corresponding SIFT

descriptors are lower than a given threshold (τm). The number of potential key-

points and parameters used for keypoints detection and matching using the SIFT

are shown in Table 4.1. Next, local patch vectors surrounded by matched key-

points from both HR and re-sized LR training images, i.e, Xkeypoint ∈ Rnh×Kp and

Ykeypoint ∈ Rml×Kp , respectively are extracted for dictionary training. Here, Kp is

the total numbers of matched patches. Using the combined HR-LR keypoint-driven
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patch dataset Yc keypoint = [Xkeypoint;Ykeypoint], the keypoint-driven HR-LR dictio-

nary pairs Dh keypoint ∈ Rmh×K and Dℓ keypoint ∈ Rml×K are jointly learned in the

form of a coupled dictionary Dc keypoint = [Dh keypoint;Dℓ keypoint], where ml and mh

denote the sizes of feature patches encircled by matched keypoints of LR and HR

images, respectively (shown in the upper half of Fig. 4.1a). K is the dictionary size.

4.3.2.2 Non-keypoints-based coupled dictionary learning

In the traditional patch-based dictionary learning, the coupled dictionary Dc patch,

consisting of patch-based HR-LR dictionary pairs Dh patch ∈ Rnh×K and Dℓ patch ∈

Rnl×K are jointly learned using the combined HR-LR patch dataset Yc patch =

[Xpatch;Ypatch]. As explained in Section 3.3.1.2, Chapter 3, the HR patch matrix

Xpatch ∈ Rnh×P is formed by directly extracting HR patch vectors containing most

relevant information from the HR training images, while LR feature patch matrix

Ypatch ∈ Rnl×P is formed by stacking the LR feature patch vectors corresponding to

each patch location; the LR feature vector is the concatenation of four filtered-image

patch vectors for the selected patch location. The lengths of the HR patch vectors

and the corresponding LR feature patch vectors are represented by the vectors nh

and nℓ, respectively and P is the total number of patch vectors extracted for the

dictionary training. The above strategy of selection of feature patch vectors ensures

that each LR patch incorporates its adjoining information, which is helpful for im-

proving compatibility within neighboring patches in the super-resolved image. Both

SIFT-based keypoints-driven and non-keypoints patch-based approaches consider

the same patch size. Patch size selection is described in detail in Section 4.4.6.

Assuming that the two coupled dictionary pairsDc keypoint = [Dh keypoint;Dℓ keypoint],

as well as Dc patch = [Dh patch;Dℓ patch], share the common sparse representation

matrices Zk and Zp, respectively, therefore, the coupled dictionaries Dc keypoint and
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Dc patch can be trained by solving the following minimization problems, respectively:

min
{Dc keypoint,Zk}

∥Yc keypoint −Dc keypointZk∥2F + λ ∥Zk∥1

s.t. ∥Dc keypoint(:, i)∥22 ≤ 1 , i = {1, ......., K}.
(4.4)

Similarly,

min
{Dc patch,Zp}

∥Yc patch −Dc patchZp∥2F + λ ∥Zp∥1

s.t. ∥Dc patch(:, i)∥22 ≤ 1 , i = {1, ......., K},
(4.5)

whereK is the number of dictionary atoms or size of the dictionary, which is common

for both the learned dictionaries, and λ used in Eqs. 4.4 and 4.5 represent the

sparsity regularization parameter. Section 4.4.6 describes in detail how the value of

λ is chosen. In order to solve Eqs. 4.4 and 4.5 approximately, the coupled K-SVD

dictionary learning algorithm detailed in [80] is used.

4.3.3 SR Reconstruction

In the reconstruction phase, the super-resolved image ‘X̂HR’ is obtained through two

reconstruction stages in cascade; one based on the patch-based reconstruction and

the other based on the keypoint-driven patch-based reconstruction. The proposed

framework for reconstruction phase is shown in Fig. 4.1b. First, the input LR image

‘Y’ is upsampled to the required scale i.e. ‘YIH ’ using Lanczos interpolation, and

then passed through the feature extraction step as mentioned in section 4.3.1 to

extract four high-frequency feature maps (the filtered images obtained by four high-

pass filters: Sobel in x-, and y-directions, DoG, and Butterworth) of equal size. From

each feature map, feature patches of size
√
n ×
√
n (n: total number of pixels in a

patch) with one pixel overlap are obtained. Eventually, the four feature patches from

a given pixel location are vectorized and concatenated into a single feature vector

yp
ℓi

with a dimension of 4n × 1. Now, each LR patch yp
ℓi

is sparsely represented

as αp
i using the feature-sign method [118] from the corresponding feature vectors
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using the already trained patch-based LR and HR dictionaries, i.e. by minimizing

the following optimization problem:

αp
i = min

αp
i

∥D̃c patchα
p
i − ỹi

p∥22 + λ∥αp
i ∥1, (4.6)

where D̃c patch =

 Dℓ patch

SDh patch

, S represents the overlapped region of pixels be-

tween the target and the previously reconstructed HR image, and ỹp
i =

 yp
ℓi

g

,
g represents pixels of the previously reconstructed HR image in the overlapped re-

gion. Finally, the target HR image patch xp
i is obtained by multiplying the sparse

coefficients αp
i with the HR dictionary Dh patch as follows:

xp
i = Dh patchα

p
i , (4.7)

Next, by tiling all the reconstructed HR image patches, a patch-based HR image

is first approximated and subsequently refined to obtain Xp
HR by using the global

constraint-based image reconstruction model of Eq. 3.16 in Chapter 3.

Further, the keypoints are detected from the resized upscaled LR image YIH

and Xp
HR obtained above using the SIFT, and their matching keypoints are iden-

tified. Next, patches encircling the matched keypoints yk
i of YIH are extracted in

order to calculate the sparse coding αk
i using Dℓ keypoint and reconstruct the HR

patch xk
i using xk

i = Dh keypointα
k
i . The original patches of Xp

HR are then replaced

by the keypoint driven patches in their respective co-ordinates in order to obtain

the HR image Xk
HR. Following the above, a keypoint-driven patch sparsity-based

regularization problem may be defined as follows:

RKPSR(X
k
HR) = min

αk
i

∥yk
i −Dℓ keypointα

k
i ∥22 + λ∥αk

i ∥1, (4.8)

where yk
i = Ki(SHXk

HR) is a key-driven patch extracted using the operator K from

the ith position. K operator is the SIFT detector to identify matching keypoints

from YIH . It is efficiently solved using the feature-sign method [118]. Eqs. 4.6
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and 4.8 use the same λ value as Eqs. 4.4 and 4.5. Since MS images contain many

smooth regions and edges besides rich textural regions, the result obtained above is

unable to restore both the sharp edges and smooth structures equally well as may

be also observed in Fig. 4.4. In order to preserve both the textural and structural

information of the reconstructed image simultaneously, a joint sparse reconstruction

model involving two regularization priors, namely, the keypoints-driven patch-based

sparse representation (KPSR) and the NLTV is proposed for the reconstruction

phase. The second regularization prior term using the NLTV prior on Xk
HR is

defined as:

RNLTV (X
k
HR) =

∥∥Xk
HR −WXk

HR

∥∥2
F
=

∑
i∈xk

HRi

∥∥xk
HRi
−wT

i si
∥∥2
2
, (4.9)

where for a particular pixel xk
HRi

in Xk
HR, a weighted average of neighboring pixels

within a search window is obtained using si and wi, where si is the column vector

that contains all of the central pixels in the search window around xk
HRi

and wi

is the column vector that contains the corresponding weights co-efficients wij. The

calculation of wij is described in [126], and it is determined by the similarity between

the pixel within the search window using the ℓ2-distance. An augmented Lagrangian

method [126] is finally used to solve the above regularization subproblem efficiently.

Now, by combining the two regularization priors, i.e. Eqs. 4.8 and 4.9, the proposed

edge-preserving joint sparse model is formulated, which is defined as follows:

X̂k
HR = argmin

Xk
HR

∥∥SHXk
HR −Y

∥∥2
F
+ µ1RKPSR

(
Xk

HR

)
+µ2RNLTV (X

k
HR),

(4.10)

where µ1 and µ2 are positive regularization parameters. Regularization subprob-

lems corresponding to the second and third terms in the above equation are solved

independently within the ADMM framework and then substitute their results into
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Eq. 4.10 to obtain the final sub-problem, defined as follows:

X̂k
HR = argmin

Xk
HR

1
2

∥∥SHXk
HR −Y

∥∥2
F
+

µ1

2

∑
i

(∥∥Ki(SHXk
HR)−Dℓ keypointα

k
i

∥∥2
2

)
+µ2

2

∑
i∈xk

HRi

∥∥xk
HRi
−wT

i si
∥∥2
2
.

(4.11)

Algorithm 3: The proposed edge-preserving reconstruction algorithm

Input: Y, Dℓ patch, Dh patch, Dℓ keypoint, Dh keypoint

1 Initialization: k ← 0, δ ← 10−4, µ1, µ2;
2 Upsample Y to YIH using Lanczos interpolation.
3 Extract four high-frequency feature maps from YIH : Sobel in x–, and
y–directions, DoG, Butterworth.

4 for each LR patch yp
ℓi
of YIH do

5 Calculate sparse coefficients vector αp
i by:

αp
i = min

αp
i

∥D̃c patchα
p
i − ỹi

p∥22 + λ∥αp
i ∥1

6 Generate HR image patch xp
i=Dh patchα

p
i

7 end
8 Tile reconstructed HR patches to approximate Xp

HR. Refine Xp
HR by applying

global constraint-based reconstruction model
9 Find the matching keypoints between YIH and Xp

HR

10 for each patch encircling the matched keypoints yk
i of YIH do

11 Calculate Sparse coding αk
i using Dℓ keypoint and yk

i

12 Generate HR keypoint driven patch xk
i =Dh keypointα

k
i

13 end
14 Replace patches of Xp

HR with keypoint-driven patches to obtain Xk
HR

15 while not converge do
16 k ← k+1
17 Define keypoint-driven patch sparsity-based regularization problem:

RKPSR(X
k
HR) = min

αk
i

∥yk
i −Dℓ keypointα

k
i ∥22 + λ∥αk

i ∥1

18 Define NLTV prior-based regularization problem:

RNLTV (X
k
HR) =

∥∥Xk
HR −WXk

HR

∥∥2
F
=

∑
i∈xk

HRi

∥∥xk
HRi
−wT

i si
∥∥2
2

19 Using ADMM to solve the joint sparse model:

X̂k
HR = argmin

Xk
HR

1
2

∥∥SHXk
HR −Y

∥∥2
F
+ µ1

2

∑
i

(∥∥Ki(SHXk
HR)−Dℓ keypointα

k
i

∥∥2
2

)
+µ2

2

∑
i∈xk

HRi

∥∥xk
HRi
−wT

i si
∥∥2
2

20 Check convergence :
∥∥∥X̂k

HR − X̂k−1
HR

∥∥∥ / ∥∥∥X̂k
HR

∥∥∥ ≤ δ

21 end

Output: X̂HR
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It is worth mentioning that the performance of the above joint sparse model

depends significantly on the values of µ1 and µ2. In Section 4.4.6, an approach for

selection of optimal values of µ1 and µ2 are demonstrated through an experiment.

The above problem is a simple least-square convex minimization problem, which can

be solved in a close form by differentiating it w.r.t. Xk
HR. Conjugate gradient least

square solver (CGLS) is used to solve the above subproblem as detailed in [13, 21].

The proposed edge-preserving reconstruction algorithm is presented in Algorithm 3.

4.3.4 Implementation using CUDA-GPU

In this section, implementation of the proposed method on a CUDA-enabled GPU

platform using the dedicated cuBLAS and cuSPARSE libraries and user defined

kernels exploiting thread-level parallelism is detailed. It gives a fair idea on the

overall GPU-based acceleration that could be achieved on the proposed scheme.

Algorithm 4: CUDA-GPU based BOMP.
Data:

D: Coupled dictionary
Y: The n×m patch matrix. Each column is a separate patch vector we want to sparse-encode
Dt: precomputed D⊤D
Dy: precomputed D⊤Y
K: target sparsity

Procedure:
1 Define kernel function by using global specifier to sparse-encode the patch vectors separately.

int j = blockIdx.x ∗ blockDim.x+ threadIdx.x
2 if j ≥ m− 1 then
3 return;
4 end
5 for i← 1 to m do
6 α[j + i ∗ m] = BOMP (Dt,Dy[:, i],K);
7 end

Result: α: Sparse representation

4.3.4.1 CUDA GPU-based multiple coupled dictionary learning

Both patch-based- and keypoints-based dictionaries employ the KSVD algorithm for

dictionary learning. However, it is worth noting that K-SVD dictionary learning is

a highly iterative and time consuming process. In each iteration, the atoms of the

dictionary is updated one-by-one, taking K-singular value decompositions (SVD) for
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the entire dictionary. Another time-expensive iterative process is the sparse coding

using the OMP. To mitigate this challenge, the KSVD process is accelerated by

utilizing GPU-CUDA, harnessing the immense computational power of GPUs for

faster execution.

In the proposed algorithm, we use the batch OMP (BOMP) for sparse coding

as it speeds up the convergence considerably [2]. Further, we carry out a paral-

lel implementation of the BOMP on CUDA platform by using interleaved arrays.

It is implemented as α[j + i ∗ m], where m is the number of active threads and

j = blockIdx.x ∗ blockDim.x + threadIdx.x is the index of the current CUDA

thread. Each thread solves a separate BOMP problem. A pseudo-code represen-

tation of the CUDA GPU-based BOMP implementation is shown in Algorithm 4.

In particular, “cublasIdamax” and “cublasSgemm” functions from cuBLAS API are

used for finding the index with the largest projection and updating the provisional

solution, respectively.

Besides, KSVD consists of many other linear algebraic operations, particu-

larly matrix operations; several on-device routines are borrowed from the standard

cuBLAS library to speed up the execution of these operations. GPU kernel imple-

mentations based on thread-level parallism are also done in cases where mathemati-

cal operations are to be performed massively on a row-by-row or column-by-column

basis in parallel. For example, a kernel is specified for parallely collecting non-zero

elements from j number of rows of a sparse matrix into a dense array. The schematic

diagram of CUDA-GPU KSVD is shown in Fig. 4.2a.

4.3.4.2 CUDA-based SR reconstruction on GPU

In the reconstruction, resized input LR image is divided into multiple overlapping

feature patches, which are then processed independently. The processing time in-

creases as the image size increases. In this scenario, we deploy the GPU environment

using the CUDA programming model for accelerating the reconstruction time. The

proposed scheme is graphically shown in Fig. 4.2b. First, LR feature patches, pre-
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trained patch-based coupled dictionaries, pre-trained keypoint driven LR patches,

and pretrained keypoint driven coupled dictionaries are transferred from the CPU to

the GPU. As shown in stage I, a CUDA kernal function is defined, where the feature

image patches are to be processed by different GPU blocks and then patches are

distributed across the threads within each GPU block. Another kernel is specified

for estimating the sparse co-efficients for each LR patch. Since it also involves a

number of linear algebra operations, such as matrix-matrix multiplication, matrix-

vector multiplication, and matrix-inverse, they are implemented using the cuBLAS

functions to speed up the algorithms. Subsequently, HR patches are obtained paral-

lelly by using kernel that multiply the Dh patch and αp corresponding to each patch

by using the “cublasSgems” function. Further, a kernel is specified for accumulating

all the HR patches from all the active threads to reconstruct Xp
HR. In stage-II,

a CUDA kernel is used to assign all keypoint-drievn LR patches into individual

threads. Next, steps for the calculation of αk for keypoint-driven LR patch and re-

construction of the corresponding HR are implemented using similar CUDA kernels,

as mentioned in stage-I. HR patches of Xp
HR are then replaced by keypoint-driven

patches parallelly using CUDA kernel. Finally, transfer of the keypoint-driven HR

image Xk
HR is done from GPU to CPU .

In ADMM framwork, in order to speed-up the CGLS algorithm, “cusparseDc-

srmv” function from CUSPARSE library is used to implement sparse matrix multi-

plications, while a CUDA kernel is used to implement diagonal addition of matrices.

Some cuBLAS functions are also utilised for acceleration in the CGLS method.

4.4 Results and Discussion

4.4.1 Computing environment

Simulations are carried out on a Ubuntu server running 16.04 LTS and equipped

with IntelR⃝ Xeon R⃝ processor and having 128 GB RAM. C++ programming with
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(a) CUDA GPU-accelerated KSVD algorithm used in patch- and
keypoints-based multiple dictionaries

(b) CUDA GPU-based SR Reconstruction

Figure 4.2: CUDA-accelerated feature-enhanced KSVD algorithm and SR recon-
struction.
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OpenCV libraries (version 3.3.1) are used for CPU-based implementations. While

GPU implementations are done on the NVIDIA Tesla P100 GP-GPU hardware plat-

form with CUDA toolkit (version 9.0). DL-based SR methods used for comparisons

are implemented using Python 3.6.4 and CUDA toolkit version 11.2.

4.4.1.1 Datasets preparation and parameter selection

RS images from two publicly available datasets (aerial image dataset (AID) [117]

and PatternNet [138]) and two self-procured MS remote sensing datasets (LISS-IV

1 and LISS-III 1) are used for the experiments. AID comprises of 30 distinct classes

with a total of 10,000 images, each of size 600×600 with a sensor spatial resolution

ranging from 0.5 m to 0.8 m. Similarly, PatternNet has 38 classes; each class having

800 images at a spatial resolution of 0.062 m to 4.693 m and each of size 256×256.

For training the sparse representations-based SR methods, a total of 300 and 380

images are randomly chosen from the AID and the PatternNet, respectively. Since

each class (both in AID and PatternNet) belongs to images of many similar patches,

we chose only 5 to 10 images for each class of AID and PatternNet datasets. On the

other hand, for the DL-based SR networks training, we randomly select 70-80 % of

the total data from both the datasets in such a way that the selected images contain

both rich textural and structural information, each having a size of 256× 256.

Table 4.2: Specifications of LISS-IV and LISSS-III satellite sensors.
Satellite Sensor LISS-IV LISS-III

Spatial resolution 5.8 m 23.5 m

Spectral bands
Green (Band 2: 0.52-0.59 µm)
Red (Band 3: 0.62-0.68 µm)
Near infrared (Band 4: 0.77-0.86 µm)

Green (Band 2: 0.52-0.59 µm)
Red (Band 3: 0.62-0.68 µm)
Near infrared (Band 4: 0.77-0.86 µm)
Mid infrared (Band 5: 1.55-1.70 µm)

Swath 23.9 km 141 km
Image size (in pixels) 18000× 16000 7700× 7000

Furthermore, the specifications of LISS-III and LISS-IV sensors are given in

Table 4.2. To select test images from these datasets for dictionary training, 200

regions of interests (RoIs) ranging from 256 × 256 to 512 × 512 are cropped. In a

similar way, in the DL-based training, an equal number of RoIs of the size 256×256

1NRSC Data Center: https://www.nrsc.gov.in/eos dissemination
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Figure 4.3: Representative HR images of different datasets considered for testing
the proposed method and other state-of-the art SR methods. Column wise: Test 1
and Test 2 from AID; Test 3 and Test 4 from PatternNet; Test 5 and Test 6 from
LISS-IV; Test 7 and Test 8 from LISS-III.

are to be cropped from the original images of LISS-III and LISS-IV sensors to

bring uniformity in terms of number and size of images with respect to the two

benchmark DL datasets (AID, and PatternNet). Two representative test images

from each dataset are used to check the effectiveness of the proposed method over

all the compared SR methods as shown in Fig. 4.3. For testing, original LR images

are blurred by using 5× 5 (σ = 1.2), 7× 7 (σ = 1.4), and 9× 9 (σ = 1.6) Gaussian

filters followed by downsampling by 2, 3 and 4, respectively. All the simulations are

performed with the following parameter settings: dictionary size: 512, patch size:

7 × 7, no. of pixels in overlap for patch extraction: 6, regularization parameters:

λ = 0.15, constants: µ1 = 0.00015, µ2 = 0.005 and δ = 10−4.

4.4.2 Ablation Study

An ablation study is also conducted to validate the effectiveness of each component

of the proposed method on AID test dataset for 2× factor as shown in Fig.4.4.

Specifically, the study evaluates the impact of different components, showing that
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Figure 4.4: Evaluation of the impact of each component of the proposed method on
the SR performance.

using only patch-based reconstruction (ScSR) i.e. arg min
Xk

HR

1
2

∥∥SHXk
HR −Y

∥∥2
F
yields

a PSNR of 26.14 dB. However, incorporating SIFT keypoints-driven reconstruction

alongside patch-based methods (ScSR with SIFT) i.e arg min
Xk

HR

∥∥SHXk
HR −Y

∥∥2
F
+∥∥Ki(SHXk

HR)−Dℓ keypointα
k
i

∥∥2
2
enhances PSNR by an additional 0.75 dB. More-

over, the proposed joint reconstruction model results in PSNR improvements of

4.53 dB over patch-based methods.

4.4.3 Performance evaluation

We have compared the proposed method both visually and quantitatively with

state-of-the-art methods: sparse-representations-based SR methods, like ScSR [118],

A+ [99], CCR [131], JRSR [14], CDLSR [90], and DL-based SR methods, like SR-

CNN [22], VDSR [45], MHAN [125], SAN [18] and CFSRCNN [97]. Visual results are

analyzed to assess the perceptual quality of the reconstructed images. Furthermore,

quantitative evaluations are carried out in terms of PSNR, SSIM, ERGAS [105],

SAM [121], Q-index [113] and sCC [137], which are commonly used for the eval-

uation of the quality of RS image reconstruction. Besides, EPI [84] and PSI [30]

metrics are used to measure the quantity of edges preservation, and sharpness in

the reconstructed image. Higher PSNR, SSIM, UIQI, sCC, EPI and PSI and lower

ERGAS and SAM indicate that the reconstructed image quality is better.
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4.4.3.1 Visual results

A visual comparison of various SR methods is performed on ‘Test-2’ and ‘Test-5’

images for different zooming factors. The reconstructed images for different scaling

factors are shown in Fig. 4.5 and 4.6 for ‘Test-2’ and ‘Test-5’, respectively. All

the results are shown in false RGB format as the test images are in false color

composition only. In the figure, ROIs are highlighted and presented in their scaled

Figure 4.5: Visual results of different methods on Test-2 of AID for different zooming
factors.

versions for better interpretation of the visual results. It is clear from the results

that the perceptual quality of the proposed method is better than those of other

methods. It is capable of retaining textural as well as structural characteristics
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with sharp edges. Other SR approaches, such as ScSR, A+, CCR, CDLSR, and

DL-methods do not consider blurring in the degradation model to generate the LR

images in their works; they only use downsampling operation. It is clearly visible

Figure 4.6: Visual results of different methods on Test-5 of LISS-IV for different
zooming factors.

that these methods are unable to overcome the effects of blurring and downsampling,

simultaneously. Although visual outputs of these methods for 2× show satisfactory

appearance to some extent, their qualities suffer greatly for 3× and 4× upscaling.
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Furthermore, the visual output of JRSR is slightly closer to that of the proposed

method for 2× zooming factor, but it produces smoother results for higher zooming

factors, such as 3× and 4×. While, CDLSR produces block artifacts around the

edges for 4× zooming factor. However, the proposed method provides better visual

output in terms of edges and other structures for different zooming factors (2×, 3×

and 4×).

4.4.3.2 Quantitative analysis

Quantitative analysis of several state-of-the-art SR methods in terms of different

objective evaluation metrics are shown in Tables 4.4–4.6 using different datasets for

different zooming factors. In case of AID, the proposed method has the highest

average PSNR, which results in an improvement of 1.2–3.5 dB, 1.7–4.1 dB, and 2.1–

4 dB over other methods for ×2, ×3, and ×4 zooming, respectively, as shown in

Table 4.3. From Table 4.4, it can be observed that the proposed method achieves

the maximum PSNR for PatternNet, with improvements of 2.1–5.8 dB, 1.4–6.4 dB,

and 0.66–5.3 dB for ×2, ×3, and ×4 zooming, respectively. Although the proposed

method performs well on PatternNet, its improvement is lower than that of the

AID test data for ×4 zooming. Therefore, it is observed that the proposed method

underperforms on images with less edges and structures. Similarly, SSIM, ERGAS,

SAM, Q-Index, sCC values of the proposed method outperform others for ×2, ×3,

and ×4 zooming on both the datasets. Tables 4.4 and 4.3 clearly show that EPI

and PSI scores of the proposed method are greater than the other SR methods for

all the test data of Patternnet and AID. Therefore, it is very much evident that

the efficiency of proposed method to restore the edges and sharp structure is highly

promising. Although JRSR provides comparable PSNR results, it performs poorly

in terms of EPI and PSI compared to the proposed method. Further, the proposed

method is also compared with some of the state-of-the-art DL-based SR methods, i.e.

SRCNN, VDSR, SAN, CFSRCNN and MHAN. It is found that the proposed method

performs better than the DL-based SR methods. While, this observation is rather

surprising for the author as such, the reason may be probably due to the blurring
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4.4. Results and Discussion
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Chapter 4. Development of Edge Preserving Remote Sensing Single
Image Super-resolution based on Global Dictionary Learning and
Sparse Representations

T
a
b
le

4
.6
:
P
er
fo
rm

an
ce

ev
al
u
at
io
n
of

d
iff
er
en
t
m
et
h
o
d
s
fo
r
te
st

im
a
g
es

o
f
L
IS
S
-I
II

u
si
n
g
×
2
,
×
3
a
n
d
×
4
zo
o
m
in
g
.

Z
o
o
m
in
g
F
a
ct
o
r

T
e
st
Im

a
g
e

M
e
tr
ic

L
IS

S
-I
II

B
ic
u
b
ic

S
cS

R
A
+

C
C
R

J
R
S
R

C
D
L
S
R

S
A
N

M
H
A
N

C
S
R
C
N
N

P
ro

p
o
se
d

×
2

T
es
t
7

P
S
N
R

(d
B
)
↑

30
.2
7

30
.6
7

31
.4
3

31
.4
2

32
.8
7

32
.2
4

31
.7
5

32
.1
4

32
.0
4

3
4
.4
0

S
S
IM
↑

0.
90
0

0.
91
5

0.
93
4

0.
93
3

0.
96
5

0.
95
4

0.
94
7

0.
94
8

0.
94
8

0
.9
8
4

E
R
G
A
S
↓
[1
0
5
]

3.
63
2

3.
46
7

3.
18
2

3.
18
1

2.
69
2

2.
89
6

3.
07
0

2.
94
1

2.
97
1

2
.4
3
7

S
A
M
↓
[1
2
1
]

0.
07
10

0.
06
78

0.
06
22

0.
06
22

0.
05
26

0.
05
66

0.
05
92

0.
05
75

0.
05
79

0
.0
4
7
6

U
IQ

I
↑
[1
1
3
]

0.
64
65

0.
68
63

0.
71
09

0.
70
90

0.
80
02

0.
76
91

0.
76
99

0.
77
12

0.
76
98

0
.8
4
0
5

sC
C
↑
[1
3
7
]

0.
93
14

0.
93
76

0.
94
87

0.
94
86

0.
96
24

0.
95
64

0.
95
24

0.
95
54

0.
95
45

0
.9
7
7
0

E
P
I
↑
[8
4
]

0.
47
81

0.
49
42

0.
55
95

0.
55
69

0.
52
40

0.
49
34

0.
49
11

0.
50
15

0.
50
30

0
.5
8
3
1

P
S
I
↑
[3
0
]

0.
23
58

0.
25
10

0.
25
56

0.
25
02

0.
32
80

0.
29
05

0.
26
91

0.
27
90

0.
27
98

0
.3
5
9
2

×
3

P
S
N
R

(d
B
)
↑

28
.3
4

28
.1
4

30
.1
8

30
.2
0

30
.6
5

30
.4
8

29
.7
9

29
.8
4

29
.8
3

3
1
.8
4

S
S
IM
↑

0.
80
0

0.
79
9

0.
88
7

0.
88
8

0.
90
9

0.
90
2

0.
87
8

0.
87
6

0.
87
3

0
.9
2
9

E
R
G
A
S
↓
[1
0
5
]

4.
53
3

4.
63
9

3.
66
2

3.
65
9

3.
47
8

3.
54
5

3.
83
5

3.
81
1

3.
81
2

3
.3
0
1

S
A
M
↓
[1
2
1
]

0.
08
87

0.
09
08

0.
07
16

0.
07
15

0.
06
80

0.
06
93

0.
07
44

0.
07
43

0.
07
42

0
.0
6
5
5

U
IQ

I
↑
[1
1
3
]

0.
48
02

0.
49
05

0.
61
24

0.
61
16

0.
66
50

0.
64
98

0.
62
32

0.
61
41

0.
60
99

0
.6
9
7
4

sC
C
↑
[1
3
7
]

0.
88
98

0.
88
43

0.
93
11

0.
93
12

0.
93
66

0.
93
40

0.
92
27

0.
92
30

0.
92
34

0
.9
4
9
8

E
P
I
↑
[8
4
]

0.
30
75

0.
33
50

0.
35
39

0.
35
73

0.
40
29

0.
40
80

0.
38
12

0.
38
47

0.
38
46

0
.4
3
2
6

P
S
I
↑
[3
0
]

0.
20
95

0.
22
08

0.
22
51

0.
21
89

0.
22
29

0.
21
86

0.
19
90

0.
20
69

0.
21
09

0
.2
9
4
1

×
4

P
S
N
R

(d
B
)↑

27
.1
3

26
.8
8

29
.3
1

29
.3
2

29
.6
5

29
.3
9

28
.3
2

28
.5
9

28
.4
4

3
0
.8
5

S
S
IM
↑

0.
71
4

0.
71
3

0.
84
1

0.
84
1

0.
86
4

0.
85
5

0.
79
9

0.
80
7

0.
80
4

0
.8
8
8

E
R
G
A
S
↓
[1
0
5
]

5.
21
3

5.
36
6

4.
05
1

4.
04
7

3.
89
5

4.
01
5

4.
53
1

4.
39
5

4.
46
1

3
.7
1
1

S
A
M
↓
[1
2
1
]

0.
10
21

0.
10
51

0.
07
92

0.
07
92

0.
07
62

0.
07
85

0.
08
72

0.
08
58

0.
08
72

0
.0
7
3
5

U
IQ

I
↑
[1
1
3
]

0.
35
01

0.
36
64

0.
52
27

0.
52
26

0.
57
22

0.
55
92

0.
47
15

0.
48
15

0.
47
80

0
.6
2
1
0

sC
C
↑
[1
3
7
]

0.
85
10

0.
84
25

0.
91
44

0.
91
46

0.
91
97

0.
91
51

0.
89
24

0.
89
58

0.
89
12

0
.9
3
3
4

E
P
I
↑
[8
4
]

0.
30
32

0.
32
11

0.
38
21

0.
38
32

0.
37
00

0.
34
29

0.
33
27

0.
35
09

0.
33
40

0
.3
9
5
2

P
S
I
↑
[3
0
]

0.
14
88

0.
14
67

0.
15
20

0.
15
23

0.
18
73

0.
25
04

0.
15
67

0.
15
68

0.
15
52

0
.2
4
8
9

×
2

T
es
t
8

P
S
N
R

(d
B
)
↑

30
.6
6

31
.0
7

31
.8
6

31
.8
6

33
.3
7

32
.7
0

31
.9
4

32
.4
8

32
.3
7

3
4
.9
3

S
S
IM
↑

0.
97
1

0.
97
5

0.
98
8

0.
98
8

0.
99
6

0.
99
5

0.
98
5

0.
98
6

0.
98
5

0
.9
9
8

E
R
G
A
S
↓
[1
0
5
]

4.
28
2

4.
08
1

3.
72
5

3.
72
1

3.
09
8

3.
35
7

3.
66
5

3.
48
2

3.
50
9

2
.8
2
4

S
A
M
↓
[1
2
1
]

0.
08
16

0.
07
78

0.
07
09

0.
07
08

0.
05
90

0.
06
40

0.
06
90

0.
06
63

0.
06
67

0
.0
5
5
6

U
IQ

I
↑
[1
1
3
]

0.
61
37

0.
65
73

0.
67
89

0.
67
61

0.
77
77

0.
74
16

0.
72
67

0.
72
88

0.
72
64

0
.8
1
2
5

sC
C
↑
[1
3
7
]

0.
95
47

0.
95
89

0.
96
62

0.
96
62

0.
97
62

0.
97
20

0.
96
80

0.
97
02

0.
96
98

0
.9
8
8
9

E
P
I
↑
[8
4
]

0.
40
66

0.
42
22

0.
45
58

0.
45
12

0.
51
90

0.
47
93

0.
47
39

0.
48
73

0.
48
82

0
.5
7
0
9

P
S
I
↑
[3
0
]

0.
17
88

0.
19
67

0.
18
66

0.
19
23

0.
18
73

0.
25
04

0.
18
67

0.
18
68

0.
18
52

0
.2
4
8
9

×
3

P
S
N
R

(d
B
)
↑

28
.7
1

28
.4
9

30
.6
1

30
.6
1

31
.0
3

30
.8
5

30
.0
5

30
.0
7

30
.1
1

3
2
.2
3

S
S
IM
↑

0.
92
7

0.
92
8

0.
97
7

0.
97
7

0.
98
8

0.
98
5

0.
96
7

0.
96
5

0.
96
3

0
.9
8
9

E
R
G
A
S
↓
[1
0
5
]

5.
37
9

5.
51
4

4.
30
6

4.
30
4

4.
08
7

4.
17
1

4.
56
3

4.
54
2

4.
53
4

4
.0
0
9

S
A
M
↓
[1
2
1
]

0.
10
26

0.
10
52

0.
08
21

0.
08
20

0.
07
79

0.
07
95

0.
08
66

0.
08
64

0.
08
62

0
.0
7
5
4

U
IQ

I
↑
[1
1
3
]

0.
44
50

0.
45
61

0.
56
96

0.
56
80

0.
62
08

0.
60
33

0.
56
41

0.
55
41

0.
54
89

0
.6
6
1
9

sC
C
↑
[1
3
7
]

0.
92
72

0.
92
33

0.
95
43

0.
95
44

0.
95
82

0.
95
64

0.
94
85

0.
94
89

0.
94
91

0
.9
7
0
1

E
P
I
↑
[8
4
]

0.
32
97

0.
34
39

0.
43
63

0.
44
25

0.
39
63

0.
38
76

0.
36
73

0.
37
31

0.
37
36

0
.4
6
7
6

P
S
I
↑
[3
0
]

0.
21
20

0.
21
00

0.
21
20

0.
21
48

0.
21
45

0.
21
05

0.
19
45

0.
21
51

0.
21
78

0
.2
9
8
9

×
4

P
S
N
R

(d
B
)
↑

27
.4
9

27
.2
2

29
.7
1

29
.7
1

30
.0
2

29
.7
9

28
.5
2

28
.8
3

28
.6
6

3
1
.2
5

S
S
IM
↑

0.
89
3

0.
90
4

0.
95
9

0.
95
9

0.
97
1

0.
98
5

0.
92
7

0.
92
9

0.
92
9

0
.9
9
2

E
R
G
A
S
↓
[1
0
5
]

6.
19
4

6.
39
3

4.
77
9

4.
77
8

4.
59
7

4.
73
7

5.
43
1

5.
25
4

5.
32
0

4
.4
9
0

S
A
M
↓
[1
2
1
]

0.
11
83

0.
12
21

0.
09
11

0.
09
11

0.
08
77

0.
09
03

0.
10
23

0.
10
00

0.
10
14

0
.0
8
4
2

U
IQ

I
↑
[1
1
3
]

0.
32
32

0.
34
12

0.
47
48

0.
47
42

0.
52
07

0.
51
76

0.
41
39

0.
41
92

0.
41
82

0
.5
6
7
1

sC
C
↑
[1
3
7
]

0.
90
22

0.
89
59

0.
94
33

0.
94
34

0.
94
69

0.
94
40

0.
92
80

0.
93
11

0.
92
89

0
.9
4
9
5

E
P
I
↑
[8
4
]

0.
30
89

0.
32
26

0.
33
87

0.
33
46

0.
34
28

0.
33
51

0.
31
35

0.
32
40

0.
32
56

0
.3
6
8
9

P
S
I
↑
[3
0
]

0.
18
07

0.
17
35

0.
17
65

0.
18
48

0.
17
76

0.
24
41

0.
16
88

0.
18
17

0.
18
11

0
.2
4
5
7

‘↑
’
m

e
a
n
s

t
h
e

h
ig

h
e
r

t
h
e

v
a
lu

e
,
t
h
e

b
e
t
t
e
r

a
n
d

‘↓
’
d
e
n
o
t
e
s

t
h
a
t

t
h
e

s
m

a
ll
e
r

t
h
e

v
a
lu

e
is
,
t
h
e

b
e
t
t
e
r
.

B
o
ld

:
in

d
ic

a
t
e
s

t
h
e

b
e
s
t

r
e
s
u
lt
s
.

109



4.4. Results and Discussion

imposed by the image degradation model on the input images before feeding to the

networks for the training. It will be interesting to see if the existing DL models can be

modified to counter the degradation component as well in our subsequent works. The

proposed method is also compared with the recent generative adversarial network

(GAN)-based SR method i.e best-buddy GAN (Beby-GAN) [59], and reveals that

although the GAN-based method achieves excellent perceptual results, the PSNR

is 2–3 dB lower than the proposed method. The proposed method produces the

best visual results supported by higher PSNR and better edge preservation. In

a subsequent experiment, some other sparse representation-based approaches and

the recent DL-based SR methods, i.e. SAN, CFSRCNN and MHAN are compared

with the proposed method on LISS-IV and LISS-III datasets. Averaged results for

LISS-III and LISS-IV computed over all the band images for each test image are

shown in Tables 4.6 and 4.5. In terms of PSNR, on an average, the proposed

method outperforms others in the ranges of 1.9–6.5 dB, 1.4–3.7 dB, and 1.5–4.2 dB

for ×2, ×3, and ×4 upscaling, respectively on LISS-IV images. In case of LISS-III,

the proposed method achieves the highest PSNR compared to other methods by an

improvement of 1.5–4.1 dB, 1.1–3.5 dB, and 1.2–3.7 dB, respectively, for ×2, ×3,

and ×4 zooming. Furthermore, the quantitative measures on ‘Test-4’ and ‘Test-8’

images are shown graphically in Fig. 4.7. The above detailed analysis shows that

the proposed method is able to maintain the reconstruction quality as well as retain

edges and structural features more effectively.

4.4.4 SR on real MS images

In order to validate the robustness of the proposed method, a comparison experiment

is also carried out on real-world MS remote sensing images. Unlike the previous ex-

periments, real-world LR remote sensing image is not subjected to synthetic blurring

and downsampling. This LR image is fed directly to the proposed method and other

SR methods for 2× and 4× zooming. We use two non-reference-based quantitative

metrics, i.e., NIQE [67] and entropy (EN), to evaluate the outputs, as the ground-

truth HR image is not available in this case. Ideally, a lower score of NIQE and
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(a) Test-4 of PatternNet

(b) Test-8 of LISS-III

Figure 4.7: Performance evaluation of various methods on Test-4 of PatternNet and
Test-8 of AID for different zooming factors.
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higher score of EN indicate a better reconstruction result. Here, we have conducted

an experiment on a LISS-IV real LR image of size 256×256 for 2× and 4× zooming,

as shown in Fig. 4.8, where NIQE and EN values are given along with the visual

results. We have compared the proposed method with sparse-representations-based

and one of the best performing DL method i.e MHAN. From visual results and

quantitative metrics shown in Fig. 4.8, it is found that the proposed method obtains

lower NIQE and higher EN with better visual results.

Figure 4.8: SR results of LISS-IV images without blurring for different methods at
different scales.

4.4.5 Convergence test and Complexity analysis

An experiment on the proposed dictionary learning is performed by observing the

PSNR of the reconstructed image to determine convergence. Fig. 4.9 presents the

convergence plot for ‘Test-5’ at 2× zooming, over 30 iterations. The optimal stop-

ping point is identified at the 20th iteration, beyond which PSNR improvements

level off, suggesting that PSNR improvements remain uniform beyond this point,

suggesting that the proposed dictionary learning method converges effectively.

The computational complexity of the proposed dictionary learning method is

significantly influenced by the K-SVD algorithm, which is central to the learning

process. The K-SVD step iteratively updates dictionary atoms and performs sparse

coding of all patches. The complexity of this step: O(T × (n× t× k× r2+ k× (m×

r2+ r3))), where T denotes the number of iterations, n the number of patches, t the

sparsity level, k the number of dictionary atoms, r the patch size, m the number
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Figure 4.9: Convergence analysis of the proposed method on ‘Test-5’ for 2× zooming:
PSNR vs number of iterations.

of feature maps. In this proposed method, two dual dictionary learning processes

are implemented using KSVD: keypoints-based and non-keypoints-based coupled

dictionary learning. Each process operates independently within the same overall

algorithmic framework. Given this dual-dictionary approach, the computational

loads of the sparse coding and dictionary update steps from each dictionary are

cumulative. Consequently, the total time complexity for the method is O(2 × T ×

(n×t×k×r2+2×k×(m×r2+r3))), reflecting the increased computational demand

due to constructing two distinct dictionary learning processes simultaneously.

4.4.6 Parameters empirical study

(i) The effect of patch size and numbers of overlapping pixels: The

performance of the proposed method depends on the patch size and number

of overlapping pixels. Different patch size with varying number of overlapping

pixels are applied to LISS-IV Test-5 image for zooming factor 2 to check their

impact on the proposed method as shown in Fig. 4.10a. The PSNR values

for overlapping of 2, 3, and 4 obtained by patch size 5×5 are 32.46, 32.48,

and 32.50, respectively. When the patch size is 7×7 and the number of pixel

overlappings ranges from 4 to 6, the PSNR results are 32.59, 32.60, and 32.62,

respectively. Similarly, The PSNR results for patch size 9×9 with number

of overlapping pixels 6 to 8 are 32.58, 32.59 and 32.60, respectively. The

results in Fig. 4.10a indicate that the highest PSNR for the proposed method

is achieved when the patch size and number of overlapping pixel are 7×7 and
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6, respectively. Therefore, these values are selected for the proposed method.

(ii) The effect of λ: Fig. 4.10b shows the PSNR obtained by the proposed method

on LISS-IV Test-5 image for zooming factor 2 by varying the λ value ranges

from 1.2 to 1.8. It is observed from Fig. 4.10b that the PSNR value reaches

its maximum when λ valus is 0.15.

(iii) Trade-off parameters µ1 and µ2: The selection of optimum values for µ1

and µ2 in Eq. 4.11 is essential as it indicates the relative importance of NLTV-

and key-point sparsity priors. Here, we consider LISS-IV Test-5 image as

examples to demonstrate how µ1 and µ2 impact on the performance of the

proposed method in zooming factor 2. The PSNR surface plot for Test-5 are

shown in Fig. 4.10c, where µ2 values range from 0.001 to 0.007 and the ratio of

µ1 to µ2 varies from 0 to 0.6. It is observed that the highest PSNR values are

achieved when the value of µ2 is 0.005 and µ1 to µ2 ratio is between 0.2− 0.4.

Therefore, the final optimal values of µ1 and µ2 for the proposed method are

selected as 0.0015 and 0.005, respectively.

(a) The effects of patch size
and number of overlapping
pixels (stride) on PSNR

(b) The effects of λ on
PSNR

(c) The effects of µ1 and µ2 on
PSNR

Figure 4.10: PSNR vs. algorithm parameters.

4.4.7 Scalability Study

Experiments are also performed to determine the efficacy and scalability of the

proposed GPU implementation with respect to different factors, such as dictionary
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and input image sizes. In order to train both the Dh and Dℓ, simultaneously, fixed

size sample patches of around 100,000 are used. It is observed that there is no

difference in CPU execution time for different zooming factors. Fig. 4.11a shows

the impact of changing the dictionary size on the execution time of the proposed

CPU and CUDA-GPU-based dictionary learning. The speed-up ranges from 5.4

to 7 as the dictionary size increases from 256 to 1024 on GPU. Because DL-based

SR models need approximately 7-12 hours to train, the training time taken for

comparison are primarily shown for sparse dictionary learning-based approaches

against the proposed method in Fig. 4.11b. The GPU implementation takes only a

few seconds to train the dictionary. It gives on an average 150× acceleration over

other methods for a dictionary size of 512.

(a) (b)

Figure 4.11: (a) CPU VS. GPU dictionary training time for different dictionary sizes
on LISS-IV dataset (b) Dictionary training time comparison of different methods for
512 dictionary size (dictionary training time in secs. are shown above the bars).

The runtime of CPU and GPU reconstructions for 2×, 3×, and 4× zooming

factors are shown in Table 4.7 for LISS-IV images. The speed-up factors of GPU

reconstruction increase gradually from 60 to 122 times and 116 to 179 times for 2×

and 3× zooming factors, respectively when compared to their CPU counterparts as

image size increases from 256×256 to 1024×1024. Similarly, reconstruction time is

reduced by 122 to 213 times while using the proposed method for zooming factor 4,

which only takes 13-46 seconds. Average reconstruction times taken by test images

of different datasets for different methods are plotted as shown in Fig. 4.12 for 2×

zooming. It can be observed that reconstruction time of the proposed method is

faster than other dictionary learning-based methods. Despite some of the DL-based
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Table 4.7: CPU vs. GPU reconstruction speed-up for different image sizes and
different zooming factors: ×2, ×3 and ×4.
Image
size

CPU GPU Speed-up
×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

256× 256 312.23 703.45 1240.56 5.2 7.5 10.10 60.04 93.79 122.82
512× 512 1250.64 2451.34 3939.87 10.7 16.25 22.00 116.88 150.85 179.08
1024× 1024 3450.41 6023.52 9845.25 18.50 30.50 46.03 186.50 197.49 213.88

SR methods such as VDSR, CFSRCNN are faster than the proposed method in terms

of reconstruction time, the reconstruction quality of these methods is noticeably

poor. Additionally, the time taken by the computationally exhaustive parts of the

proposed algorithm for 256×256 image size with zooming factor 2 on CPU and

GPU are shown in Table 4.8. It is visible that the CUDA-based implementations of

individual sequential counterparts can reduce the computational time to a greater

extent.

Figure 4.12: Comparison of average reconstruction time of different methods across
different datasets.

Table 4.8: Performance of CUDA-Implementation over CPU for computationally
exhaustive operations in the proposed algorithm.

Operation CPU time (secs.) GPU time (secs.) Speed-up
K-SVD 272.21 48.32 5.63
Patch-based
Reconstruction

128.24 2.31 55.51

Keypoint-driven
patch-based
reconstruction

10.70 0.17 62.90

ADMM 153.12 3.05 50.20

Analysis of reconstruction time for real RS image is very essential since these

images are typically very large in size. It only takes a few minutes (∼ 450 secs.) to

process real RS images (up to 3000 × 1500 image) for the zooming factor 4 using

the proposed CUDA-GPU SR method. Due to memory constraints, CPU-based
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sequential implementations are unable to process real RS images.

4.5 Conclusion

In this chapter, a highly parallelized SISR framework accelerated with CUDA-

GPU implementation of edge preserving coupled dictionaries- SIFT-based keypoints

driven and non-keypoints patch-based dictionaries, and sparse representations is pre-

sented. On the basis of both SIFT keypoints-guided patch sparsity and NLTV-based

patch sparsity, a joint reconstruction model is developed to preserve high frequency

features (edges). Visual results and objective criteria clearly demonstrate that it

outperforms the state-of-the-art sparse representation- and DL-based SR methods.

CUDA-GPU implementation demonstrates significant speed-up as compared to se-

quential implementations and holds great potential for RS applications.

The main limitation of the proposed work is that sparse representations-based

SISR method relies on the quality of the hand-crafted features extracted from the LR

image and sparsity for effective training of the dictionaries required for reconstruc-

tion of the corresponding HR image. However, these requirements may not always

hold true in practice for the LR remote sensing image. The benefits of automatic

feature extraction in DL-based SISR methods include more data-driven and flexible

solutions, the ability to handle complex mappings between LR and HR images, and

the ability to interpret the complex structure of the image without requiring manual

feature selection. These advantages make DL-based SISR methods a powerful tool

for image SR, especially in applications of RS. However, we have seen that existing

DL-based SISR networks cannot alone deal with the blurriness of LR remote sens-

ing images. In the future, we will propose an end-to-end dual-branch DL network

consisting of independent deblurring and SR modules. This network will be able to

restore LR remote sensing images degraded with Gaussian blur to produce sharp

and clear HR images.
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